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Abstract: This paper mainly studies the market nonlinearity and the prediction model based on 
the intrinsic generation mechanism (chaos) of Bitcoin’s daily return’s volatility from June 27, 2013 
to November 7, 2019 with an econophysics perspective, so as to avoid the forecasting model 
misspecification. Firstly, this paper studies the multifractal and chaotic nonlinear characteristics 
of Bitcoin volatility by using multifractal detrended fluctuation analysis (MFDFA) and largest 
Lyapunov exponent (LLE) methods. Then, from the perspective of nonlinearity, the measured 
values of multifractal and chaos show that the volatility of Bitcoin has short-term predictability. 
The study of chaos and multifractal dynamics in nonlinear systems is very important in terms of 
their predictability. The chaos signals may have short-term predictability, while multifractals and 
self-similarity can increase the likelihood of accurately predicting future sequences of these 
signals. Finally, we constructed a number of chaotic artificial neural network models to forecast 
the Bitcoin return’s volatility avoiding the model misspecification. The results show that chaotic 
artificial neural network models have good prediction effect by comparing these models with the 
existing Artificial Neural Network (ANN) models. This is because the chaotic artificial neural network 
models can extract hidden patterns and accurately model time series from potential signals, while 
the benchmark ANN models are based on Gaussian kernel local approximation of non-stationary 
signals, so they cannot approach the global model with chaotic characteristics. At the same time, 
the multifractal parameters are further mined to obtain more market information to guide financial 
practice. These above findings matter for investors (especially for investors in quantitative trading) 
as well as effective supervision of financial institutions by government.
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Introduction
Since it was proposed by Satoshi Nakamoto 
(2008) at the end of 2008, Bitcoin, as an 
alternative to conventional currencies, has 
quickly gained wide attention from the media, 
investors and scholars.

This attention is attributed to its transparency, 
simplicity, increasing popularity, decentralized 
peer-to-peer system and self-regulation. There 
is a  growing interest in studying the general 
dynamics of Bitcoin market. For instance, 
diversification was measured (Brière et al., 2015; 

Bouri et al., 2017; Urquhart & Zhang, 2019; 
Chaim & Laurini, 2018; Lahmiri et al., 2018), 
statistical properties and market efficiency 
were examined (Bariviera et al., 2017; Carbone 
et al., 2004; Martinez et al., 2018; McCarthy, 
2009; Symitsi & Chalvatzis, 2018), liquidity and 
microstructure were explored (Koutmos, 2018; 
Dyhrberg et al., 2018; Donier & Bonart, 2015), 
speculative bubble and risk were investigated 
(Osterrieder & Lorenz, 2017; Bouoiyour et al., 
2015; Klein et al., 2018), regulation was studied 
(Dwyer, 2015; Tasca & Liu, 2018; Katsiampa, 
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2017) whilst optimal trading was scrutinized 
(Ajaz & Kumar, 2018; Li & Tourin, 2016; Yi et 
al., 2018).

The nonlinearity of the Bitcoin market is 
a very important topic in the existing literature. 
As far as we know, these scholars (Urquhart, 
2016; Nadarajah & Chu, 2017) mainly studied 
the market nonlinearity of the Bitcoin price and 
return. But, the market nonlinear of Bitcoin 
volatility has rarely been studied. Volatility, 
which is also known as return’s volatility, 
plays an important role in risk modeling and 
evaluation as well as in the pricing of complex 
financial products. In fact, Bitcoin’s return is 
highly volatile. Its return depends largely on 
the shortage of the Bitcoin and people’s trust in 
them (Urquhart, 2016), which affects its value, 
causing return to fluctuate wildly. Therefore, 
this paper attempts to discuss the nonlinearity 
of the Bitcoin volatility market, in an attempt to 
fill the gap in this hot spot.

At present, multifractal theory and chaos 
theory are mainly used to study the nonlinear 
characteristics of financial market. Multifractals 
and chaos theory reveal the nonlinearity of 
financial market from different perspectives. 
To be specific, multifractal theory (especially 
multifractal detrended fluctuation analysis 
method, MFDFA) reveals the spatial organization 
process of financial market and the long-term 
correlation and self-similarity of financial time 
series. The MFDFA method is widely used in 
the field of economy and finance (Rizvi et al., 
2014; Cao et al., 2013; Bouoiyour et al., 2018; 
Uddin et al., 2018), which can not only find the 
multifractality and nonlinearity of the market, but 
also excavate more market information to guide 
financial practice. Meanwhile, chaos theory 
(Lahmiri, 2017; Adrangi & Chatrath, 2001; 
Ozun et al., 2010) provides the time evolution 
process of the financial market, reveals that 
the internal structure of the time series of the 
financial market is intrinsically deterministic and 
nonlinear, and shows that the financial time 
series is intrinsically generative and can be 
further predicted in a short time.

The study of multifractals and chaos in 
nonlinear systems is also of great significance 
in their predictability. On the one hand, a chaotic 
system (signal) may have limited short-
term predictability, while on the other hand, 
multifractals and self-similarity can increase the 
likelihood of accurate prediction of future time 
series (signal).

Another issue in the paper is to forecast the 
Bitcoin volatility. Predicting volatility of financial 
time series can help investors avoid risks, which 
is a  hot and challenging topic in the financial 
field. There are many prediction models for 
the Bitcoin market in the existing literature. 
In particular, Artificial Neural Network (ANN) 
models can deal with both linear and nonlinear 
data, so many researchers apply ANN models 
to predict the Bitcoin market (Hung et al., 2020; 
Tiwari et al., 2019; Seo & Hwang, 2018). To 
our knowledge, few researchers have used 
the internal generation mechanism of time 
series and ANN technologies to build predictive 
models of Bitcoin volatility.

This paper will mainly focus on the following 
two aspects: (1) We attempt to assess the 
predictability of Bitcoin volatility by examining 
its inherent nonlinear characteristics, including 
inherent chaos and multifractals. The chaotic 
and multifractal characteristics of Bitcoin 
volatility are detected by using the largest 
Lyapunov exponent (LLE) and MFDFA based 
on the extracted generalized Hurst exponent 
of time series. Specifically, the former allows 
to test the existence of nonlinear deterministic 
mapping, while the latter reveals the existence 
of long-term correlation in the case of non-
stationarity. (2) Our goal is to use a  special 
artificial neural network to topology the hidden 
dynamical system and automatically extract 
the underlying dynamical model to reveal the 
nonlinear characteristics of its time series. In 
other words, a  chaotic intelligent signal data 
mining and prediction system (i.e., chaotic 
artificial neural network) is constructed through 
the neural network topology. We expect the 
prediction accuracy of chaotic artificial neural 
network model to be higher than that of the 
existing neural network benchmark model. 
In a  word, the results from the nonlinear 
perspective are expected to show that the 
predictability of Bitcoin volatility in the short term 
depends on the measured values of multifractal 
and chaos, and the results of introducing 
chaotic artificial neural network are expected 
to prove the consistency and accuracy of its 
prediction ability.

This paper improves and complements 
previous literature on Bitcoin in four aspects: 
(1) Bitcoin and other cryptocurrencies have 
received much attention in the economic 
and financial literature. Several related 
problems are debated. The nonlinearity of 
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cryptocurrencies are very important issues 
addressed in the existing literature. The present 
paper attempts to discuss the nonlinearity of 
the Bitcoin volatility market, in an attempt to 
fill the gap in this hot spot. (2) This article will 
demonstrate a new perspective on prediction: 
econophysics. While using MFDFA method to 
study the multifractals of Bitcoin volatility, more 
parameter information is also mined to guide 
market practice. (3) We test the robustness of 
the largest Lyapunov exponent by bootstrap 
method. (4) This paper is the first time to apply 
chaos theory to the Bitcoin volatility market, 
excavates the internal generation mechanism 
of the market, builds prediction models based 
on its internal generation mechanism, and 
proves that its prediction effect is better than 
that of artificial neural network (ANN) model. In 
the future, our work will further compare other 
prediction models (such as GARCH model) to 
show the superiority of the model.

The paper is organized as follows. In the 
Section 1, the multifractal detrended fluctuation 
analysis (MFDFA) and the largest Lyapunov 
exponent methodologies are proposed; data 
and model settings are introduced in the Section 
2; Section 3 presented and analyzed the 
empirical results; Section 4 further discusses 
the prediction and comparison; the conclusion 
and economic implications are outlined in the 
Section 5.

1.	 Methodology
1.1	 Determining Chaos by Largest 

Lyapunov Exponent (LLE)
Chaos is determined by largest Lyapunov 
exponent (LLE) (Rosenstein et al., 1993; Wolf 
et al., 1985):
1.	 The time series with length N is {xi : i = 

1,2, …, N}. A  new m-dimensional phase 
space sequence Xi = {xi, xi+τ, … , xi+(m–1)τ} 
can be obtained through the phase space 
reconstruction method. The total number 
of observed sample data N, the number of 
phase points is M = N – (m – 1)τ the delay 
time is τ and the embedding dimension is m;

2.	 Construct initial vector:

L(t0) = min ║ X1 – Xj ║j 	
(1)

�where: t0 – the initial time; X1 – the initial 
phase point; and Xj – the rest of the phase 
point set;

3.	 The linear exponential growth rate can be 
obtained:

	 (2)

�where: λ1 – linear exponential growth rate;  
L(t1) – the time t1 vector distance; k – the 
time step;

4.	 Successively increase the embedding 
dimension m, repeat (2) and (3) until the 
largest Lyapunov exponent becomes 
stable with the change, and the calculated 
result is the estimated value of the LLE. It 
should be noted that if LLE > 0, it indicates 
a  time series with chaotic dynamics. On 
the contrary, if LLE < 0, it indicates that the 
time series does not have chaotic dynamic 
characteristics.

1.2	 MFDFA Formalism
The multifractal detrended fluctuation analysis 
(MFDFA), proposed by Kantelhardt et al. 
(2002), is a useful tool for detecting multifractal 
behaviors. We can conduct the MFDFA analysis 
with the following steps:
1.	 Suppose  is financial time series of 

length N; where: uj – the jth value in the time 
series; j – the ordering in the time series.

2.	 Calculate and divide the profile  
where uj.

3.	 Determine the variance:

	

(3)

�where  is the fitting polynomial in 
segment v.

4.	 Calculate the qth order fluctuation function 

;
�where s – the number in each segment; 
and the log-log plots wq(s) versus s for 
different q can be described by wq(s)~ 
sH(q). When the series is multifractal, 
a  significant dependence of H(q) on q 
should be observed. H(2) is the classic 
Hurst exponent. If H(2) > 0.5, it indicates 
that the trend change is persistent (long-
range memory); if it is anti-persistent, 
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H(2) < 0.5; and H(2) = 0.5 for the random 
walk process.
In addition, the singularity strength α and 

the singularity spectrum f(α) can be calculated 
via Legendre transform f(α) = qα – τ(q) = 
= 1 + q[α – H(q)]. f(α) describes the fractal 
dimension of the ensemble formed by all the 
points that share the same singularity exponent 
α. Fractal dimension f(α) ~ α is shaped like 
a  single-peaked bell. The difference between 
αmax and αmin , ∆α = αmax – αmin, is called the 
multifractal spectrum width, that represents 
the interval between the maximum probability 
and the minimum probability and measures 
the degree of the multifractality property. ∆f = 
f(αmin) – f(αmax)  is greater than 0 means that 
the chances of the sample being at the top 
are greater than the chances of being at the 
bottom, and vice versa. It is worth mentioning 
that investors can look for investment 
opportunities according to the size of ∆f. This 
paper chooses to apply MFDFA method, which 
can not only determine the market nonlinearity 
and multifractality, but also obtain other by-
products, such as the discovery of investment 
chances.

2.	 Data Description  
and Model Settings

2.1	 Data
In this paper, we use daily price of Bitcoin 
from May 8, 2013 to November 7, 2019. The 
data source is https://coinmarketcap.com/. For 
convenience, we denote the time sequence for 
each data set as t and the corresponding price 
sequence as p(t), where t = 1, 2, …, 2385.

2.2	 Definition of Volatility
We estimate the annualized volatility σ using 60 
datapoints sliding window. This rolling sample 
approach works as follows: we compute the 
annualized volatility for the first 60 returns, then 
we discard the first return and add the following 
return of the time series, and continue this way 
until the end of data. Thus, each σ estimate is 
calculated from data samples of the same size. We 
obtained an average of 2385 annualized volatility 
σ from May 8, 2013 to November 7, 2019.

For each time series, we define the daily 
return r(t) as follows: r(t) = lnp(t) – lnp(t–1).

We then calculate the 60-day standard 
deviation as follows:

, 

where . At last, the 60-day actual 

Fig. 1: The historical volatility of Bitcoin’s 60-day annualized yield

Source: own

Note: The horizontal axis represents time and the vertical axis is the volatility of Bitcoin.
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annualized volatility can be obtained as follows: 
.

Fig. 1 exhibits the historical volatility of Bitcoin’s 
60-day annualized yield time series ranging from 
June 27, 2013 to November  7, 2019 including 
2325 data. The horizontal axis represents the 
time axis, and the vertical axis is the volatility per 
60-day levels. These estimates are obtained as 
described in the above with a window width of 60-
day. It shows that there are considerable variability 
and irregularity in historical volatility in Fig. 1.

What follows, in order to examine the 
nonlinearity, multifractality and predictability of 
the Bitcoin market, we will respectively discuss 
the multifractal properties and chaos properties 
of the historical volatility time series.

2.3	 MFDFA Model Settings
The first step to set the MFDFA model, which 
means that it is necessary to set the input 
parameters m, q, and scale for MFDFA analysis. 
Normally, the value of m should be between 1 
and 3 when the smallest segment sizes contain 
10–20 samples. After comparison of the 
multifractal spectrum with different m values, 
we choose m = 1 in the MFDFA model, in 
order to prevent overfitting of polynomial trend. 

As noted by Lashermes et al. (2004), q-orders 
between −5 and 5 are sufficient in most cases. 
According to Zhou (2009) and Ihlen (2012), we 
set 8 as the minimum segment size, 23 as the 
maximum segment size in MFDFA model.

3.	 Empirical Results
3.1	 The Multifractal of the Bitcoin 

Volatility
The Hurst exponent and multifractal spectrum 
of the Bitcoin volatility are shown in Fig. 2. 
The line in Fig. 2A refers to the q-order Hurst 
exponent H(q) of Bitcoin volatility. Considering 
the preceding model, q-order based on 
generalized Hurst exponent H(q) is an indicator 
for multifractal properties. The figure shows that 
the value of H(q) is apparently dependent on 
q values. The decreasing H(q) indicates that 
the volatility series of the Bitcoin has significant 
multifractal properties. When q = –5, H(q) is 
1.8, higher than 0.5, and decreases smoothly 
with a  rising q value between −5 and 5. This 
indicates significant persistent properties 
of small fluctuations. When the value of  
becomes positive, H(q) stays slightly above 
0.5. In particular, H(2) > 0.5, which implies 
persistence and long-range memory structure.

Fig. 2: The Hurst exponent and multifractal spectrum of the Bitcoin volatility

Source: own

Note: H(q) – the generalized Hurst exponent; q – the order of fluctuation function; α – the singularity strength; f(α) – the 
singularity spectrum.
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By looking into the multifractal spectrum, 
the line in Fig. 2B gives more information 
about multifractal features. The shape of 
the multifractal spectrum has a  long-left tail, 
meaning the Bitcoin volatility has a multifractal 
structure sensitive to the local fluctuations with 
large magnitudes, but insensitive to the local 
fluctuations with small magnitudes. And through 
calculation, Δf = –0.7 is less than 0, indicating 
the chances of the Bitcoin volatility being at 
the bottom are greater than the chances of 
being at the top. By calculating the width (e.g., 
the value Δα = αmax – αmin), we learn that the 
multifractality degree is 1.78. The Δα value is 
far from 0, indicating the Bitcoin volatility market 
with higher multifractality. These characteristics 
fully show that the market is nonlinear and the 
main conclusions are listed in Tab. 1.

Businesses, banks and institutions can hold 
Bitcoin, because Bitcoin provides users with 
lower legitimate transaction costs (Kim, 2017). 
From the perspective of the policy makers who 
regulate the Bitcoin market, there are potential 
reasons for the existence of long-range memory 
behavior: the lack of clear regulatory laws and 
regulatory authorities. Therefore, comparing 
with the traditional financial and commodity 
markets, policy makers should strengthen 
market supervision, formulate relevant laws 
and regulations and establish reform measures 
to reduce the long-range memory level.

The long-range memory property means 
that the Bitcoin volatility market can be predicted 
in short term to capture speculative profits. The 
higher multifractality shows that the volatility 
market will change greatly, and the market is 
very complex. These results have implications 
for economic entity. Investors can predict the 
future volatility to analyze price fluctuations and 
carry out risk control.

There are also important practical 
implications of Bitcoin fluctuations being more 

likely to be at the bottom than at the top: Risk 
averse investors will continue to hold positions 
or increase positions appropriately to maximize 
profits based on the higher probability that the 
volatility of Bitcoin is low. However, the risk 
appetite investors tend to have a  strong risk 
tolerance, in the hope of higher expected return 
on investment, will reduce the appropriate 
positions. These, which are also important by-
products of the MFDFA approach, can help 
investors (especially for investors in quantitative 
trading) capture the arbitrage opportunity 
and manage risk. All these characteristics will 
provide good judgment for investment decision 
makers, risk control managers and government 
regulators.

3.2	 The Chaos of the Bitcoin Volatility
As the Bitcoin market is predictable, in order 
to make a  more accurate prediction, we 
want to know whether the internal generation 
mechanism of Bitcoin volatility time series is 
chaotic. In order to identify the chaos of the 
Bitcoin volatility time series, the first step is to 
reconstruct the phase space, which requires 
the determination of two parameters: the 
embedding dimension m and the delay time 
τ. Firstly, we obtain the delay time τ = 6 with 
the mutual information function method (Fraser 
& Swinney, 1986), and can determine the 
embedding dimension m = 3 by Cao method 
(Gao & Zheng, 1993). Then, the largest 
Lyapunov exponent LLE  =  0.0091 is greater 
than 0 but very close to zero according to 
the Wolf algorithm. At the last, we apply the 
Model-based bootstrap method (Davison & 
Hinkley, 1997; Yin & Wang, 2019) to verify the 
robustness of LLE. The idea of this method is 
shown in the Appendix A1. When the confidence 
value is 95%, the confidence interval [0.1279; 
0.1733] can be obtained. Since the quantiles 
for the empirical distribution are all larger than 

H(2) > 0.5 Δf = –0.7 < 0 Δα = 1.78 > 0
Long-range memory The chances of the Bitcoin volatility 

being at the bottom are greater than 
the chances of being at the top

The Bitcoin volatility market with 
higher multifractality

Source: own

Note: H(2) – the classic Hurst exponent; Δf = f(αmin) – f(αmax); Δα = αmax – αmin.

Tab. 1: Multifractal test results for the time series of Bitcoin volatility
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the largest Lyapunov exponents LLE = 0.0091, 
this means that the value of LLE is significantly 
greater than zero. It can be determined that the 
time series of Bitcoin volatility is chaotic using the 
chaos theory, as shown in the following Tab. 2.

This shows that the volatility time series of 
Bitcoin has an intrinsic deterministic generation 
mechanism, namely chaos. Therefore, in the 
following section, we will focus on whether the 
prediction model based on intrinsic generation 
mechanism (chaos) can significantly improve 
the existing prediction model with chaos.

4.	 Prediction and Comparison
Accurate prediction of Bitcoin volatility means 
high returns for investors, risk management and 
control and effective regulation of the financial 
market by government departments, so we 
then build multiple prediction models based on 
the endogenous structure (chaos) of the time 
series of Bitcoin volatility and compare with the 
two existing models without chaos. It is hoped 
that the prediction accuracy of the chaotic 
prediction models will be higher, avoiding the 
forecasting model misspecification. Specifically, 
we introduce three kinds of prediction models, 
namely, chaos  +  ANN (artificial neural 
network)-type, chaos-type and ANN-type. The 
chaos  +  ANN-type contains a  hybrid based 
RBF neural network model with chaos (RBF-
CHAOS model) and a hybrid based BP neural 
network with chaos (BP-CHAOS model); the 
chaos-type is the weighted first-order Local 
Region (LR-CHAOS model), which is a model 
based on chaos without ANN; the ANN-type 
includes two existing prediction models only 
with ANN, namely, RBF model and BP model. 
For the construction of these prediction models, 
please refer to Appendix A2–A4 or literature.

In the simulation experiment, the original 
samples and the predicted samples are x(n) 
and xp(n) espectively, and the absolute error 
e(n) = xp(n) – x(n), the mean absolute error 
(MAE) and the percentage error (Perr) are 

used as the evaluation criteria for the prediction 
accuracy. The smaller MAE and Perr values 
are, the more predictive effect of the model is, 
where the MAE and the Perr are respectively 
defined as:  

,

where Np represents the number of predicted 
samples.

In this section, the first 2,315 data of 
Bitcoin volatility time series are used as training 
samples to predict the Bitcoin volatility in the 
next 10 days. Fig. 4–8 show the prediction 
images of the five models respectively. The 
horizontal axis represents the predicted days, 
and the vertical axis is the volatility per 60-day 
levels. The red line represents the predicted 
value and the blue line is the measured value. 
The closer these two lines are, the closer the 
predicted value and the measured value are. 
The absolute value of e(n) of these five figures 
does not exceed 1.5 × 10–3. It follows from 
Fig.  3–7 that these five models can predict 
prices of the Bitcoin volatility, and being more 
accurate in the short term and larger errors in 
the long term. It should be emphasized that 
LR-CHAOS model can simulate the measured 
value well.

The MAE value and Perr value are listing 
in Tab. 3, and we sort these 5 models based 
on MAE and Perr value. The smaller the MAE 
value and Perr value are, the higher the order of 
the corresponding model is, as shown in Tab. 3.

We can see from Tab. 3 that:
(1) It can be concluded that the ordering of all 

prediction models is LR-CHAOS > RBF-CHAOS 
> BP-CHAOS > RBF > BP, indicating that the 
optimal prediction model is LR-CHAOS among 
these models. It follows from the above that 
the model which really improves the prediction 
accuracy is based on the internal generation 
mechanism of time series, and this matters for 
the relevant investment institutions (investors).

Delay time Embedding 
dimension

Largest Lyapunov  
exponent (LLE)

Confidence interval
of 95% for LLE Chaos

τ = 6 m = 3 LLE = 0.0091 > 0 [0.1279; 0.1733] Yes

Source: own

Tab. 2: Chaos test results for the time series of Bitcoin volatility
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Fig. 3: Predicted by RBF-CHAOS model

Source: own

Note: x(n) – the original price; xp(n) – the predicted price; e(n) = xp(n) – x(n).

Fig. 4: Predicted by BP-CHAOS model

Source: own

Note: x(n) – the original price; xp(n) – the predicted price; e(n) = xp(n) – x(n).
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Fig. 5: Predicted by LR-CHAOS model

Source: own

Note: x(n) – the original price; xp(n) – the predicted price; e(n) = xp(n) – x(n).

Fig. 6: Predicted by RBF model

Source: own

Note: x(n) – the original price; xp(n) – the predicted price; e(n) = xp(n) – x(n).
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(2) Furthermore, the results show that the 
prediction ability of the model is from high to 
low successively: RBF-CHAOS > RBF, BP-
CHAOS > BP, which means that the prediction 
accuracy of the prediction model combining 
chaos and ANN is higher than that of the ANN 
model. At the same time, it is also found that 

LR-CHAOS > RBF, LR-CHAOS > BP, indicating 
that the prediction accuracy based only on 
chaotic characteristics of Bitcoin volatility time 
series is higher than that based solely on 
ANN. Furthermore, models based on intrinsic 
generation mechanism have better predictive 
power than existing models. This fully shows 

Fig. 7: Predicted by BP model

Source: own

Note: x(n) – the original price; xp(n) – the predicted price; e(n) = xp(n) – x(n).

MAE Rank Perr Rank
RBF-CHAOS 0.0006 2 0.02% 2

BP-CHAOS 0.0009 3 0.03% 3

LR-CHAOS 0.0005 1 0.01% 1

RBF 0.001 4 0.04% 4

BP 0.0013 5 0.05% 5

Source: own

Note: MAE – Mean absolute error; Perr – Percentage error; BP – Back propagation; RBF – Radial basis function; 
BP-CHAOS – Hybrid back propagation neural network and chaos; RBF-CHAOS – Hybrid radial basis function neural 
network and chaos; LR-CHAOS – Local region chaos; ‘RBF-CHAOS, BP-CHAOS, LR-CHAOS, RBF and BP’ represent 
the data predicted by the corresponding model (for details on the four models see the Appendix).

Tab. 3: Prediction errors of these models
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that it is very meaningful to build prediction 
models based on the endogenous structure 
(chaos) of the time series of Bitcoin volatility.

(3) The order of prediction accuracy of 
RBF-CHAOS, BP-CHAOS and LR-CHAOS is 
LR-CHAOS > RBF-CHAOS > BP-CHAOS from 
high to low. As we all known, RBF-CHAOS and 
BP-CHAOS are the prediction model combining 
chaos and ANN, while LR-CHAOS is the model 
based solely on chaos. This result also shows 
that adding ANN technology cannot improve 
the prediction accuracy of chaotic model.

Conclusion and Economic Implications
Bitcoin has received a special attention since its 
emerging. Thus, it is crucial to understand the 
stylized facts of this digital currency for investors 
and academicians. This paper mainly studies 
the market nonlinearity and the prediction model 
based on the intrinsic generation mechanism 
(chaos) of Bitcoin’s daily return’s volatility from 
June 27, 2013 to November 7, 2019 with an 
econophysics perspective, so as to avoid the 
forecasting model misspecification.

Firstly, this paper studies the multifractal 
and chaotic nonlinear characteristics of Bitcoin 
volatility by using MFDFA and LLE methods.

Then, from the perspective of nonlinearity, 
the measured values of multifractal and chaos 
show that the volatility of Bitcoin has short-
term predictability. The study of chaos and 
multifractal dynamics in nonlinear systems is 
very important in terms of their predictability. An 
unstable or noisy system (signals) may have 
short-term predictability, and multifractals and 
self-similarity can increase the likelihood of 
accurately predicting future sequences of these 
signals.

Finally, we constructed a  number of 
chaotic artificial neural network models to 
forecast the Bitcoin return’s volatility avoiding 
the misspecification of the prediction models. 
The results show that chaotic artificial neural 
network models have good prediction effect 
by comparing these models with the existing 
artificial neural network (ANN) models. This is 
because the chaotic artificial neural network 
model can extract hidden patterns and 
accurately model time series from potential 
signals, while the benchmark artificial neural 
network is based on Gaussian kernel local 
approximation of non-stationary signals, so it 
cannot approach the global model with chaotic 
characteristics.

The paper also points out that from 
a  technical point of view, it is feasible to predict 
and analyze the volatility of the Bitcoin market, 
which makes market arbitrage possible. Arbitrage 
opportunities can increase risk in the Bitcoin 
market by attracting speculative capital. Investors 
can use the predictive model to design risk control 
strategies in the Bitcoin market and effectively 
manage the risks in the Bitcoin market.

At the same time, this paper also fully 
explores the system parameters, which 
can also help investors (especially those in 
quantitative trading) seize arbitrage opportunities 
and manage risks. These characteristics will 
provide good judgment for investment decision 
makers, risk control managers and government 
regulators. Specifically: the ∆α value is far from 
0, indicating the Bitcoin volatility market with 
higher multifractality, this shows that the volatility 
market will change greatly, and the market is very 
complex. The reason may be the conversion of 
heterogeneous trading strategies or insufficient 
information transmission. Therefore, the 
government regulators should strengthen the 
education of traders and disclose information 
in time to avoid information asymmetry. Then,  
H(2) > 0.5 shows that the Bitcoin volatility market 
has a  long-range memory, which also indicates 
that the market can make predictions based 
on past data. This provides strong evidence 
against the efficient market hypothesis (EMH). 
There are potential reasons for the existence 
of long-range memory behavior: the lack of 
clear regulatory laws and regulatory authorities. 
Therefore, comparing with the traditional 
financial and commodity markets, policy makers 
should strengthen market supervision, formulate 
relevant laws and regulations and establish 
reform measures to reduce the long-range 
memory level. As well as  ∆ f < 0 indicates the 
chances of the Bitcoin volatility being at the 
bottom are greater than the chances of being 
at the top. This is a forecast of the direction of 
the market and indicates that the market will go 
down, which will help investors and regulators 
in the market. There are also important practical 
implications of that: Risk averse investors will 
continue to hold positions or increase positions 
appropriately to maximize profits based on the 
higher probability that the volatility of Bitcoin is 
low. However, the risk appetite investors tend 
to have a  strong risk tolerance, in the hope 
of higher expected return on investment, will 
reduce the appropriate positions.
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Appendix:

A1. Model-based Bootstrap
The idea of Model-based bootstrap method is to fit a suitable model for the data, construct the 
residuals from the fitted model, and then bring the random samples in the residual into the fitting 
model to generate a new sequence. When we use the AR (1) model to fit the time series x1, x2, …, xn, 
giving estimated autoregressive coefficient ; where ej represents
the residuals, it is found that the correlation of  sequence was very weak. So we choose AR 
(1) as the based model. The estimated largest Lyapunov exponent is denoted , and then the 
empirical distribution for  is constructed by bootstrap samples. When the confidence value is 
95%, the confidence interval [0.1279; 0.1733] can be obtained. Since the quantiles for the empirical 
distribution are all larger than the largest Lyapunov exponents LLE = 0.0091, this means that the 
value of LE is significantly greater than zero.

A2. RBF Model and RBF-CHAOS Model
RBF neural network (RBF model), which is also called Radial Basis Function neural network 
and proposed by Moody (1989), is a three-layer feed-forward network with a similar structure of 
multiple layers of forward networks with a single hidden layer. RBF neural network is a kind of local 
approximation network with three typical network structures: input layer, hidden layer and output 

Fig. A1: The histogram of the estimated largest Lyapunov exponent by bootstrap 
method

Source: own
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layer. The specific structure of RBF model has been mentioned in many literatures, so it will not be 
repeated here.

A hybrid based RBF neural network model with Chaos (RBF-CHAOS model) can be constructed 
by following steps:

Step 1: Take the embedded dimension  as the input number of RBF network, and let the output 
number as 1;

Step 2: Take the radial basis function form as:

where c is called the width value, the input vector of the network is  is called 
a radial basis function;  represents norm;  signifies the center of the radial basis function.

A3. BP Model and BP-CHAOS Model
Back Propagation neural network (BP model), including input layer, hidden layer and output layer, 
is using minimum variance learning method (Rumelhart et al., 1986; Yang, 1996). At the same time, 
it is a kind of supervised learning neural network, which contains three or more layers of neural 
networks.

The hybrid based BP neural network model with Chaos (BP-CHAOS model) can be constructed 
by following steps:

Step 1: Take the embedded dimension  as the input number of BP network, and let the output 
number as 1;

Step 2: Take input and output of layer nodes, respectively as ,

, j = 1, 2, …, n; where   is the output of hidden  
 
layer, the connection weight from the input layer to the hidden layer is wij, the threshold value of 
hidden layer node is represented by hj.

The connection weight from the hidden layer to the output layer is uj, and b is the threshold of 
the output layer.

Note that the two models (RBF-CHAOS and BP-CHAOS) are based on ANN and chaos, while 
the other two models (RBF and BP) are only based on ANN.

A4. LR-CHAOS Model
The LR-CHAOS model (Zhang, 2010) can be constructed by following steps:

Step 1: Set the neighboring point Mki of the center point Mk , i = 1,2, …, q, and let di = Mki – Mk , 
where  represents norm.

Step 2: Set dm = min {di}, and define the weight πi of the point Mki as:

1

exp( ( ))
exp( ( ))

i m
i q

i mk

d d
d d

π
=

− −
=

− −∑
.

Step 3: Make the linear fit as Mki + 1 = ae + bMki to estimate the coefficients a and b, where  
e = (1, …, 1)T.

Note that the LR-CHAOS model is only based on chaos.
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