
ISBN 978-80-261-0973-0, © University of West Bohemia, 2021

A MSP430 Microcontroller Simulator for Teaching

at University during the Covid-19 Pandemic

Septimiu Mischie

Faculty of Electronics,

Telecommunications and Information

Technologies, Politehnica University

Timisoara, Romania

septimiu.mischie@upt.ro

Gabriel Vasiu

Vitesco Technologies

Timisoara

Romania
gabriel.vasiu@vitesco.com

Robert Pazsitka

Faculty of Electronics,

Telecommunications and Information

Technologies, Politehnica

University Timisoara, Romania
robert.pazsitka@upt.ro

Abstract—Teaching microcontrollers at university during

face to face activities implies using development boards such as

those from Texas Instruments or Microchip. Changing to online

teaching due to the coronavirus pandemic needs free simulators

to be used by students to achieve the same level of teaching. The

paper proposes an example of a free simulator designed for

Texas Instruments MSP430G2553 microcontroller.

Keywords—microcontroller, simulator, LabVIEW,

MathScript Node, timer, LED, oscilloscope

I. INTRODUCTION

Teaching microcontrollers at university [1-3] requires
software components such as Integrating Development
Environment (IDE) as well as hardware resources such as
development boards, LED’s, sensors and electronic
instruments as oscilloscopes and signal generators. As the
coronavirus has started during the first part of the second
semester of the academic year 2019-2020 and all the activities
were switched to online teaching we needed to make some
changes to be able to perform our laboratory classes. Thus, the
only solution was using a simulator, so that students could
work on their own from home. One of the most used
simulators from the microcontroller field is Proteus [4-7]. The
demo version that is free has some projects but their hardware
structure cannot be changed. Only the corresponding software
can be changed. The proposed projects do not contain any
example with Analog to Digital Converter (ADC) which is
one of the most important module of a microcontroller. The
full version of Proteus is expensive and difficult to use by
students. So far we have not identified another similar
simulator but cheaper or with a student version.

 Thus, in order to overcome these disadvantages, our
group has implemented our own simulator for Texas
Instruments MSP430G2553 microcontroller [8]. This is based
on LabVIEW software package and can be used by any
student. The rest of the paper is organized as follows. Section
II presents the structure and facilities of the proposed
simulator. Section III presents some details about the internal
structure of the simulator. Section IV presents the most
relevant applications and the last section concludes the paper.

II. PRESENTATION OF THE PROPOSED SIMULATOR

The proposed simulator is designed for MSP430G 2553
microcontroller and can be started by running of a suitable
application file and its graphical interface is presented in Fig.
1. In order to use this simulator the hex file that corresponds
to the desired application must be first generated using IAR
Embedded Workbench [9], where the C source file is edited
and compiled. This file should then be loaded using the
browse instrument from the application- path to HEX file- and

then it is displayed in the corresponding window-Content of
the HEX file, Fig. 1.

The most important resources of the simulator are the
following, Fig.1:

- four LEDs, LED 1 to LED 4 that can be connected to any
of the eight pins of the port P1 by the corresponding pop-up
selectors;

- the LEDs D1 and D2 that are connected to the P1.0 and,
respectively, P1.6 pins of port P1 and the push button S1/P1.3
that is connected to the P1.3 pin of the same port; these three
elements are similar to those of MSP-EXP430GET
development board [10];

- the push button P1.2 that is connected to the P1.2 pin;

- the content of the CPU registers R0-R15

- a square signal generator having a variable duty cycle
that can be connected to the one of the pins having input
capture function, that are P1.1, P1.2, P1.5 and P1.6;

- a potentiometer, ADC10 Input Voltage, that can generate
a DC voltage between 0 and 3.3 V; this voltage can be applied
to one of the pins having the analog input function, that are all
the port P1 pins.

- a temperature input field that simulates the temperature
corresponding to the internal sensor of ADC10 module of
MSP430G2553 microcontroller; thus the conversion results
are internally computed depending on this temperature
according to the corresponding expression [11].

- the content of the RAM and Flash memories;

- a 2x16 LCD display

- the content of Watchdog Timer (WDT+) Counter

- an oscilloscope that can be connected to any pins of Port
P1; it also has some special functions for input capture and
output compare capabilities of CCR0 and CCR1 units of
Timer_A3 module of MSP430G2553 microcontroller; thus,
the interest signals and also some auxiliary waveforms can be
displayed to help achieve a better understanding of the
respective capabilities.

The microcontroller program can be executed step by step,
direct, can be stopped or can be initialized, using the four
controls from the top right corner, Fig.1.

III. INTERNAL STRUCTURE OF THE SIMULATOR

The interface of the simulator is implemented in
LabVIEW. In order to start it, it is not necessary to have
LabVIEW installed on the PC.

20
21

 In
te

rn
at

io
na

l C
on

fe
re

nc
e

on
 A

pp
lie

d
El

ec
tr

on
ic

s (
AE

) |
 9

78
-8

0-
26

1-
09

73
-0

/2
1/

$3
1.

00
 ©

20
21

10
.2

39
19

/A
E5

15
40

.2
02

1.
95

42
89

7

Fig. 1. The graphical interface of MSP430 Simulator

A simplified version of the LabVIEW Block Diagram is
presented in Fig.2. Most components of the diagram contain a
software part, which is implemented in MathScript Node.

Fig. 2. The simplified LabVIEW Block Diagram of the MSP430

Simulator

The CPU Software Simulator block implements
instructions such as decoding and execution. MSP430G2553
microcontroller has an instruction set of 27 instructions. Each
instruction has a length of 1 to 3 words. The first word
contains the operation code and some information about the
source and destination operands and addressing modes. The
other two words contain the operands. TABLE I presents two
examples. Thus, the most significant four bits of the first word
determine the instruction as follows: 5 means ADD and 4
means MOV.

TABLE I. ASSEMBLY INSTRUCTIONS AND THEIR CODE

Assembly instruction W1 W2 W3

ADD #4D9h, R7 5037h 04D9h

MOV #4D9h,&214h 40B2h 04D9h 0214h

The CPU block reads the first word W1 of each
instruction. Using W1 it allows decoding, that means
determines the name of the instruction (MOV, ADD,...). Then
CPU block calls a MathScript Node function to implement the
execution of the corresponding instruction. The format of the
call is as following:

 [Flash,RAM,R0_15]=inst_name(W1,Flash,RAM,R0_15),

where Flash, RAM and R0_15 represents the arguments that
can be changed by executing the instruction. W1 is used by
the instruction to extract the operands.

 Execution of the current instruction can change locations
in RAM peripherals area where are the peripheral registers are
located. These memory locations are inputs to ADC10 or
Timer_A Software Simulator blocks. The program that is

Read

HEX

file

CPU

Software

Simulator

RAM

R0-R15

Digital

I/O

Registers

LED’s

control

Timer_A3

Registers

Timer_A3

Software

Simulator

ADC10

Registers

ADC10

Software

Simulator

Input

Capture

Output

Compare

Oscilloscope

(Chart)

 Port Timer_A3

 P1 Signals LCD

Software

Control

LCD

(Intensity

Graph)

LED 1

LED 4

running in each of these blocks simulates the functionality of
the corresponding peripheral according to the inputs.

 In Fig.3 a part of the program that implements the
Timer_A is presented.

if(mcx==0) %Stop?
 dif_tar=0;
 end
 if((mcx==1)||(mcx==2)) %Up or Continuous?
 dif_tar=1;
 end
%---
 ta0r=ta0r+dif_tar; %change the TAR
%--
 if(mcx==1) % Up?
 if(ta0r==(ta0ccr0+1))
 ta0r=0;
 end
 if(ta0r==ta0ccr0)
 cc1ifg=1;
 end
 end
%--
 if(mcx==2) % Continuous?
 if(ta0r==65536)
 ta0r=0;
 end
 end
%--
 if(mcx==3) %Up-Down?
 if(ta0r==ta0ccr0)
 dif_tar=-1;
 end
 if(ta0r==0)
 dif_tar=1;
 end
 if(ta0r==ta0ccr0)
 cc1ifg=1;
 end

 end

Fig. 3. A part of the program that implements the Timer

where:

- mcx is a 2-bit field of the TACTL register of Timer_A
having the significance as in TABLE II.

TABLE II. THE SIGNIFICANCE OF MCX BITS

mcx Significance

00 Stop, the timer is halted

01 Up, the timer counts up to TACCR0 register

10 Continuous, the timer counts up to 0xFFFF

11
Up-down, the timer counts up to TAACR0
register and then down to 0

- ta0r represents the timer/counter register of Timer_A

- cc1ifg is an interrupt flag that is set when ta0r equals the
content of ta0ccr0 register.

 The four LEDs, LED1 to LED4 are controlled depending
on Digital I/O registers by means of LED’s control block that
contains different controls elements.

 The oscilloscope is a Chart block while the 2x16 LCD is
an Intensity Graph block that is controlled by the LCD
Software Control.

IV. APPLICATIONS

In this section, a few representative applications are
presented: blinking LEDs, output compare, input capture,
ADC with LCD.

The first and the simplest application that can be executed
by a microcontroller is the blinking of LEDs, which means
switching on or off the LEDs in different ways. This simulator
allows this by using the four LEDs as it can be seen in Fig. 1.
Moreover, the push button S1/P1.3 can switch between
different versions of blinking applications.

The second application presents the output compare
function of the Timer_A module. Mainly, this function allows
generating square signals having variable duty cycle. The
signal that is generated can be seen on the oscilloscope by
selecting the suitable pin, P1.2 for instance, but also in the
dedicated tab, called Timer0_A3 CCR1 Compare. Thus, in
this case, among the signal of the pin P1.2, TA0.1, the
following signals are displayed, as in Fig. 4:

- the content of the register TA0CCR0, 249

- the content of the register TA0CCR1, 100

-the content of timer/counter register TA0R. Thus it can be
seen that when the TA0R intersects TA0CCR1, the output
signal TA0.1 is switched low and then, when the TA0R
intersects TA0CCR0, the output signal is switched high.
Using the time scale of the oscilloscope, the period of the
output signal is computed as (42870-42620) µs = 250 µs and
the pulse width is (42720-42620) µs = 100 µs. As expected,
these values are proportional to the content of the two
registers.

Fig. 4. Output compare function of Timer_A on the oscilloscope

The third application presents the input capture function of
the Timer_A module. This function mainly saves the timer
value in a register when the selected edge of the input signal
occurs. Thus, having two such timer values, the corresponding
time interval between the two edges can be computed. To
achieve a better understanding of the capture process the
oscilloscope displays among the input capture signal, TA0.1
the following, Fig.5:

- the content of the counter register TA0R

- the content of the capture register TA0CCR1

Because the capture mode on both edges is selected, two
values of the TA0CCR1 are presented for each pulse, at the
intersection between the content of TA0R and the two edges.

Thus, in Fig. 5 the two values that correspond to the middle
pulse are about 2088 and 2187, respectively.

To implement this application the signal generator
generates a signal of 2 kHz frequency and 20% duty cycle,
Fig. 6. Using a suitable software application 20 values are
captured and then the corresponding 19 differences are
computed. The 20 values, in hex, can be seen in RAM
memory, Fig.6, starting with 0x202 address: 58, BB, 24C,…,
828 (2088 decimal), 88B (2187 decimal),..,124F. Then, the
differences of the 20 values can be seen, starting with address
0x240, also in hex: 63, 191, 63, 191,…,. These differences in
decimal, are 99, 401, 99, 401,…, and they represent the length
of the signal pulse and respectively, the pause between pulses,
in microseconds. The sum of each two differences, 500
microseconds, represents the period of the signal. The ratio is
99/(99+401)=0.198. These values are as expected according
to the frequency and the duty cycle of the input signal.

Fig. 5. Input capture function of Timer_A on the oscilloscope

Fig. 6. Parameters of input capture signal (top) and the RAM memory

after completion of the capture program (bottom)

The last application presents the use of ADC10 module of
MSP430G2553 with the 2x16 LCD display. Fig. 7 presents
the LCD after running of the program that measures the
voltage from the potentiometer that is connected to the A4
analog input pin. By changing the potentiometer the value on
the 2x16 LCD is changed too.

Fig. 7. The 2x16 LCD during use of ADC10 application

V. CONCLUSIONS

The paper presented a simulator for MSP430G2553
microcontroller. It can be used for free by students during this
pandemic period. This can be an alternative to the
demonstrative version of the Proteus environment. It contains
the most important resources which are required to develop a
basic application such as LEDs, push buttons, signal
generator, oscilloscope and LCD display. These devices can
be interconnected to different pins of the microcontroller.

As a future work we want to optimize the LabVIEW block
diagram and the MathScript functions to increase the
execution time of the simulator. Also the proposed simulator
can be improved by including a terminal that can simulate the
serial asynchronous communication using corresponding
peripheral module of the MSP430G2553 microcontroller.

REFERENCES

[1] C. Unsalan, and H. D. Gurhan, “Programmable microcontrollers with

applications. MSP430 LaunchPad with CCS and Grace” McGrawHill
Education, 2014.

[2] S. Mischie, “On teaching microcontroller course for undergraduate
program of study”, 2015 International Symposium on Signals, Circuits
and Systems (ISSCS, pp.1–4, Iasi, Romania, 2015.

[3] J. Kim, “An Ill-Structured PBL-Based Microprocessor Course Without
Formal Laboratory” in IEEE Transactions on Education, vol. 55, pp.
145-153, February 2012.

[4] https://www.labcenter.com, PCB Designd and Simulation, accesed on
June 30, 2021.

[5] K. Asparuhova, D. Shehova and S. Lyubomirov, “Using Proteus to
Support Engineering Student Learning: Microcontroler-Driven
Sensors Case Study”, Proc. XXVII International Scientific
Conferences Electronics-ET2018, Sozopol, Bulgaria, 2018.

[6] A. Africa, D. Abaluna, A.Abello, J.Lalusin, “Design and Analysis of a
Closed-Loop Temperature Enginnering Control System using MikroC
and Proteus”, 2020 International Conference on Decision Aid and
Application(DASA), pp. 184-189, Sakheer, Bahrain, 2020.

[7] N. Shwetha, L.Niranjan, V. Chidananadan and N. Sangeetha,
“Advance System for Driving Assistance Using Arduino and Proteus
Design Tool”, Proceedings of the Third International Conference on
Inte;;igent Communication Technologies and Virula Mobile Networks
(ICICV 2021), pp. 1214-1219, Tirunelveli, India, 2021.

[8] https://www.ti.com/product/MSP430G2553, accesed on June 30,
2021.

[9] https://www.iar.com/ew430, accesed on June 30, 2021.

[10] https://www.ti.com/tool/MSP-EXP430G2ET, accesed on June 30,
2021.

[11] https://www.ti.com/lit/ug/slau144j/slau144j.pdf?ts=1625032060761, ,
accesed on June 30, 2021.

		2021-09-27T12:30:44-0400
	Certified PDF 2 Signature

