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Abstract: The Late Neolithic palafitte site, Ustie na Drim, in the northern part of Lake Ohrid (North
Macedonia), excavated in 1962, offered ceramic fragments of large, flat, elongated pans. These artifacts
could be dated by relative chronology to roughly around 5200–5000 BC. According to their shape and
technological traits, the ceramic pans were probably used for baking. The attached materials on the
surface of studied pan fragments were sampled for consequent chemical and microscopical analyses
(i.e., analyses of starch, phytoliths, and microscopic animal remains). An immunological method
revealed the presence of pork proteins in samples. The presence of organic residues of animal origin
was, moreover, confirmed by the detection of cholesterol using gas chromatography coupled to mass
spectrometry. Analysis of detected microscopic botanical objects revealed starch grains of several
plants (i.e., oak, cattail, and grasses). An interesting find was the hair of a beetle larva, which could
be interpreted contextually as the khapra beetle, a pest of grain and flour. Based on our data, we
suppose that the ceramic pans from Ustie na Drim were used for the preparation of meals containing
meat from common livestock in combination with cereals and wild plants.

Keywords: archaeobotany; ceramic vessel; cholesterol; pests; phytoliths; starch; proteins; gas chro-
matography

1. Introduction

One of the major topics in the contemporary bioarchaeology of artifacts is the investi-
gation of archaeological vessels using the latest instrumental methods of chemical research
and the recent tools of archaeobotanical, genetic and microbiological investigation. An
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analysis of the shape, quality of material, and volume of a found vessel enables an estima-
tion of its use in the initial living context before being discarded and its existence during
cultural deposition [1]. It is also possible to record the ‘life of artifacts’ from the time of their
production and the beginning of their use to the moment of their exclusion. Today great at-
tention is given to the residual content of vessels in Mediterranean regions due to chemical
signals in residue content on the inner surface of vessels [2–6]. Analogically, ceramic vessels
from the Iron Age in Central Europe have been subjected to chemical research that has
revealed the presence of several compounds indicating food remains [7]. Besides ceramic
vessels, special interest has been focused on analyzing the content of bronze vessels where
organic residues could be ‘trapped’ in corrosion products [8,9]. The aim of the research
on archaeological vessels is to identify their original function in society and contribute to
an understanding of the subsistence principles as well as ritual customs of past human
populations [2,10].

The Neolithic period in the Near East, Anatolia [11,12], and Europe [13] could be
characterized by the movement of people and the diffusion of new modes of life. However,
it should be noted that the development of populations in the Neolithic period was long and
diverse [14]. Variability in their forms of settlement was also reflected in the development
of ceramics: from a relatively simple ceramic type in the Early Neolithic to more complex
variability in the Late Neolithic/Eneolithic. Current research on the functional traits of
Neolithic pottery is targeted towards organic bulk remains on the inner surface of ceramics
as well as chemical signals of organic penetration in the microporous matrix of ceramic
vessels [15,16].

Detailed chemical analysis of soil content and/or organic residues in ceramic vessels
and pans can provide information about their usage and former content. The analysis
of lipid residues present therein is an important part of this research due to the chemical
stability of nonpolar compounds in archaeological contexts (i.e., lipids, steroids, and ter-
penes) [17,18]. A frequently used technique for the characterization and identification of fat
origins is the analysis of isotope ratios of individual fatty acids adsorbed in prehistoric, an-
tiquity, and medieval ceramics using gas chromatography-combustion-isotope ratio mass
spectrometry (GC-C-IRMS) [19,20]. However, ‘conventional’ gas chromatography com-
bined with mass spectrometry (GC/MS) can provide similar information, and sometimes
even more significant, when the use of the multiple-reaction monitoring method (MRM
transition) is compared to GC-C-IRMS. The use of GC/MS together with MRM transition
has been applied in the analysis of soil extracts from Neolithic ceramic vessels where a
broomcorn millet marker miliacin has been found. The obtained results have improved
our knowledge concerning the use of millet in the past and can be highlighted as the first
direct evidence of usage of broomcorn millet in Central Europe [21]. Another technique for
the analysis of original and intact lipid molecules, i.e., di- and tri-acylglycerols, is matrix-
assisted laser desorption/ionization mass spectrometry [22,23]. As mentioned above, the
stability of nonpolar compounds is much higher than the stability of polar compounds in
an archaeological context due to the higher level of hydrolysis and water leaching of polar
compounds [17,18]. For example, sterols, such as cholesterol in animals and ß-sitosterol in
plants, are reasonably resistant to post-burial degradation and can therefore be a marker of
fat origin [9,24].

Until recently, only a few research teams have worked with the chemical signals and
archaeobotanical micro-objects from the residual material of the inner walls of archaeologi-
cal vessels [16,25–27]. The aim of this article was to combine advanced chemical analysis
(gas chromatography/mass spectrometry and immunological analysis) with microscopic
evidence of the microremains (starch grains, phytoliths, molds, yeast cells, and other mi-
croremains) to determine the function of ceramic pans from the Late Neolithic palafitte site
of Ustie na Drim in the Lake Ohrid shore area in the town of Struga, North Macedonia.
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2. Results and Discussion

The gas chromatography/mass spectrometry of organic residues attached on the
surface of ceramic pans KE1–KE7 revealed a cholesterol signal (Table 1, Figure 1). The pres-
ence of cholesterol in all samples was confirmed by the authentic cholesterol standard,
retention time, and fragmentation spectrum (Figure 2). The most significant sample was
from ceramic pan KE4, where a high amount of a thin, baked mass was found. The
concentrations of cholesterol in the sample taken from this thin, baked layer on the bot-
tom of ceramic pan KE4-1 was 0.44 mg·g−1, while in the sample under the inner edge
of vessel KE4-2, it was 0.66 mg·g−1; for the sample under the residue of sample KE4-1
(i.e., KE4-3) it was 0.19 mg·g−1, and in the sample of the mass under sample KE4-2 (i.e.,
KE4-4) it was 0.46 mg·g−1 (Figure 2a). The reference sample from the edge of vessel KE4
contained only traces of cholesterol (below 0.01 mg·g−1). This significant difference in
the concentration of cholesterol in the KE4 samples excludes the cross-contamination of
pan pits by surrounding material at the storage location. The samples from KE4 were
also analyzed using immunological tests for the detection of denatured proteins. This
methodology has been successfully tested many times [28,29] and was also used as a
control for mass spectrometric data [23]. The sample KE4-2, with a high concentration of
cholesterol, provided a positive reaction for porcine proteins. However, a positive reaction
was also found in the reference sample KE4-5. Based on these results, contamination tests
were performed for porcine proteins [29]. The contamination tests pointed to different
origins for the porcine proteins in samples KE4-2 and KE4-5. The proteins in sample KE4-2
had been denatured by high temperatures compared with the ‘unchanged’ (undenatured)
proteins in KE4-5. The results obtained by immunological analysis confirmed different
chemical compositions of both examined layers. Moreover, a signal of 18-norabietane
(RT 16.65 min.) and retene (18.64 min.) was found in samples KE4-2 and KE4-4, pointing
to the presence of resin/decayed wood [30]. Note that these compounds were also found
in other samples, and in the reference samples, the content of 18-norabietane and retene
was 32 times and 8 times lower, respectively, than that of sample KE4-2. The total ion
current (TIC) chromatogram of other compounds identified in sample KE2-4 is shown in
Supplemental Figure S1 and Table S1.
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Table 1. List of studied samples with the focus on the concentration of cholesterol, starch grains, phytolith, and non-pollen objects. SP: sample was taken for microscopical evaluation of
microremains; positive: microobject was found in the prepared sample; negative: no microobject was found).

Artefact Sample Concentration of Cholesterol
(mg/g) Phytoliths and Non-Pollen Objects Starch Position of Sample in Ceramic Pan

KE1 1 0.05 - - pit (residue)
KE1 2 0.08 - - pit (ceramic under KE1-1)
KE1 3 0.00 - - edge, the reference sample
KE1 SP1 - positive positive pit
KE1 SP2 - - positive edge
KE2 1 0.03 - - pit (residue)
KE2 2 0.01 - - pit (ceramic under KE2-1)
KE2 3 0.92 - - pit (residue)
KE2 4 0.04 - - pit (ceramic under KE2-3)
KE2 5 0.00 - - bottom, the reference sample
KE2 6 0.00 - - inner surface (organic temper)
KE2 7 0.01 - - surface (the reference sample)
KE2 SP3 - - negative pit
KE2 SP4 - - - pit
KE2 SP5 - - positive edge

KE3 1 0.02 - - inner surface (close bottom part, baked
mass)

KE3 2 0.13 - - inner surface (under edge, baked mass)
KE3 3 0.01 - - inner surface (ceramic under KE3-1)
KE3 4 0.34 - - inner surface (ceramic under KE3-2)
KE3 5 0.04 - - edge (the reference sample)
KE3 SP6 - positive positive pit
KE3 SP7 - negative pit
KE4 1 0.44 - - inner edge (close bottom part, baked layer)
KE4 2 0.66 - - inner edge (close upper part, baked layer)
KE4 3 0.19 - - inner edge (ceramic under KE4-1)
KE4 4 0.46 - - inner edge (ceramic under KE4-2)
KE4 5 0.01 - - edge (the reference sample)
KE4 SP8 - positive positive pit
KE4 SP9 - - positive pit
KE5 1 0.09 - - inner edge (close bottom part, thin layer)
KE5 2 0.24 - - inner edge (close to KE5-1)
KE5 3 0.02 - - inner edge (ceramic under KE5-1)
KE5 4 0.16 - - inner edge (ceramic under KE5-2)
KE5 5 0.01 - - edge (the reference sample)
KE6 1 0.00 - - wall (close upper part, baked mass)
KE6 2 0.02 - - wall (close to KE6-1
KE6 3 0.00 - - edge (the reference sample)
KE7 1 0.17 - - organic residue (taken before conservation)
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The highest concentration of cholesterol was found in the pit of pan KE2 (Figure 1h,
Figure 2b), i.e., 0.92 mg·g−1. Other samples taken from KE2 contained only a trace amount of
cholesterol (i.e., the reference sample from the surface, KE2-7, 0.01 mg·g−1; sample of ceramic
from the pit, KE2-2, 0.01 mg·g−1; sample of ceramic from the pit, KE2-4, 0.04 mg·g−1). Note
that in the second reference sample (KE2-5, sample from the bottom of the pan) and in sample
KE2-6, cholesterol was not detected. This significant difference in concentration of cholesterol
in KE2 samples excludes the possibility of cross-contamination of ceramic pans’ pits by the
surrounding material at the storage location. In ceramic pan KE1, the highest concentration
of cholesterol was found in a sample taken from a pit similar to ceramic pan KE2; however,
in the reference sample KE1-3, cholesterol was not detected. Besides the samples from pits,
the organic residues attached to the bottoms and edges of ceramic pans KE3-KE6 were also
analyzed. The concentration of cholesterol in these samples was 3–66 times higher compared
to the appropriate reference sample (Table 1). Finally, baked organic mass (Figure 3) associated
with the reconstructed ceramic pan (KE7) was analyzed by GC/MS. Cholesterol was found
at a concentration of 0.17 mg·g−1. Abietic acid was also detected, but due to the fact that a
suitable reference sample was unavailable, we did not try to interpret this. In this organic mass,
baked remains of fungi hyphae have been observed through the glassy mass (Figure 3c,d).

The samples from KE4-2 and KE7 were dated using the AMS radiocarbon method.
Comparing both resulting dates, we can see that they are statistically inconsistent at the
5% significance level (T = 7.9, T(5%) = 3.8, df = 1). Though the calibrated probability
distributions partially intersect, the KE 7 sample was earlier than sample KE 4-2 (Table 2).
Both dates significantly contradict the archaeological chronology of the site (ca. 5200–5000
BC), and we, therefore, considered them unreliable, particularly because the carbonized
food residues adhering to pottery have been proved to be generally problematic material
for radiocarbon dating. Due to their heterogeneous composition, it is difficult to remove all
sources of exogenous carbon [31]. Analyses of replicate measurements have evinced that
dating food residues can produce inaccuracies of between 15% and 30% in the results, and
offsets between replicate measurements can reach more than 1000 radiocarbon years [32,33].
As both radiocarbon dates from the Ustie na Drim site had approximately the same
deflection from the expected chronology, we should also consider that they may have
been influenced by a reservoir/hard water effect from Lake Ohrid [34], for which the
modern rate has been estimated at ca. 1500 radiocarbon years [35]. Despite the sampled
food residues being of terrestrial origin (see above), it should be noted that even terrestrial
animals from within a food web related to lacustrine environments (e.g., by grazing aquatic
plants) can also suffer from a reservoir effect [36].
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Figure 3. Ustie na Drim. Organic mass taken from ceramic pan KE7 before reconstruction. (a) profile
of organic mass, (b) profile detail—the glassy edge burn-on, and (c,d) glassy mass with fungi hyphae
baked inside.

Table 2. Radiocarbon dates from organic residuals. Calibrated in OxCal 4.4 software using IntCal20
calibration curve [37,38].

Sample Lab. Code BP Age cal BC 68.4% cal BC 95.4%

KE 4-2 UGAMS-49232 7370 ± 30

6341–6313
(13.2%)

6369–6297
(22.6%)

6260–6216
(31.3%)

6269–8209
(35.6%)

6142–6092
(23.7%)

6198–6085
(37.2%)

KE 7 UGAMS-49233 7480 ± 25

6411–6366
(36.3%)

6422–6332
(53.3%)

6308–6265
(32.0%)

6319–6319
(42.1%)

Several types of microscopic organic particles were obtained along with several amor-
phous clusters of various different materials. The first type of obtained micro-residuals
were phytoliths, starch grains, and faunal remains (Figures 4 and 5, Table 1). The most
abundant (but still scarce, because generally, the amount of material gained for the mi-
croscopy was very low) were phytoliths named spheroid psilate aggregate (Figure 4d,e),
which were observed in almost every sample. Some skeletons (aggregates) or single cells
of a polyhedral shape were recorded (Figure 4g,j), as well as a particle reminding one of an
elongate psilate skeleton (Figure 4i), but appearing blue in the cross-polarized light; hence
its plant origin was not particularly certain. A few phytoliths could perhaps be attributed
to silicified vessel elements. Polyhedral epidermal cells are the most common type of dicot
phytoliths; they are formed in the leaves of many deciduous trees as well as produced
by many of the studied herbaceous dicotyledons [39]. The spheroid psilate morphotype
often arise as vesicular infillings of the epidermal and parenchyma cells of foliage and
reproductive organs in a wide range of dicots, monocots, and some gymnosperms [40].
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Note that none of the observed phytoliths could be attributed to cereal remains. The
phytoliths which would undoubtedly point to the Poaceae family were not found at all.
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Figure 4. Microresidues in samples SP1 (h,i,k), SP6 (f,l–o) and SP8 (a–e,g,j). (a–c) starch grain, proba-
bly the underground storage organ of higher plants, cf. Liliaceae; (d,e) skeleton consisting of small
spheroid psilate phytoliths; (f) wood charcoal fragment; (g–k) phytoliths; (l–o) other organic residues
(probably faunal); (n) hair fragment of dermestid beetle larvae, cf. Trogoderma sp.) Magnification
500× (except (d,i)).
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Figure 5. Starch grains of cf. Setaria from the ceramic pans KE2, sample SP5 (a,e); starch grains of cf. Typha found in KE4,
SP9 (b,f); starch grains of cf. Poaceae from KE2, SP5 (c,g); starch grains of cf. Quercus in KE2, SP5 (d,h). Images were taken
in visible light (a–d) and in cross-polarized light (e–h).

Starch as a natural substance is subject to destruction. Starch grains can be damaged
mechanically (by breaking), chemically (by the action of acids), enzymatically (by amylase),
or by heat (food preparation and cooking). Due to the effect of higher temperatures (above
50–70 ◦C) on starch grains, especially in humid environments, the gelatinization process
can begin. Starch granules gain in volume and lose their typical properties. If the damage
is extensive, the morphological identification method cannot be used [41]. Starch is also
affected by enzymatic activity, especially amylase from the glycosidases group of enzymes.
The source of amylase can be animals, plants, and microorganisms [42]. Despite a number
of factors, which may damage or destroy the starch grains, it is possible to find starch
grains undamaged or in a state which allows microscopic analysis. As the works of Henry
et al. (2009) and Crowther (2012) showed, concerning cooked starchy foods, it is common
to observe a variety of reactions to cooking where some granules will appear completely
unaffected, while other starch will be partially or fully gelatinized [43–45]. An analysis of
starch remains was conducted on nine samples. In sample KE1-SP1 one small, round starch
granule and an undefined starch were found. In sample KE1-SP2 an oval starch grain,
undefined (cf. Poaceae), was found. In samples KE2-SP3 and KE2-SP4, the finding was
negative. In contrast, sample KE2-SP5 was rich in starch grains (Figure 5). In this sample
following objects were found: an oval starch grain, undefined (cf. Poaceae); a small, round,
undefined starch (cf. Poaceae); an oval starch grain, damaged and undefined; a round,
damaged, and undefined starch; an elongated atypical starch (cf. Quercus) [46,47], and a
square-shaped starch (cf. Setaria, [46,48]). In the KE3-SP6 sample, a round, undefined starch
(cf. Poaceae) was found. Sample KE4-SP8 contained a trapezoid, starch shape with growth
rings (cf. Liliaceae) [49]. The last sample, KE4-SP9, contained a round undefined starch
(cf. Poaceae) and a cluster of starch grains (cf. Typha) [50]. A microscopic investigation
was further conducted to reveal the remains of animal structures. The most interesting
finding was a fragment of hair belonging to a larval segment of Coleoptera of the family
Dermestidae, cf. Trogoderma sp. [51] (Figure 4n). This ‘hair’ was identified thanks to its
peculiar microstructure; hastisetae (or hastate setae), located on the dorsolateral surface of
the tergites of larvae and pupae, are generally quite small (estimated length between 150
and 900 µm) and inserted in setal sockets on the integument trough a pedicel. Hastisetae
microstructure consists of two main parts: the shaft and the apical head (Figure 4n).
The shaft is made by repeated modules constituted by one cylindrical segment provided
with one wreath of spines/scales posterolaterally oriented in the distal part. The head of
the seta is a subconical anchor-like structure subdivided into five to seven longitudinal
elements; the apex of the head is blunt. This arrow-shaped hair residue is already known
from archaeological samples as sporadic non-pollen palynomorphs from the Early Bronze
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Age to Medieval contexts in Georgia [52,53] and generally occurs in stored animal or
plant products.

The identification of starch cf. Poaceae and cf. Setaria does not mean the detection
of Cerealia on a microscopic level; however, in an archaeological context, their presence
on cooking artifacts of this Late Neolithic site allows the possibility of interpreting these
findings as to the presence and use of flour from both domesticated and wild plants.
Interestingly, the larval hair of a dermestid beetle (cf. Trogoderma sp., a genus to which
pests of stored plant and animal products belong) was found coincidentally with the
above-mentioned types of starch. This combination led to the possible identification of the
Trogoderma granarium species (khapra beetle) in the record. This insect is generally known
as a grain pest; in its larval stage, it is a voracious feeder of stored grains and regularly
occurs mainly in cereals, pulses, and their products [54]. The starch grains found from cf.
Typha and cf. Quercus revealed the use of wild plant foods. Both plants are known to be
used as food resources for Palaeolithic and Mesolithic hunter-gatherers [55–58]. Cattail
(Typha sp.) represents an extraordinarily versatile plant with many uses, such as for roof
thatching and making mats or baskets. Moreover, many of its parts, such as the rhizomes,
young stems, flower spikes, or pollen of this plant, are edible and are widely known to
be used for human consumption [59]. The occurrence of cattail starch in a pan can most
likely be explained by its facility for being ground into a nutritive and tasty flour-like cereal
flour [60]. Furthermore, acorns have always been an attractive food resource within various
resource strategies, including that of agrarian societies. Acorns in prehistoric agricultural
communities may have played a role as a food substitute or as a reserve for times of crop
failure [61–63].

The combination of advanced chemical analysis with microscopic evaluation of the
microremains brings new evidence about the life of prehistoric people. We propose that
the studied ceramic pans were used for the preparation of meals containing meat from
common livestock in combination with cereals and wild plants.

3. Materials and Methods
3.1. Archaeological Samples

The Ustie na Drim site is located to the immediate north of Lake Ohrid along the banks
of the river Crn Drim in Struga (Figure 6). The site is situated in a north-south direction
along the riverbed. It is registered in the archaeological map of the Republic of Macedonia
as a palafitte settlement from prehistoric times [64]. The initiative for the research of this
locality started during some work on regulating the riverbed in 1961, when stone, flint,
and bone tools, as well as ceramic fragments, came to the surface. This was reason enough
to start protective archaeological excavations. The excavation was conducted over a short
period in 1962. Three trenches were opened (trench I with dimensions of 6 × 12 m, trench
II with dimensions of 2 × 4 m, and trench III with dimensions of 2 × 2 m) with a total
open area of 84 m2 [65,66]. Researchers solved the problem of the inflowing river water by
constructing a canal along the left bank of the river and smaller canals along the excavated
area in the southern and western profile where the water accumulated. Such a remedy
allowed digging to continue in relatively dry conditions. The strategy was to excavate
in mechanical layers of 15 to 20 cm. In the third mechanical layer, the team came across
a deposit of charred and non-charred wooden planks. The situation was interpreted as
constructions that had never been destroyed by floods. In the next two mechanical layers,
archaeological finds of stone artifacts, bone tools, and pottery were made, together with
wooden piles belonging to a Late Neolithic settlement (Figure 6b,c).
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Figure 6. Location of Ohrid area and Ustie na Drim in the North Macedonia (a), with archive pictures
from the excavation of the palafitte site in 1961 (b,c). The large archaeological trench with wooden
poles (b), and the site with an in situ ceramic pan (c).

Among the ceramic material, the most common forms were the large, flat, elongated
pans (тaви), which are shallow oval vessels with pits in the flat bottom. Most of them
belonged to a group of ‘rough pottery’ with a dark grey surface and were probably made for
some special use [67]. Similar ceramic forms have been found on the Stranata site, named
“crepni/црепни”; these are round shallow vessels with a flat bottom, but here without
any fingerprints. These vessels have large dimensions and usually a rough texture [68,69].
Outside of today’s borders of the Republic of North Macedonia, a similar ceramic form
has been found on the site of Barç, in the Korçë region of Albania [70]. The mentioned
sites correspond, according to the relative chronology based on pottery typology, with
the second phase of the Late Neolithic in Pelagonia and with the relative chronological
position of the Vinca-Tordos II phase or during the Vinca B2 phase in the Central Balkans
and the Arapi and Otzaki phases of the Dimini [70–72]. This chronological horizon could
be dated back to around 5200–5000 BC.

3.2. Residual Sample Extraction

The ceramic fragments from the archaeological research in 1962 were stored at the
Struga Museum. As a coarse ceramic, there was still sediment on their surfaces. In 2019,
ceramic fragments were sampled for their bioarchaeological residuals and chemistry by a
research team from the University of South Bohemia. The list of analyzed samples from
ceramic pans are listed in Table 1. It must be pointed out that the pits or depressions made
by fingers into the vessel’s surface are technical elements, which were fabricated before the
ceramic was fired in the kiln. This technological step with subsequent firing completely
eliminates all organic compounds in the ceramic material along with any contamination.
On the other hand, the pits were ‘traps’ for residual organic material in the process of baking
food. A special case was the fragment of the organic mass from the already-reconstructed
pan 7 (Figure 1a). This organic mass fragment was provided in a zip-lock bag separately.

Sampling was performed in two ways (Figure 1). First, the material was scraped from
the finger pits with a scalpel directly to polypropylene 2 mL microcentrifuge tubes (series
KE1-7, positions KE1-1, KE1-2, and KEx-y). The second series of sampling was processed
by liquid extraction using distilled water (sub-series SP for KE1-4, see below). Samples
were stored in a refrigerator and transported to the laboratories.
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3.3. Sampling for Starch, Phytoliths, and Non-Pollen Objects

A micro-pipetting method was used to sample starch grains from the ceramic frag-
ments. A small quantity of distilled water (approximately 100 µL) was placed directly onto
the surface of the examined object or pores in the structure of the ceramic pans. Conse-
quently, the water drop containing the extracted residues was collected with a pipette set to
20 µL. Samples were stored in microtubes with an ethanol solution. A drop of the sample
was placed on a slide and covered with a coverslip. The corners of the coverslip were
fixed with clear nail polish, and samples were left to dry. A drop of distilled water was
added to the dried sample before microscopy. Identification was accomplished by direct
observation (using a microscope Leica DM2500 P) and comparison with specimens from a
reference collection [73–76]. The analysis of starch grains was based on the microscopic
observation of samples in polarized and non-polarized light. The structures found in the
samples taken from the archaeological artifacts (ceramic pans) were recognized on the
basis of their optical properties and the morphological features of the starch grains.

Furthermore, an analysis of phytoliths and non-pollen objects was performed. Samples
in microtubes, originally mounted in ethanol, were transferred to distilled water, left
to sedimentation overnight, and after pipetting off the water, the pellet was dried in
a laboratory drier at 50 ◦C (4 h). Then 1 mL of a heavy liquid (sodium polytungstate,
SPT) calibrated at a density of 2.35 g·m−3 was added to every tube in order to separate
phytoliths and other less dense organics from mineral particles. Samples were centrifuged
at 800 rpm for 5 min. After that, the supernatant with its floating fraction was transported
to new tubes. Subsequently, 2 mL of distilled water was added, and the samples were
centrifuged three times (3 min/1500 rpm) to clean the SPT residue. Residues were mounted
in distilled water and observed by a Leica DM2500P polarizing microscope (with attached
camera). Whenever possible, phytoliths were named following the International Code for
Phytolith Nomenclature ICPN 2.0 [38]. Organic matter from the reconstructed KE7 basin
was observed using a Keyence VHX 7000 digital microscope (Figure 3). Part of sample KE7
(and KE4-2) was analyzed by radiocarbon dating at the University of Georgia, Center for
Applied Isotope Studies using the CAIS 0.5 MeV accelerator mass spectrometer.

3.4. Gas Chromatography/Mass Spectrometry (GC/MS)

Gas Chromatography/Mass Spectrometry (GC/MS) was used for the determination
of the semi-polar and nonpolar compounds in the acetone/chloroform extract sample [21].
Briefly, the solid material was taken from the inner part of ceramic pans, and 16–50 mg
of the material was directly extracted using 1 mL acetone/chloroform solution (50:50,
v/v). Note that from each ceramic pan, the weight of the sample for analysis was the
same. After centrifugation (4400 RPM), the liquid part was transferred to a 1.5 mL glass
vial, dried by a fine stream of nitrogen, and consequently derivatized using 20 µL N,O-
bis(trimethylsilyl)trifluoroacetamide (Sigma-Aldrich, St. Louis, MO, USA) and 20 µL
pyridine (HPLC grade, Sigma-Aldrich, St. Louis, MO, USA). The measurement was
performed by an Agilent 7010 Triple Quadrupole GC/MS system with Mass Hunter
software (Agilent Technologies, Palo Alto, CA, USA). The separation was performed on
two (5% Phenyl)-methylpolysiloxane HP 5 ms Ultra Inert capillary columns connected in
a series (15 m × 0.25 mm × 0.25 µm, each) with a constant flow of 1.0 and 1.2 mL min−1,
respectively. Nitrogen (N2 4.8. Messer Group GmbH, Germany) was used as a collision
gas with a flow rate of 1.5 mL min−1 and helium (He 5.0. Siad, Italy) as a quench gas with
a flow rate of 2.25 mL min−1. The initial oven temperature was 70 ◦C for 5 min; then, the
oven was heated at a rate of 15 ◦C min−1 to the value of 320 ◦C, which was held for 10 min.
The injection volume of the extracts was 1 µL with splitless injection. The identification of
the compounds was made using the NIST 14 library. Comparison and quantification were
made using the authentic standard of cholesterol (Sigma-Aldrich, St. Louis, MO, USA).
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3.5. Enzyme-Linked Immunosorbent Assay (ELISA)

For the determination of the animal species of organic residues (proteins), an ELISA
was used [28,77]. BioKits for Speciation and Identification allowed for the distinguishing
between beef, pork, poultry, and mutton proteins. This ELISA used microwell modules and
thermostable species-specific muscle proteins. It is a non-competitive, sandwich-type assay
(Neogen, Lansing, MI, USA) and was used according to the manufacturer’s instructions
with some changes, such as a lower volume of the sample as available in the archaeological
material [28]. Additionally, aside from the instructions, samples were not boiled due to
the fact that proteins in the archaeological objects could have been heat-treated in the past.
In the case of the test for the presence of pork, the samples were boiled for the second
replication and compared with the results from the previous (the first) replication; thus,
possible contamination from the non-boiled proteins could be detected. Contamination by
non-boiled proteins is usually caused by midgut mucosa that is present in animal feces [29].

4. Conclusions

The advanced chemical and microremains analyses of ceramic pans from the Ustie na
Drim site have provided multiple evidence of their artifact use in the past. The location
of the sampled material in pits on the pan surface and the character of the mass directly
joined with the artifact surface reduces the possibility of contamination. Overall, the record
is fragmentary; however, each of the methods used contributed to answering the basic
question of what was usually prepared for a meal in this kind of pottery. Concerning the
stratigraphic position of these artifacts, it was possible to determine their age by relative
chronology to around 5200 BC. Two samples from the surface of the pans were dated
by AMS 14C. Both radiocarbon dates were probably affected by an intake of old carbon
from the environment. Considering the estimated reservoir effect of Lake Ohrid, both
dates indicate an origin for the organic mass within the period of functional use of the
ceramic pans. Since radiocarbon dates are older than the relative chronology of pans, we
can exclude any post-depositional contamination by material from a later archaeological
period. The most relevant result was given by the advanced chemical analysis. The main
compound that occurred in all samples is cholesterol. A major source of cholesterol is
animal fat and meat (its presence was proved by immunological test). Recent data indicate
the amount of cholesterol in meat was roughly 75 mg/100 g (fatty parts like liver, brains,
etc., contain a much greater content, up to several hundred milligrams per 100 g) [78].
It should be noted that the concentration of cholesterol in the samples of organic residues
from the ceramic pans’ pits was significantly higher than in the reference samples, a fact
that excludes the possibility of cross-contamination of a pan’s pit by the surrounding
material at the storage location. The presence of denatured proteins in the ceramic pan
was also confirmed using an ELISA. Based on the results, we suppose that the analyzed
ceramic pans from Ustie na Drim were used for the preparation of meals containing meat
from common livestock in combination with cereals and wild plants.

Supplementary Materials: The following are available online, Figure S1: Total ion current (TIC)
chromatogram of sample KE4-2 (green line; inner edge: close upper part, baked layer) and KE4-5
(orange line; edge: the reference sample). Table S1: Table of the most significant compound detected
in sample KE4-2.
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62. Vencl, S. Acorns as food: Again. Památ. Archeol. 1996, 87, 95–111.
63. De Hingh, A.E. Food Production and Food Procurement in the Bronze Age and Early Iron Age (2000-500 BC). Ph.D. Thesis,

Leiden University, Leiden, The Netherlands, 2000.
64. AКRM. Arheoloska Karta Na Republika Makedonija Tom II (The Archaeological Map of The Republic of Macedonia); Makedonska

Akademija Na Naukite I Umetnostite: Skopje, North Macedonia, 1996.
65. Kuzman, P. Praistoriskite palafitni naselbi vo Makedonija. In Makedonija, Mileniumski-Kulturno Istorsiki Fakti I; Kuzman, P.,

Dimitrova, E., Donev, J., Eds.; Media Print Makedonija and Universitet Evro-Balkan: Skopje, North Macedonia, 2013; pp. 298–429.
66. Todoroska, V. The pile dwelling settlement “Ustie na Drim”. In Neolithic in Macedonia: New Knowledge and Perspectives, Centre for

Prehistoric Research; Naumov, G., Fidanovski, L., Eds.; Magnasken: Skopje, North Macedonia, 2016; pp. 41–53.
67. Benac, A. Оhridsko jezero i južna Pelagonija. Arheološki odkritija na počvata na Makedonija. MANU 2008, 17, 21–32.
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