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Abstract: The paper presents possible approaches for reducing the volume of data generated by
simulation optimisation performed with a digital twin created in accordance with the Industry 4.0
concept. The methodology is validated using an application developed for controlling the execution
of parallel simulation experiments (using client–server architecture) with the digital twin. The
paper describes various pseudo-gradient, stochastic, and metaheuristic methods used for finding the
global optimum without performing a complete pruning of the search space. The remote simulation
optimisers reduce the volume of generated data by hashing the data. The data are sent to a remote
database of simulation experiments for the digital twin for use by other simulation optimisers.

Keywords: digital twin; metaheuristics; Industry 4.0

1. Introduction

The increasing use of digital twins (DTs) is one of the most important trends in the
Industry 4.0 concept and industrial engineering [1], and some authors directly refer to the
Industry 4.0 era as the era of DT [2]. The concept of Industry 4.0 extends the possibilities
and use of DTs for, e.g., decision support and production planning [3], solving unexpected
situations/problems or predicting such situations [4], as well as training and knowledge
transfer of leadership, management, and executives [5,6].

In addition to DTs, the use of cyber–physical systems (CPSs) is increasingly mentioned
in connection with the Industry 4.0 concept. A CPS is a system consisting of physical
entities controlled by computer algorithms that allow these entities to function completely
independently, including autonomous decision making, i.e., they can control a given
technological unit or be an independent member of complex production units. CPSs are
often built on artificial intelligence and machine learning [6], using simulations [7] for
decision making and other areas of computer science that are being developed within the
Industry 4.0 concept.

The goal of our research is to test and modify different optimisation methods (and also
their settings) suitable for discrete simulation optimisation in accordance with the Industry
4.0 concept. A large number of data are generated during the simulation experimentation
with a DT. This paper describes a proposed methodology for reducing the volume of gen-
erated data in a simulation optimisation performed with a DT. The methodology attempts
to avoid the problem of generating big data rather than trying to extract information from
the large volume of generated data (often representing inappropriate solutions). We were
inspired by different techniques used in the field of big data problems. We had to solve
many problems during the simulation experimentation, e.g., reduction of the generated
data while maintaining the amount of necessary information without the loss of accuracy
needed for the simulation optimisation; ensuring a high search speed of these data; using
the parallelisation of the DT simulation experimentation; reducing the redundant data;
preventing possible data loss during the simulation experimentation with DT, etc.
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We used various optimisation methods (stochastic, metaheuristic–population or
neighbourhood-based algorithms), which are used in the optimisation of processes of
the DT. The proposed methodology was validated on several simulation studies (both
theoretical and practical). We selected the case of a DT of automated guided vehicles
(AGVs) conveying different types of parts to assembly lines from warehouses to describe
the methodology proposed in this paper.

The effectiveness of different optimisation methods in finding a suitable solution is
not the same. It differs especially in the case of different objective function landscapes
(the objective function of the DT is the goal we want to achieve). The paper describes
the evaluation of simulation experiments using different optimisation methods. These
evaluations are analysed from different perspectives (quality of found solution, the speed
of finding the solution, etc.). The effectiveness of the optimisation method also depends
on both the principle of the method and the settings of its parameters. We tested different
settings to compare the effectiveness of the optimisation methods. If the optimisation
method is set up well, it does not need to perform many simulation experiments, and thus,
the number of generated data is reduced.

2. Literature Background

Both CPS and DT are aimed at achieving the cyber–physical integration needed for
smart manufacturing, but each approach emphasises something different. While CPS
focuses on sensors and actuators, DT focuses on data and models [8]. The relationship
between CPS and DT can be described in that CPS uses DT, and existing DT is a prerequisite
for CPS [9]. Cyber–physical systems produce a large number of data; thus, big data
analytics is used for them, e.g., for predictability, planning, and decision making [10]. The
relationship between CPS and DT can be seen in Figure 1.

Figure 1. Relationship between CPS, DT, and IoT [11].

Big data analytics is a core component of data-based smart manufacturing and Indus-
try 4.0 initiatives [12]. The term big data originated in the early 1990s and refers to data
that are large in volume, variously heterogeneous (mainly in terms of structure), and with
uncertain credibility due to their possible inconsistency or, for example, incompleteness,
and with fast processing often required. Thus, the basic characteristics of big data are
the three Vs—‘Volume’, ‘Veracity’, and ‘Variety’ [13]. Over time, the three Vs have been
extended to five Vs by the addition of ‘Value,’ the value of the data (often relative to a
point in time), and ‘Velocity,’ the rapid increase in the volume of the data [14]. Big data
processing often encounters the limitations of traditional databases, software technologies,
and established processing methodologies [15].

Generally, there are two main functional components—system infrastructures and
data analytics—used to address the issue of big data in CPS in Industry 4.0. System
infrastructure provides real-time communication between devices and cyber devices, while
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data analytics focuses on improving product personalisation and efficiency of resource
utilisation [16].

As the processing of large volumes of data exceeds the capabilities of commonly
used computers, supercomputers or clusters are used. Since supercomputers are very
expensive, distributed computing systems (clusters) are more available, more cost effective,
and widely used in industry [17].

Big data mostly generates CPS, ERP systems, etc. within the Industry 4.0 concept.
These big data are analysed, cleansed, and mined, and the obtained data are then used as
input for simulations, based on the results of which the parameters and properties of the
CPS are then adjusted, or the simulations are used as a semantic validator, as shown in
Figure 2.

Figure 2. Steps required to provide semantically valid data to the simulation model [18].

The approach presented in this paper is inspired by this standard approach. The
difference, however, is that the simulation models generate large volumes of data that are
reduced using a hashing algorithm. Network architecture is used to communicate over a
shared database to reduce unnecessary computations on the simulation model if a given
variant has already been realised by a simulation optimiser. Moreover, it is possible to set
up different scenarios with data storage in the memory of each simulation optimiser.

2.1. Simulation Optimisation

The data used for the simulation optimisation to mimic the possible scenarios of
the process are obtained from the enterprise information system, e.g., enterprise resource
planning (ERP). These data are very good for strategic or tactical planning (not so often
used for operative planning) or control.

Using the internet of things (IoT), it is possible to read or download the data from
the different objects in the company, e.g., the production lines, AGVs, etc. These data are
especially suitable for operative planning or control. The current data processing is beyond
the computing ability of traditional computational models due to the immense volume of
constantly or exponentially generated data from the objects in the company.

Researchers in data analytics use and design new efficient algorithms to handle
massive data analytics problems, e.g., population-based algorithms including swarm
intelligence and evolutionary algorithms—see Figure 3. These methods are used for
extracting useful information from a big volume of raw data.
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Figure 3. Relationship between data science with evolutionary algorithm and swarm intelligence [19].

Some of our department’s projects are also focused on the simulation of processes
in industrial companies. We create DTs (discrete event simulation models) which rep-
resent real physical processes in different parts of a company (mainly production lines,
warehouses, etc.). The main problem of these simulation studies (mainly focusing on the
optimisation of the modelled processes) is the big search space (many possible solutions
to the modelled problem). The volume of data generated by the optimisation processes is
also affected by the number of the simulation model input parameters. The search space is
usually boundary constrained as follows:

X̃ =
n

∏
j=1

X̃j =
n

∏
j=1

[
aj, bj

]
, aj ≤ bj, aj, bj ∈ R (1)

where

• X̃ denotes the search space—the domain of the input parameters of the discrete event
simulation model;

• j denotes the index of the j-th decision variable (simulation model input parameter) of
the simulation model;

• n denotes the dimension of the search space;
• aj denotes the lower bound of the interval of the j-th decision variable;
• bj denotes the upper bound of the interval of the j-th decision variable.

Many of the modelled problems are NP-hard problems in which we often cannot
evaluate all the possible solution candidates,

X[j] = xj∀j : j = {1, 2, . . . , n} (2)

where

• X[j] denotes a possible solution candidate;
• xj denotes the value of the j-th decision variable.

The basic problem of the simulation optimisation is to find the optimum of the
objective function representing the aim of the simulation optimisation as follows:

X̌ = argminX∈X̃ F(X) =
{

X̌ ∈ X̃ : F
(
X̌
)
≤ F(X)∀X ∈ X̃

}
(3)

where

• X̌ denotes the global minimum of the objective function F(X);
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• F(X) denotes the objective function value of the solution candidate. The objective
function represents the goal of the simulation study. Each solution candidate (possible
solution of the modelled problem representing the vector of the values for each
decision variable X = [x1, x2, . . . , xn ] in search space) is evaluated by the objective
function value—the range includes real numbers F(X) ⊆ R. The objective function
maximisation can be converted to function minimisation.

Testing all possible solutions to a problem is a very inefficient way (and mostly
impossible) of finding a suitable solution candidate or the global optimum. This is the
reason why various global optimisation methods (especially the metaheuristic methods)
use different strategies to find a suitable solution candidate and to reduce this vast space
(some algorithms keep suitable tested solutions and provide a set of optima instead of
a single solution). Many of the optimisation algorithms (especially population-based
algorithms—naturally inspired or evolutionary algorithms) generate, instead of a small
number of solution candidates, the whole population containing a big number of these
solution candidates which are iteratively refined as follows:

Xi = Pop[i]∀i : i = {0, 1, 2, . . . , m− 1} (4)

where

• Xi denotes the i-th generated solution candidate;
• Pop denotes the list—population—of generated solution candidates;
• m denotes the length of the list Pop—population size.

These data must be stored to keep the information about the quality of the tested pos-
sible solution in the optimisation process. The question is how to keep all this information
which can be used for subsequent optimisations? We propose a methodology which helps
to reduce the volume of the data generated from the simulation optimisation.

2.2. Optimisation Methods

Simulation optimisation techniques are mostly used for the following:

• Discrete event simulation;
• Systems of stochastic nonlinear and/or differential equations [20].

There are many algorithms for simulation optimisation, and their use depends on the
specific application. In their paper, the authors Su et al. [21] describe the following as the
basic algorithms for simulation optimisation:

• Ranking and selection;
• Black-box search methods that directly work with the simulation estimates of objec-

tive values;
• Meta-model-based methods;
• Gradient-based methods;
• Sample path optimisation;
• Stochastic constraints and multi-objective simulation optimisation.

Considering the applicability of simulation optimisation in many industries and
aspects of human activities and its generality, there are many studies using simulation
optimisation in areas of industrial product development such as maintenance systems [22],
industrial production lines [23], new product development [24,25], etc.

Among the random optimum search methods, techniques such as simulated anneal-
ing [26], genetic algorithms [27], stochastic ruler methods [28], ant colony optimisation [29],
tabu search [30], etc. are used for the optimisation. For most of these algorithms, there
is evidence of global convergence, i.e., convergence to a global solution or local conver-
gence [31].

The paper [32] analyses a significant sample size (663 research papers) to provide
insights about the past and present practices in discrete simulation-based optimisation
(DSBO) applied to industrial engineering. DSBO is a set of tools and methods commonly
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used to help researchers and practitioners, for analysis and decision making, for investment
and resource allocation in new or already existing systems. Many articles published in this
area refer to the solution of a specific problem using one or more methods. The following
table presents the state-of-the-art techniques applied to DSBO projects on IE problems
(NP-hard), showing the past and present practices and bringing up possibilities for the
future of DSBO on IE—see Table 1.

Table 1. DSBO methods used [32].

Optimisation Method
Total/% of the Total

Papers Proceedings Total Cum. %

Heuristics:
Local Search 7/11.7% 3/5.0% 10/16.7% 18.2%
Random Search 5/8.3% 2/3.3% 7/11.7% 30.9%
Hill Climbing 3/5.0% 2/3.3% 5/8.3% 40.0%
Others 24/40.0% 14/23.3% 38/63.3% 100%

Metaheuristics:
Evolutionary 60/20.7% 65/22.4% 125/43.1% 43.1%
Simulated Annealing 11/3.8% 12/4.1% 23/7.9% 51.0%
Tabu Search 14/4.8% 6/2.1% 20/6.9% 57.9%
VNS 5/1.7% 1/0.3% 6/2.1% 60.0%
Others 87/30.0% 29/10.0% 116/40.0% 100%

Many authors focus on the optimisation of a specific problem with one optimisation
method or a modified derived optimisation method. Unfortunately, they do not address
the applicability of multiple optimisation methods to multiple problems and the compari-
son of the effectiveness of these methods using the different evaluation criteria (not just
using the average, mean, or standard deviation). We tested different optimisation meth-
ods (stochastic, metaheuristic–population, or neighbourhood-based algorithms) solving
different problems in industrial engineering (logistics, production planning, etc.) using
discrete-event simulation models. We were also interested in the evaluation of optimisa-
tion experiments with different settings of the optimisation methods (big volume of data)
from different perspectives [33]. We proposed a methodology that can be applied to the
optimisation of several industrial engineering problems represented by a discrete-event
simulation model.

The proposed methodology for parallel simulation optimisation uses the server’s
simulation optimiser (architecture client–server) using stochastic, neighbourhood-, and
population-based optimisation methods. Using the right method can significantly reduce
the search space as it reduces the data generated in the optimisation process.

2.2.1. Random Search

A population of new individuals (solution candidates) is generated in the search
space with uniform distribution using the Monte Carlo method. This method is suitable
where the user has no information about the objective function type. The user can set the
possibility of generating the same possible solution by this optimisation method. This
option is useful when the search space of the simulation model is quite small.

2.2.2. Downhill Simplex

This optimisation method uses the idea of the Nelder–Mead downhill simplex al-
gorithm [34]. This heuristic method uses a set of n + 1 linearly independent points, i.e.,
possible solutions (individuals) in the search space—simplex,

S = [X1, X2, . . . , Xn+1], S ⊂ X̃ (5)

where

• S denotes the simplex;
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• X1 denotes the first solution candidate;
• n denotes the dimension of the search space;
• X̃ denotes the search space—the domain of the input parameters of the discrete event

simulation model—solution candidates.

If we evaluate points with the objective function (objective function minimisation),
we have

XH = argmaxF(X), X ∈ S ⊂ X̃ (6)

XL = argminF(X), X ∈ S ⊂ X̃ (7)

XG =
∑n

i=1(Xi − XH)

n
, Xi ∈ S ⊂ X̃ (8)

where

• XH denotes the worst solution candidate of the simplex;
• XL denotes the best solution candidate;
• F(X) denotes the objective function value of the solution candidate;
• XG denotes the simplex centroid—centre of gravity (calculated from the solution

candidate apart from the best solution candidate).

The method uses the following four basic phases of generating a solution candidate–
see Figure 4 [35]:

• Reflection—mirroring the worst solution candidate;
• Expansion—searching for a better solution in the reflection direction;
• Contraction—testing the solution candidate between reflection and simplex centroid
• Reduction—shrinkage towards the best solution candidate of the simplex.

Figure 4. The principle of the Nelder–Mead downhill simplex method [35].

If we want to use this optimisation method for a discrete-event simulation optimi-
sation, the problem is rounding of the point coordinates in the search space (the point
coordinates are the vector of the values of the simulation model input parameters) to the
nearest feasible coordinates in the search space. This leads to deviation from the original
direction in our case if the step of the axis, the decision variable, in the search space is large.
A detailed description of this implemented optimisation method is described in [36,37].

2.2.3. Stochastic Hill Climbing

Possible solutions—individuals—are generated (populated) in the neighbourhood
of the best solution candidate from the previous population. Generating new possible
solutions is performed by mutation. This method is part of the family of local search
methods. The problem of this method is getting stuck in the local extreme, namely, in
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the case of multimodal function—premature convergence. This problem can be solved by
random restarts of this method [36].

The next algorithm shows the principle of stochastic hill climbing—see Algorithm 1.
The function CreatePop creates the initial population of solutions candidates. Function
Sorta sorts the population of solutions candidates according to their quality. The quality
includes the objective function value of the solutions candidate. The AddListItem function
adds the item in the list, i.e., adds the solution candidate to the population.

Algorithm 1: Stochastic Hill-Climbing Algorithm Pseudocode

1 begin
2 XPop ←− CreatePop(m, A, B) ; //initial population

3
XPop ←− Sorta

(
XPop, CFF(X)

)
;

//sort XPop in ascending order according to F(X)
4 XBest ←− XPop[0] ; //the best solutions candidate in XPop
5 X∗ ←− XBest ;
6 while not TerminationCriterion( ) do begin //termination criterion
7 XPop ←− ( ) ; //delete XPop
8 for i←− 0 to m− 1 do begin

9
X←− Mutateu(XBest, E) ;

(*mutation of best solutions candidate in XPop-uniform distribution*)
10 for j←− 0 to (Length(X)− 1) do //for each gen of X
11 X[j]←− Perturbationu(X[j], A[j], B[j], ϑ[j]); //perturbation
12 XPop ←− AddListItem

(
XPop, X

)
; //add new solutions candidate to XPop

13 end;
14 XPop ←− Sorta

(
XPop, CFF(X)

)
;

15 XBest ←− XPop[0] ;
16 if F(XBest) < F(X∗) then //better solutions candidate was found
17 X∗ ←− XBest ;
18 end;
19 result←− X∗;
20 end;

We use the perturbation repair algorithm for the correction of the point coordinates
outside of the search space (we can call it the ‘repair’ of the defective gene). This algorithm
mirrors the possible solution coordinates of the solution candidate back to the search
space—see Algorithm 2.

Algorithm 2: Perturbation Pseudocode

1 begin
2 XPert[j]←− X[j] ;
3 if (A[j] = B[j]) then
4 (XPert[j]←− A[j]);
5 while (X[j] < A[j]) or (X[j] > B[j]) do begin
6 if (X[j] < A[j]) then

7
XPert[j]←− 2←− A[j]− X[j]

//mirror the solutions candidate coordinate back to search space
8 else if (X[j] > B[j]) then
9 XPert[j]←− 2·B[j]− X[j] ;

10
XPert[j]←− Step(XPert[j], A[j], B[j], ϑ[j]) ;

(* round or truncate the coordinate of the solutions candidate in the search space to the
nearest neighbour *)

11 end;
12 result ←− XPert[j] ;
13 end;
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2.2.4. Stochastic Local Search

The difference between the local search algorithm and the hill-climbing algorithm
is that we accept the new solution candidate if this solution candidate is better than the
best-found solution candidate from the start of the algorithm—see Algorithm 3.

Algorithm 3: Stochastic Local Search Pseudocode

1 begin
2 X∗ ←− Create(A, B) ; //generating individual
3 while not TerminationCriterion( ) do begin //termination criterion

4
X←− Mutateu(X∗, E) ;

(*mutation of the best-found individual *)
5 for j←− 0 to (Length(X)− 1) do //for each gen of the individual
6 X[j]←− Perturbationu(X[j], A[j], B[j], ϑ[j]); //perturbation
7 if F(X) < F(X∗) then //better solution candidate was found
8 X∗ ←− X ;
9 end;
10 result←− X∗;
11 end;

2.2.5. Stochastic Tabu Search

The method of searching with tabus, or simply ‘tabu search’ or ‘tabu method’, was
formalised in 1986 by Fred W. Glover. Its principal characteristic is based on the use of
mechanisms inspired by human memory. The tabu method takes a path opposite to that
of simulated annealing, which does not utilise memory at all and thus is unable to learn
lessons from the past [38,39].

A newly generated solution candidate is an element of the tabu list during the optimi-
sation process. This solution candidate cannot be visited again if the aspiration criterion is
not satisfied (this feature prevents the method from becoming stuck at a local optimum).
The method uses the FIFO method of removing the solution candidate from the tabu list.
The user can set whether the new solution candidate is generated using mutation of the
best solution candidate from the previous population or the mutation of the best-found
solution candidate, that is, the best individual found from the start of the optimisation
process [36].

The next algorithm shows the principle of the stochastic tabu search method—see
Algorithm 4. The algorithm uses the Append List function for appending the list of solution
candidates to the tabu list—joining two populations together. The next function searches an
unsorted list Searchu and provides the information if the item is in the list—the population
contains a solution candidate. The DeleteListItem function deletes the item from the list,
meaning that it deletes the solution candidate from the population.
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Algorithm 4: Stochastic Tabu Search Pseudocode

1 begin
2 XPop ←− CreatePop(m, A, B) ; //initial population
3 XPop ←− Sorta

(
XPop, CFF(X)

)
; //sort population

4 XBest ←− XPop[0] ; //best solution candidate from XPop
5 X∗ ←− XBest ;
6 XTabu ←− ( ) ; //empty Tabu List
7 XTabu ←− AppendList

(
XTabu, XPop

)
;

8 while not TerminationCriterion( ) do begin //termination criterion
9 XPop ←− ( ) ; //empty XPop
10 for i←− 0 to m− 1 do begin
11 repeat
12 X←− Mutateu(XBest, E) ;
13 for j←− 0 to (Length(X)− 1) do //for each gen of solution candidate
14 X[j]←− Perturbationu(X[j], A[j], B[j], ϑ[j]); //perturbation
15 XPop ←− AddListItem

(
XPop, X

)
; //add X to XPop

16
until (Searchu(X, XTabu) < 0) or (F(X) < F(X∗));

//solution candidate is not element of XTabu or meet the aspiration criterion
17 if Length(XTabu) ≥ mTabu then
18 XTabu ←− DeleteListItem(XTabu, 0) ;
19 XTabu ←− AddListItem(XTabu, X) ;
20 XPop ←− AddListItem

(
XPop, X

)
;

21 end;
22 XPop ←− Sorta

(
XPop, CFF(X)

)
;

23 XBest ←− XPop[0] ;
24 if F(XBest) < F(X∗) then //better solution candidate was found
25 X∗ ←− XBest ;
26 end;
27 result←− X∗;
28 end;

2.2.6. Stochastic Simulated Annealing

Simulated annealing (SA) uses a principle used in metallurgy and material science,
namely, the heat treatment of a material to alter the properties of the material. Metal
crystals have small defects and dislocations, which weaken the structure. The structure of
the material can be improved by heating and cooling the material [36].

SA is one of the most flexible techniques available for solving hard combinatorial
problems. The main advantage of SA is that it can be applied to large problems regardless
of the conditions of differentiability, continuity, and convexity that are normally required
in conventional optimisation methods [40].

The idea of stochastic simulated annealing uses a possible solution generated in the
neighbourhood of the solution candidate from the previous iteration. The cooling schedule
(the control strategy) is characterised by the initial temperature; the final temperature; the
number of transitions and the temperature rate of change [40,41].

We modified the SA algorithm presented in [36], which uses the metropolis procedure
where the non-negative parameter of temperature reduction, the minimum temperature,
the acceptance probability, and the energetic difference between the current and the new
geometry are used. A detailed description of our implemented method of simulated
annealing is described in [37].

2.2.7. Differential Evolution

Methods such as differential evolution, self-organising migrating algorithm (SOMA),
evolutionary strategies, and genetic algorithm are evolutionary computation methods.
These methods use the term ‘individual’ instead of ‘solution candidate’, but the meaning is
the same.
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The differential evolution technique belongs to the class of evolutionary algorithms.
In fact, it is founded on the principles of mutation, crossover, and selection. However, it
was originally conceived [42] for continuous problems and it uses a weighted difference
between two randomly selected individuals as the source of random variations. The
method is very effective and has recently become increasingly popular. Thus, the core of
the method is based on a particular manner of creating new individuals. A new individual
is created by adding the weighted difference between the two individuals with a third;
if the resulting vector is better than a predetermined individual, the new vector replaces
it. Thus, the algorithm extracts information about direction and distance to produce its
random component [39,43].

The algorithm of differential evolution uses selection which is carried out between the
parent (solution candidate) and its offspring in the population. The better individual of
the two compared individuals is then assigned to a population that completely replaces
the parent population. The question is how to create an individual that will subsequently
be crossed with the parent. There are several ways of creating such an individual. The
first method generates an individual (mutation) using three different individuals randomly
selected from the parent population. These individuals must further satisfy the condition
that they must be different from the individual just selected from the parent population.

The second basic method of generating a new individual by mutation is using four
randomly different individuals in a population and the best individual in the population
that is different from these individuals. Further, the best individual and the four selected
individuals must be different from the individual just selected from the parent population.

A detailed description of our implemented method of differential evolution is de-
scribed in [37].

2.2.8. Self-Organising Migrating Algorithm (SOMA)

SOMA is based on the self-organising behaviour of groups of individuals in a ‘social
environment’. It can also be classified as an evolutionary algorithm, even though no
new generations of individuals are created during the search. Only the positions of the
individuals in the search space are changed during a generation, called a ‘migration loop’.
Individuals are generated at random according to what is called the ‘specimen of the
individual’ principle. The specimen is in a vector, which comprises an exact definition of
all these parameters that together led to the creation of such individuals, including the
appropriate constraints of the given parameters. SOMA is not based on the philosophy of
evolution (two parents create one new individual—the offspring) but on the behaviour of a
social group of individuals [44,45].

The SOMA optimisation method is derived from differential evolution. There are
different modifications of differential evolution, e. g., [43,46,47].

The mass parameter denotes how far the currently selected individual stops from
the leader individual (if the Mass = 1, then the currently selected individual stops at
the position of the leader; if the Mass = 2, then the currently selected individual stops
behind the position of the leader, which equals the distance of the initial position of the
currently selected individual and the position of the leader). If the Mass < 1, then the
currently selected individual stops in front of the leader which leads to degradation of the
migration process (the algorithm finds only local extremes). Hence, it is recommended to
use Mass > 1. It is also recommended to use the following lower and upper boundaries of
the parameter Mass ∈ [1.1, 3.0].

The step parameter denotes the resolution of mapping the path of the currently
selected individual. It is possible to use a larger value for this parameter to accelerate the
searching of the algorithm if the objective function is unimodal (convex function, few local
extremes, etc.). If the objective function landscape is not known, it is recommended to use
a low value for this parameter. The search space will be scanned in more detail, and this
increases the probability of finding the global extreme. It is also important to set the Step
parameter in a way that the distance of the currently selected individual, and the leader is
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not an integer multiple of this parameter (the diversity of the population is reduced because
everyone could be pulled to the leader and the process of searching for the optimum could
stop at a local extreme). Hence, it is recommended to use Step = 0.11 instead of Step = 0.1.
The setting of, e.g., Step = 0.11 also rapidly increases the effectiveness of the SOMA
strategy, all to all.

PRT parameter denotes the perturbation. The perturbation vector contains the infor-
mation on whether the movement of the currently selected individual toward the leader
should be performed. It is one of the most important parameters of this optimisation
method, and it is very sensitive. It is recommended to use PRT = 0.1. If the value of
this parameter increases, then the convergence of the SOMA algorithm to local extremes
also rapidly increases. It is possible to set this parameter to PRT ∈ [0.7, 1.0] if many
individuals are generated and if in the dimension of the search space the objective function
is low. If PRT = 1, then the stochastic part of the behaviour of SOMA is cancelled, and the
algorithm behaves according to deterministic rules (local optimisation of the multimodal
objective function).

The NP parameter denotes how many individuals are generated in a population. If
this parameter is set to NP = 2, the SOMA algorithm behaves similar to a traditional
deterministic method.

Generally, if n (where n denotes the dimension of the search space) is a higher number,
then this parameter can be set to NP = [0.2, 0.5]× n. If the objective function landscape is
simple, we can use a lower number of generated individuals. If the objective function is
complicated, we can set this parameter NP = n. It is recommended to use NP ≥ 10.

This parameter is equivalent to the ‘generation’ parameter used in other evolutionary
algorithms. This parameter denotes the number of population regenerations [44,48].

2.2.9. Evolution Strategy

Evolution strategies (ES) introduced by Rechenberg [49] are a heuristic optimisation
technique based on the ideas of adaptation and evolution, a special form of the evolutionary
algorithm [50,51].

Evolution Strategies have the following features:

• They usually use vectors of real numbers as solution candidates. In other words, both
the search and the problem space are fixed-length strings of floating-point numbers,
such as the real-encoded genetic algorithms;

• Mutation and selection are the primary operators and recombination is less common;
• Mutation most often changes the solution candidate gene to a number drawn from a

normal distribution;
• The values of standard deviations are governed by self-adaptation [52–54] such as

covariance matrix adaptation [55–59];
• In all other aspects, they perform exactly as basic evolutionary algorithms.

The algorithm can use different population strategies: (1 + 1)—the population only
consists of a single individual, which is reproduced. From the elder and the offspring,
the better individual will survive and form the next population; (µ + 1)—the population
contains µ individuals from which one is drawn randomly. This individual is reproduced
from the joint set of its offspring and the current population, the least fit individual is
removed; (µ + λ)—using the reproduction operations, from µ parent individuals λ ≥ µ

offspring are created. From the joint set of offspring and parents, only the µ fittest ones
are kept; (µ, λ)—in (µ, λ) evolution strategies, introduced by Schwefel [60], again λ ≥ µ

children are created from µ parents. The parents are subsequently deleted, and from the λ

offspring individuals, only the µ fittest are retained [60,61];
(µ/ρ, λ)—evolution strategies named (µ/ρ, λ) are basically (µ, λ) strategies. The addi-

tional parameter ρ is added, denoting the number of parent individuals of one offspring.
As already mentioned, we normally only use mutation (ρ = 1). If recombination is also used
as in other evolutionary algorithms, ρ = 2 holds. A special case of (µ/ρ, λ) algorithms is the
(µ/µ, λ) evolution strategy [1] (µ/ρ + λ)—analogously to (µ/ρ, λ)—evolution strategies,
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the (µ/ρ + λ)—evolution strategies are (µ, λ) approaches where ρ denotes the number of
parents of an offspring individual; (µ′,λ′ (µ,λ)γ)—Geyer et al. [2–4] have developed nested
evolution strategies [62], where λ′ offspring are created and isolated for γ generations from
a population of the size µ′. In each of the γ generations, λ children are created from which
the fittest µ are passed on to the next generation. After γ generations, the best individu-
als from each of the γ isolated solution candidates are propagated back to the top-level
population, i.e., selected. Then, the cycle starts again with λ′ new child individuals. This
nested evolution strategy can be more efficient than the other approaches when applied to
complex multimodal fitness environments [36,63,64].

Our implemented algorithm uses steady-state evolution where the number of suc-
cesses (the offspring is better than the parent) is monitored by the relative frequency of
success. An offspring is generated by the mutation of its parent using a normal distribution
with defined deviations for each gene (axes of the search space—gen in genotype) which is
affected by Rechenberg 1/5th-rule. A detailed description of our implemented method of
evolution strategy is described in [65].

2.2.10. Particle Swarm Optimisation (PSO)

The PSO algorithm is a stochastic population-based optimisation method proposed
by Eberhart and Kennedy in 1995 [66].

Comparisons with other evolutionary approaches have been provided by Eberhart
and Shi [5].

PSO is a computational method which optimises a problem iteratively, trying to im-
prove a particle (representing the solution candidate). PSO is a form of swarm intelligence
simulating the behaviour of a biological social system, i.e., a flock of birds or a school of
fish [67].

When a swarm looks for food, its particles will spread in the environment and move
around independently. Each individual particle has a degree of freedom or randomness
in its movements, which enables it to find food accumulations. Therefore, eventually, one
of them will find something digestible and, being social, announces this to its neighbours.
These can then approach the source of food [36].

The positions and velocities of all particles are randomly initialised in the initial phase
of the PSO algorithm. The velocity of a particle is updated and then its position in each
step. Therefore, each particle has a memory holding its best position. To realise the social
component, the particle furthermore knows a set of topological neighbours. This set could
be defined to contain adjacent particles within a specific perimeter, i.e., all individuals that
are no further away from the position of the particle than a given distance according to a
certain distance (Euclidian distance) [36].

Particle swarm optimisation has been discussed [68–71], improved [72–75], and refined
by many researchers.

A detailed description of our implemented method of particle swarm optimisation is
described in [76].

3. Digital Twin

The DT is the practical, discrete-event simulation model in the industrial company.
This model deals with supplying the production lines using AGVs.

Large parts are supplied by trailers, and it is not possible to load a big number of these
parts to satisfy the needs of the production line for a longer time. Hence, more trailers
must be used for transport at one time. It is also not possible to control the supply in a way
that if the supply falls below a certain level, then a requirement would be generated for
transport from the warehouse (except for a limited number of some parts). This is caused
by the transport time which is longer than the time of consumption of the parts transported
to the production line.

The whole system of supplying the production lines is based on a simple principle: a
tractor with trailers continually transports the parts and after unloading the parts it goes to
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the warehouse or to pre-production for new parts and then transports them immediately
to the production lines.

The limited capacity of the buffer (parts storage) on the production line is a regulator
in this case. Each tractor has a defined path using different loading and unloading stations
which must be passed. The various types of parts are loaded and unloaded at different
stations in the company. The parts can be loaded on the trailer at the loading stations in the
warehouse or at the various production departments in the company. Each production line
has several unloading stations for various parts. A schematic layout of the loading and
unloading stations is shown in Figure 5 [77].

Figure 5. Simple layout of loading/unloading stations for AGV.

The decision variables are the number of each AGV type in the DT. The following
figure illustrates a situation where a collapse of the whole transport system occurred. One
AGV trailer blocks another AGV conveying parts to another production line—see Figure 6.

Figure 6. Sample of AGV collapse.

The optimisation process of the AGV transport is to utilise the tractors with trailers
(conveying the small and big parts from the warehouse and the finished products from the
production lines) at maximum capacity. The aim is also to utilise all the production lines.
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The objective function is composed of the following function definitions (the average use
of the production lines is superior to the average use of the trains using the coefficients in
the objective function):

F(X) =
∑m

i=1(10− Ni(X))
1000

+
n

∑
i=1

Ui(X) (9)

where

• F(X) denotes the resulting objective function (maximisation);
• Ni denotes the number of AGVs of the same type;
• m denotes the number of AGVs of different types;
• Ui denotes the utilisation of the i-th production line;
• n denotes the number of production lines.

4. Methodology

The concept of Industry 4.0 uses a cyber–physical system (CPS). This system is a computer
system in which a mechanism is controlled or monitored by computer-based algorithms.

Assume CPS is a system where its individual parts are managed according to op-
timised plans. Each essential part of the system is virtually represented in a DT and
its operations are managed according to the synchronisation with the other parts of the
modelled system (the concrete settings of this simulated part of the production system
are represented by the solution candidate). Most simulated objects in the system (parts of
the DT) often do not have sufficient computing power to perform their own simulation
optimisation. They are interconnected and have the technology to transfer and download
data. Therefore, there is no need to perform optimisation using them. The simulation
optimisation is performed by remote computers (with sufficient capacity). The settings
of the modelled system parameters are sent to the connected physical objects to manage
their behaviour.

Simulation optimisation using a DT can be very time consuming. Another problem is
the large number of data generated during the simulation experimentation with a DT. The
proposed methodology reduces the volume of data generated in the simulation optimi-
sation by combining different approaches used in the global optimisation, programming,
and big data techniques. The methodology tries to avoid the problem of generating big
data rather than trying to extract information from the huge amount of generated data.

We performed many optimisation experiments in the initial stage of testing, and we
confirmed that the selection of the appropriate optimisation method could significantly
affect the number of simulation experiments. A common situation in industrial simulation
optimisation is that we cannot test all the possible solution candidates in the search space in
most cases as it is an NP-hard problem. The next problem is to validate if the optimisation
method finds the global minimum or maximum of the objective function of the simulation
model (DT). The main advantage of using the optimisation method (especially meta-
heuristic methods) is a significant reduction of the number of tested (generated) solution
candidates in the simulation optimisation process.

The proposed methodology is described using the AGVs DT representing the transport
from the warehouse to the production lines by AGVs. The simulation optimisers running
on different servers simulate different variants of the modelled logistic system and use
different optimisation techniques to find the best way of conveying the parts with high
utilisation of the tractors with trailers.

We developed a system using client–server architecture where the client application
controls all the running simulation optimisers on the connected remote computers in
parallel. These server simulation optimisers launch the simulation on the simulation
software. The server simulation optimiser (or optimisers launched on the computer) can
perform the optimisation experiments with a discrete-event simulation model sent by the
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client application. Each simulation optimiser can use one of the implemented optimisation
methods with the setting specified by the client application.

The simulation optimiser, therefore, imitates the decision-making process of an object
in an individual part of the simulated system with a defined optimisation strategy, which
tries to find its own best possible solution to the simulated problem. For example, the AGV
decides how to efficiently convey all the parts to all the locations on the production lines in
the shortest amount of time.

The next flowchart shows the several basic phases of the proposed methodology of
parallel simulation optimisation—see Figure 7. The principle of running the optimisation
experiment using the remote simulation optimiser is described in the flowchart—see
Figure 9 in Section 5 Simulation Optimiser.

Figure 7. Flowchart of methodology of the parallel simulation optimisation.
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• Step 1 and 2—The simulation run performed on a discrete event simulation model
can be time consuming, depending on the difficulty of the discrete event simulation
model. The developed simulation optimiser based on client–server architecture allows
simulation optimisation experiments to be performed on many remote simulation
optimisers—servers. Simulation optimisers are installed on different remote servers.
Simulation optimisers perform optimisation experiments with the discrete event
simulation model. The simulation optimiser communicates with the client via the
assigned port number. The simulation optimiser only waits for the instruction to start
the execution of optimisation experiments via the application for remote control of the
optimisation experiments. If the version of the running simulation optimiser is older
than the current version, the optimiser automatically upgrades to the latest version.

• Step 3, 4, and 5—The application for remote control of optimisation experiments is
started on the client’s computer. The application downloads a list of IP addresses
of available server computers. The application detects the state of the simulation
optimisers. Each IP address lists these attributes of the series: name of the computer
performing the optimisation process; status of the simulation optimiser (whether the
optimisation experiment is running, ready to run the series, sending files with results,
etc.); remaining time to the completion of the current series (the time updates after the
completion of each optimisation experiment); remaining time to the completion of all
series; index of the currently running series/total number of all series to perform; ver-
sion of the simulation optimiser application. The user can launch multiple simulation
optimisers on the server (depending on the computational capacity of the computer).
The server can perform multiple independent series with different simulation models
because each running optimiser communicates with the client using its assigned port
(depending on the number of the licenses of the simulation software). The next figure
shows the GUI of the proposed application for remote control of the optimisation
experiments running on the simulation optimisers—see Figure 8.

Figure 8. Client application GUI—remote control of simulation optimiser running on servers.

• Step 6—Some methods are very susceptible to the setting of their parameters and
this setting greatly affects the behaviour of the method when searching for the global
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optimum of the objective function. The user can test different parameter settings of
the optimisation methods—series.

• Step 7—Simulation optimisers are connected to a remote SQL Server database. This
database contains all tested possible solution candidates inside the search space by the
remote simulation optimisers (performed simulation experiments with the discrete
event simulation model). All simulation optimisers update this SQL server database
with performed simulation experiments. The simulation optimiser does not have to
perform the simulation run in simulation software, but it only searches for the solution
candidate in the databases tested by any other simulation optimiser. The user can also
launch another module for collecting the statistics on the use of candidate solutions
at the SQL server. We use this module to analyse the relative frequency of using
the candidate solutions by the optimisation methods and compare their efficiency of
generating new candidate solutions in the optimisation process.

• Step 8—The application for remote control of optimisation experiments sends all
necessary files with the settings of the optimisation methods, their parameters, and
the simulation model with its concrete settings from the client’s computer to selected
simulation optimisers running on servers. The execution of parallel simulation ex-
periments allows the user to distribute simulation models to different computers
(using the simulation optimisers) and enhance computing power in the optimisation
process with the DT. The use of parallelisation in the simulation (sharing the SQL
server database) also eliminates redundant data that would result from simulating the
same solution of the modelled problem.

• Step 9 to 12—The performance of the optimisation method is also significantly affected
by the settings of the optimisation method parameters; thus, we had to test different
settings of the tested optimisation methods to reduce the bad settings of the optimisa-
tion methods. The user can also test different settings of the implemented optimisation
methods. Each simulation optimiser can use different optimisation methods with dif-
ferent settings of its parameters. The user can set the range of the optimisation method
parameters and the simulation optimiser can perform optimisation experiments using
all possible settings of the method parameters within the specified range. We can
divide the number of simulation experiments as follows:

1. Simulation experiment—simulation run of a discrete event simulation model and
calculating the objective function value using the outputs from the simulation
model.

2. Optimisation experiment—performed with a specific optimisation method set-
ting to find the optimum of the objective function (to find the best possible
solution to the modelled problem using the digital twin).

3. Series—replication of optimisation experiments with a specific optimisation
method setting (to test the behaviour of the optimisation method and partial
reduction of the wrong settings of the optimisation method parameters). We
tested different settings of the optimisation methods and replicated these optimi-
sation experiments with concrete settings of the optimisation method (series) to
reduce the influence of random implementation on the optimisation method. The
next table shows the tested settings of the implemented optimisation methods,
e.g., we tested 470,400,000 different settings of the particle swarm optimisation
method—see Table 2, where n denotes the dimension of the search space and TB
denotes the number of bits in the gene.
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Table 2. Specification of optimisation methods parameters.

Optimisation Method Optimisation Method Parameter Step Lower Boundary Upper Boundary

Random search Option to generate same solution candidates
(Boolean) 1 0 1

Downhill simplex
(Nealder–Mead
method)

Expansion coefficient 0.2 0 1.6

Reflection coefficient 0.2 0 1.6

Contraction coefficient 0.2 0 0.8

Reduction coefficient 0.2 0 0.8

Local search Number of steps 2 1 29

Hill climbing
Population size n n 6 ∗ n

Number of steps 2 1 29

Tabu search

Population Size n n 6 ∗ n

Number of steps 2 1 29

Tabu length 4 ∗ n 4 ∗ n 20 ∗ n

Simulated annealing

Mutate randomly selected gene (Boolean) 0 0 1

Non-negative parameter of temperature reducing 0.1 0.1 0.4

Minimum temperature 0.005 0.005 0.01

Use step (Boolean) 1 0 1

Number of steps 2 1 29

Reduce temperature by acceptance worse
solution candidate (Boolean) 1 0 1

Return to the found best solution candidate of all
Iterations (Boolean) 1 0 1

Number of previous iterations to remember the
found best solution candidate 5 5 10

Differential evolution

Population size n n 6 ∗ n

Parameter of the Adaptive Rule—Differential
Evolution 0.2 0.2 0.8

Probability of a Crossover—Differential
Evolution 0.2 0.2 0.8

Evolution strategy

Population size n n 6 ∗ n

Number of offspring n n 6 ∗ n

Number of success (the offspring is better than
the parent) to be monitored n n 6 ∗ n

Number of other contestants per tournament n n 6 ∗ n

Probability of individual selection 0.1 0.1 0.6

Cut-off value n n 6 ∗ n

Self-organising
migrating algorithm
(SOMA)

Mass (stopping distance from the leader) 0.5 1.1 2.6

Step (distance of the currently selected individual
and the leader) 0.4 0.11 1.31

Perturbation (probability of movement to leader) 0.1 0.1 0.6

Population size n n 6 ∗ n

Number of migration loops 10 10 10

Type of strategy of individuals movement 1 0 3
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Table 2. Cont.

Optimisation Method Optimisation Method Parameter Step Lower Boundary Upper Boundary

Particle swarm
optimisation

Number of particles 10 ∗ n 2 ∗ n 42 ∗ n

Weight 0.2 0.8 1.4

Particle constant 0.7 0.2 3

Global constant 0.7 0.2 3

Reduce weight (Boolean) 1 0 1

Reducing weight constant 0.1 0.1 0.5

Life span 20 30 90

Leader age 5 0 20

Leader—maximum evaluation 1 2 5

Dimension 1 2 5

Reassigning gap 3 2 20

Parameter of calculated particle velocity 0.1 0.2 0.8

Type of strategy 0 0 5

Genetic algorithm

Population minimum size 10 ∗ n 2 ∗ n 42 ∗ n

Population maximum size 10 ∗ n 2 ∗ n 42 ∗ n

Type of generation strategy 1 0 1

Number of generations 5 1 6

Type of selection 1 0 3

Selection tournament size 4 ∗ n n 5 ∗ n

Crossover probability 0.25 0.5 1

Type of crossover 1 0 4

Crossover swap point index
⌊

TB−2
2

⌋
0 2

⌊
TB−2

2

⌋

• Step 13—The behaviour of the tested optimisation methods is random. We had to
repeat many optimisation experiments to identify the pure nature of the optimisation
methods (reduce the randomness of the method behaviour) to compare the efficiency
of the tested optimisation methods.

• Step 14—The next flowchart shows the basic phases of simulation optimisation run-
ning on the simulation optimiser—see Figure 9 in Section 5 Simulation optimiser.

• Step 15—The simulation optimiser performs an evaluation of the series after the com-
pletion of each series. The evaluation contains the box plot characteristics of the objec-
tive function values of the generated solution candidates (the smallest observation—
sample minimum, lower quartile, median, upper quartile, and largest observation—
sample maximum) calculated for each series. The evaluation also includes the objective
function value of the best-found solution candidates in all optimisation experiments
in the series; the range of provided function objective values during the optimisation
experiment, and the number of simulation experiments until the termination criterion
is met.

• Step 16 to 17—Each simulation optimiser sends all the calculated evaluation results to
the client after the completion of all performed series. Sending data also prevents the
loss of data from simulation experiments performed on the simulation optimiser if
the optimiser fails. These results can be used for the evaluation of the optimisation
processes or the evaluation of the behaviour of the methods.

• Step 18—We proposed different criteria which express the success or the failure of the
optimisation method in different ways. Each criterion value is between [0,1] and it is
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calculated from the box plot characteristics—the smallest observation—sample mini-
mum Q1, lower quartile Q2, median Q3, upper quartile Q4, and largest observation—
sample maximum Q5. These characteristics are calculated for each series (the setting
of the optimisation method parameters)—see Section 6 Evaluation.

5. Simulation Optimiser

The principle of performing the optimisation experiment on the remote simulation
optimiser is described in the flowchart—see Figure 9.

Figure 9. Flowchart of the optimisation experiment on the parallel simulation optimiser.
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• Step 1 and 2—The simulation optimiser selects the optimisation method and sets
the range of the optimisation method parameters for the series. This method is set
according to the setting sent from the client. If a suitable optimisation method is used,
the volume of generated data stored in the memory is significantly reduced.

• Step 3 and 4—The simulation optimiser also sets the termination criteria and the
range of decision variables (lower and upper bound of the simulation model input
parameters) according to the sent settings. The same termination criteria must be
satisfied for each optimisation method in the series.

We specified the first termination criterion—value to reach—because we mapped all
the solution candidates in the search space, and we know the best solution for the modelled
problem. This best solution candidate represents the global optimum of the objective
function. If the optimisation method finds a solution candidate whose objective function
value is within the defined tolerated deviation (ε = 0.001 in our case) from the objective
function value of the global optimum, the optimisation experiment is stopped.

The second termination criterion is the maximum number of simulation runs that
the simulation optimiser can perform in the optimisation experiment for each model. We
performed many optimisation experiments in the initial stage of testing, and we confirmed
that the settings of the optimisation method could significantly affect the performance of
the optimisation method. Hence, we tested many different settings of the optimisation
methods to reduce the number of bad settings of the optimisation methods parameters
and reduce the random nature of the selected optimisation methods (each of the selected
methods uses random distribution).

We calculated this maximum number using information entropy known as the Shan-
non entropy. The number of all possible solutions in the search space is reduced using
information entropy [6].

The reduction coefficient is as follows:

δ = max
{

0, 1− β·logX̃
}

, δ ∈ [0, 1] (10)

where

• X̃ denotes the size of the search space—the number of all possible solutions in the
search space;

• β denotes the coefficient of search space reduction.

The maximum number of simulation runs that it is possible to perform in each
optimisation experiment, which is the second termination criterion, is expressed as follows:

X̃H =
⌊

2δ·log2X̃
⌋

(11)

We tested this termination criterion using the entropy function on different discrete
event simulation models to specify the β coefficient. The curve in the chart shows the
dependence of the second termination criterion on the number of possible solutions in the
search space of the discrete-event simulation model—see Figure 10. The second termination
criterion is not much reduced if the number of possible solutions in the search space is
small. We set the coefficient β = 0.05 according to our optimisation experiments.
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Figure 10. Derived second termination criterion using information entropy.

To verify this approach, we tested the same settings of the optimisation method on the
same models with two specified types of the second termination criterion—the information
entropy. Another is commonly used termination criterion which is based on the dimension
of the search space (especially in the case of testing functions) as follows:

X̃H = 10, 000 ∗ n (12)

The following figures show the ability of the implemented optimisation methods
to find the known optimum of the objective function on the tested DT when using the
following features:

• The information entropy—using the equation—X̃H = 39, 558—see Figure 11;
• The dimension of the search space using the equation—X̃H = 150, 000—see Figure 12.

Figure 11. Box plot of solution candidate’s objective function values found by optimisation methods—
the second termination criterion using information entropy.
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Figure 12. Box plot of solution candidate’s objective function values found by optimisation methods—
the second termination criterion using the dimension of the search space.

The difference between the quartiles of the objective values of the solution candidates
is minimal in the case of the AGV’s digital twin. We tested this approach with six different
discrete event simulation models with different modelled problems.

• Step 5—The simulation optimiser can download the database of the simulation ex-
periments from the SQL servers to its local memory at the start of the optimisation
process.

• Step 6—The optimisation method generates the initial population of the solution can-
didates. We use one fixed solution candidate (starting point) in the initial population
to reduce the randomness of the initial searching for the optimum.

• Step 7 and 8—When the simulation optimiser searches for the best solution candi-
date representing the best setting of discrete-event simulation model parameters, it
generates a large volume of data. This volume of data increases with the number of
the launched simulation optimisers on the computer. The generated data are stored
in internal memory to speed up the optimisation process because many optimisa-
tion methods (especially population-based algorithms) use the same individuals that
have been generated in previous populations. The problem is mainly related to the
maximum size of memory that the simulation optimiser can use (e.g., 32-bit/64-bit
application/operating system; the amount of available memory capacity on the com-
puter). A problem could be the lack of computer local memory when storing data of
the simulation optimisation run. We implemented the hashing algorithm to reduce the
volume of generated data by the optimisation process using the simulation optimiser.
The principle of the algorithm is shown in Algorithm 5.
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Algorithm 5: Hashing Algorithm Pseudocode

HashIntList←− HashNumber(DV);

Hashing function returning the list of values to reduce the required memory for storing decision
variables values

Input:

DV List of all decision variables (simulation model input parameters)

DV[i].v The i-th decision variable value

DV[i].numBits Number of bits of the i-th decision variable

DV[i].a Lower bound of the i-th decision variable

DV[i].b Upper bound of the i-th decision variable

DV[i].step
Step (difference between two following values) of the i-th
decision variable

Data:

NumDP Returns the number of decimal places

ToInt Converts a specified value to 32-bit signed integer

ToBin Converts a specified value to binary number (string data type)

ToStr Converts a specified value to its equivalent string representation

ToInt64 Converts a specified string to 64-bit signed integer

SubString
Returns a new string containing the section of the current string
starting at index position Start and containing the specified number
of characters

intNum Integer number (local variable)

binNum Binary number (local variable-string data type)

FinalBinNum Binary value of the converted number (string data type)

Output: HashIntList List of all hashed values of the converted decision variables values

1 begin
2 FinalBinNum←−′′ ;
3 //Go through all decision variables
4 for i←− 0 to Length(DV)− 1 do begin
5 if DV[i].a < 0 then
6 if DV[i].v < 0 then

//Concatenate sign bit to string binary number
7 FinalBinNum←− FinalBinNum + ′1′;
8 else
9 FinalBinNum←− FinalBinNum + ′0′;

//Conversion of the real number to integer number

10 intNum←− ToInt
(
|DV[i].v| ∗ 10NumDP(DV[i].step)

)
;

//Convert integer number to string binary number
11 binNum←− ToStr(ToBin(intNum))

//Pad ‘0′ to string binary number
12 for j←− Length(binNum) + 1 to DV[i].numBits− 1 dododo
13 binNum←− ′0′+ binNum;

//Final binary number
14 f inalBinNum←− f inalBinNum + binNum;
15 end;

//Clear the output list
16 HashIntList.Clear();

//Split the string to 64 parts
17 for i←− 0 to Length( f inalBinNum)/64− 1 do

//Add converted decision variables values to list
18 HashIntList.Add(ToInt64(SubString( f inalBinNum, i ∗ 64, 64)));
19 result ←− HashIntList ;
20 end;
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Each solution candidate in the search space of the AGVs DT contains 15 decision
variables (values of discrete event simulation model input parameters) and the objective
function value of the solution candidate. If we use the standard approach for storing the
database record, then we would need 15 + 1 fields (15 values of double data type—the
storage size of double is 8 bytes; 1 field of real data type for objective function value—the
storage size of real is 4 bytes). We use the hashing algorithm to encrypt all the values of
decision variables of the solution candidate to one big integer value (bigint data type) that
takes 8 bytes. Thus, we saved 15 times more space for each record containing the settings
of the AGVs DT decision variables used for the performed simulation experiment.

• Step 9–12 and 19–20—The simulation optimisers can also download the record (en-
crypted data) from the remote database including all simulation experiments per-
formed with the discrete event simulation model. The simulation optimiser does not
have to perform the simulation run in simulation software, but it only searches for
the simulation experiment in the local memory of the simulation optimiser. It can
also search for the solution candidate (record) in the SQL server database if the local
memory does not contain this solution candidate. The simulation optimiser does not
have to perform the simulation run in simulation software, but it only searches for
the solution candidate in the internal memory of all the solution candidates. The
simulation experiment with AGVs DT takes about 10 s. If the simulation experiment
was performed by any other simulation optimiser, the execution of the SQL query
including loading the record representing the simulation experiment takes only 0.001
s. As we use the hashing algorithm, a SQL query with only one parameter value
was used to find a simulation experiment with AGVs DT instead of searching for 15
parameter values (the SQL query would have to contain 15 conjunctive conditions,
which means multiple slowdowns). The next advantage is indexing this field for faster
searching of the database record.

• Step 13 and 14—If the local server or the remote SQL Server database does not
contain the needed solution candidate, the simulation optimiser generates a candidate
solution. This candidate solution represents the settings of the simulation model input
parameters. The simulation optimiser launches the simulation run on the simulation
software. We used the Tecnomatix Plant Simulation software developed by Siemens
PLM Software. The simulation optimiser calculates the objective function value of this
candidate solution using the simulation outputs.

• Step 15—The values of the decision variables of the solution candidate and its objective
function value are encrypted by the hashing method to reduce the data volume.
The hashing method supports the possibility of indexing records using the SQL
server to speed up the search of records in the database while minimising memory
requirements.

• Step 16 and 17—One way of speeding up the optimisation process is by storing the
data generated by the optimisation process in the internal memory allocated to the
simulation optimiser. We found that the optimisation algorithms often use the same
solution candidates to map the objective function landscape (searching for the path to
the optimum of the objective function). This fact can be used to speed up the optimi-
sation process and reduce the data stored in the memory of the simulation optimiser.
The simulation optimisers are connected to the SQL server database containing the
records—the tested solution candidates and their objective values. Each simulation
optimiser provides the possibility of downloading or uploading the data from the
simulation experiment to the SQL server. The record is stored in the local database and
to the SQL server database if the database does not contain this specific record (another
simulation optimiser could perform the same simulation experiment and sends the
record to the SQL Server database at the same time). This reduces the duplicated
simulation experiments in the SQL server database. The simulation optimiser does
not download the same simulation experiments in the initial stage of the simulation
optimisation of the DT. Each DT has its own database of simulation experiments. The
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developed application supports managing the volume of data (generated by previous
optimisation processes) held in the memory by setting the following options:

1. No previously performed optimisation experiments are held in the memory—the
simulation optimiser detects if the SQL server contains a solution candidate, that
is, a record containing the performed simulation run (the concrete settings of
the simulation model input parameters and the objective function value calcu-
lated according to the output of the simulation run with concrete settings). If
this database contains this record, the simulation optimiser downloads these
encrypted data by the hashing algorithm and decrypts them; otherwise, the simu-
lation is run with the concrete settings of the simulation model input parameters.

2. The simulation optimiser stores the specified number of records (executed simu-
lation runs and calculated objective function values) in the local memory—this
option is used when the simulation optimiser can use the limited available mem-
ory. The optimiser scans its internal computer memory first to find a specific
record (the concrete settings of the simulation model input parameters). If it does
not find this record in the internal memory, it searches the SQL server for this
record. If the record is not found, the simulation optimiser runs the simulation
experiment with the concrete settings of the simulation model input parameters.

3. The simulation optimiser stores all the performed optimisation experiments
(all records)—the logic is the same as the previous variant except that all the
simulation runs in all optimisation experiments are held in the computer’s
memory. The simulation optimiser downloads all records from the SQL server
database. This approach will cause a certain time delay before the first simulation
run is started, but it will save time spent on the communication between the SQL
server and the simulation optimiser.

• Step 18—The simulation optimiser continuously displays the state of the optimisation
experiment. It displays the value of the objective function of the proposed solution
candidate; decision variables values (the settings of the simulation model input pa-
rameters of the proposed solution); the value of the objective function and the number
of the simulation experiments in which the best solution candidate was found by the
optimisation method; the value of the objective function of the current solution; the
number of the current simulation experiment; simulation experiment computation
time; the number of loaded/saved simulation experiments in the internal or external
database, etc.; see Figure 13. The simulation optimiser also calculates the evaluation
box plot characteristics of objective function values of the best-found solution candi-
dates, all generated solution candidates, and the number of performed simulation
experiments for each series.

• Step 21—If any of the termination criteria are met, the optimisation experiment is
terminated.
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Figure 13. Simulation optimiser GUI—optimisation experiment with AGVs DT.

6. Evaluation

Many research papers use the mean and the standard deviation to evaluate the perfor-
mance of the optimisation methods. This evaluation criterion is sufficient for commonly
used testing functions, e.g., De Jong’s function, Rosenbrock’s function, Ackley’s function,
etc. [78] where the global optimum is known.

We proposed different evaluation criteria [33]. Each criterion value is between 0
and 1, and it is calculated from the box plot characteristics for the smallest observation,
namely, sample minimum Q1, lower quartile Q2, median Q3, and upper quartile Q4, and
for the largest observation, sample maximum Q5. These characteristics are calculated for
each series, defining the setting of the optimisation method parameters. As we wanted
to compare the efficiency of the implemented optimisation methods, we mapped all the
solution candidates in the search space to identify the global optimum of the objective
function of the AGV’s DT.

6.1. Quality of the Found Solution Candidate

Figure 11 shows the calculated quartiles characteristics from all the performed series
(replicated optimisation experiments with the concrete setting of the optimisation method)
of all the optimisation methods performed on the AGV’s digital twin. There are four win-
ners in this category—differential evolution, downhill simplex, self-organising migrating
algorithm (SOMA), and genetic algorithm.

6.2. The Speed in Finding a Solution Candidate

The speed of the optimisation method in finding a solution candidate is the number
of performed simulation experiments until the optimum/best solution candidate (sub-
optimum) was found in each series. If the optimisation method is effective, the volume
of generated data (solution candidates) is quite small. The local search seems similar to
the fastest optimisation method, but this method does not find the global optimum of the
AGV’s simulation model—see Figure 14. Other methods such as differential evolution,
downhill simplex, and simulated annealing are also fast. Some methods (especially evolu-
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tionary computation methods) need to perform a large number of simulation experiments
(representing individuals in the population) ensuring the escape from the local extremes
of the objective function. This feature is particularly suitable for the multimodal objective
function, but it generates a large volume of data.

Figure 14. Box plot of the speed in finding a global optimum of the objective function.

The dimension of the search space is 15. The problem is how to display the objective
function landscape containing millions of solution candidates. We calculated the relative
frequencies of the mapped objective function values of the solution candidates considering
the smaller intervals of the objective function values—see Figure 15. The objective function
of the AGV model is maximised, and the higher values of relative frequencies with higher
values of the objective function predominate in the chart. The probability of finding an
acceptable solution is good. The relative frequencies of the objective function values (how
often the objective function values occur within different ranges of objective function
values) can also be used when we do not map all the solution candidates and their objective
function values in the whole search space.

Figure 15. The percentage of relative frequency of the objective function values.

The series also contains the solution candidates whose objective function values are
not the same as the objective function of the global optimum (we accepted the solution
candidates as the global optimum if their objective function value is within the defined
tolerated deviation ε = 0.001). The next box plot chart shows the number of simulation
experiments until the suboptimum was found–see Figure 16. The box plot chart shows big
differences in the efficiency of searching for the optimum. differential evolution, downhill
simplex, and simulated annealing are the winners in the AGV model.
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Figure 16. Box plot of the speed in finding a suboptimum of the objective function.

We proposed other criteria, i.e., quality of solution candidates using the distances of
quartiles between optimum and suboptimum or the quartiles of the objective function
values of the solution candidates. The other criterion is the convergence of the objective
function values of the generated solution candidates in the series. We calculated the
weighted sum of the proposed evaluation criteria using the specified weights for each
criterion. The next box plot chart shows the weighted sum of the proposed evaluation
criteria calculated for each series—see Figure 17. Differential evolution, downhill simple,
and self-organizing migrating algorithm (SOMA) are effective methods for finding the
global optimum in the search space of the AGV model.

Figure 17. Box plot of solution candidate’s objective function values found by optimisation methods—
the second termination criterion using the dimension of the search space.

6.3. Settings of the Optimisation Methods

Many of the optimisation methods are very sensitive to the settings of their parameters.
The application we developed for evaluating the series also allows the user to filter 25% of
the best series (the settings of the optimisation method parameters) using the calculated
weighted sum for each series.

The next box plot chart shows the calculated characteristics of the number of simu-
lation experiments until the suboptimum was found—see Figure 18. If we compare this
box plot chart with the chart in Figure 16, some methods are sensitive to bad settings of
their parameters. Simulated annealing, differential evolution, and downhill simplex do not
need a large number of simulation experiments to find the suboptimum.
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Figure 18. Box plot of the speed of finding a suboptimum of the objective function—25% of the
best series.

If we select the best settings of the differential evolution parameters (best series) for
the AGV model and replicate this series 30 times, we can visualise the percentage frequency
of the objective function values of the solution candidates generated by this method. If we
compare the following box plot chart (see Figure 19) with the percentage of the relative
frequency of the objective function values of all the solution candidates in the whole search
space (see Figure 15), a radical reduction in unnecessarily generated solutions and a fast
targeting of the area of the optimal solution are obvious.

Figure 19. The percentage of the frequency of the objective function values of solution candidates
generated by the differential evolution.

7. Conclusions

The goal of our research is to propose a methodology for reducing the volume of data
generated in a simulation optimisation, performed with a DT and created in accordance
with the Industry 4.0 concept. This methodology is validated using applications devel-
oped for controlling the execution of parallel simulation experiments (using client–server
architecture developed to distribute simulation models to different computers and enhance
computing power) with the DT by the simulation optimiser and an application developed
for evaluating the optimisation experiments using different criteria calculating the infor-
mation from the statistical data. The paper presents some approaches for reducing the
data used for simulation optimisation, e.g., parallel optimisation, hashing the data, using
a server with data obtained from remote simulation optimisers, using different modified
optimisation methods, and the evaluation of the series used for finding the appropriate
setting of method parameters. This methodology attempts to prevent the generation of
unnecessary data during the optimisation process with the DT rather than mining infor-
mation from large amounts of data generated by the optimisation methods. We found
that the behaviour of the optimisation methods strongly depends on the objective function
landscape. The efficiency of the differential evolution method is high, due to the relatively
simple objective function landscape of the AGV’s digital twin.
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Our future work will focus on using a neural network to approximate the objective
function values of generated candidate solutions and compare the effectiveness of this
method with metaheuristic algorithms.

The proposed methodology is designed for optimisation with discrete simulation
models, not for continuous simulation models.
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