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Abstract—This paper discusses the usage of symmet-
rical Zolotarev polynomials (ZPS)s in spectral analysis.
Evaluation of Discrete Zolotarev transform (DZT) coeffi-
cients is briefly discussed. However, the DZT coefficients
evaluation is problematic. An alternative novel method
embedding ZPSs is proposed. The novel method, so-called
DZT zoom, improves the spectrum’s time resolution for
non-stationary signals compared to narrowband spectro-
gram. Results are comparable to the approximated DZT
(ADZT). The DZT zoom distinguishing property is the
focus on a particular frequency band of the spectrum.

Keywords—discrete Zolotarev transform, symmetrical
Zolotarev polynomials, non-stationary spectral trans-
form, approximated discrete Zolotarev transform

I. INTRODUCTION

Zolotarev polynomials (ZP)s have been studied for
decades [1]–[5] for several reasons. One of the rea-
sons is a possibility to design optimal digital FIR
filters [6], [7]. Elliptic IIR filters are associated with
both Zolotarev and Cauer [8]. Usage of ZPs in spec-
tral analysis began with discrete Zolotarev transform
(DZT) [9], which employs symmetrical ZP (ZPS) [10].
The DZT is a spectral transform intended for non-
stationary signal analysis. The DZT coefficients have
not yet been evaluated directly in the time domain.
An alternative method employing approximated ZPs,
so-called approximated DZT (ADZT), was developed.
Properties of the ADZT are discussed and compared
with other non-stationary signal analysis methods
in [11]–[13].

The ADZT algorithm performs basis optimization in
the spectral domain. However, the direct DZT spectrum
evaluation in the time domain is still an important
element missing in order to understand the DZT prop-
erties better. It is much more feasible to link features
of the resulting spectrum to the basis properties in the
time domain. Firstly, the parameters of the ZPSs are
directly observable in the polynomial waveform. Sec-
ondly, ZPSs have only a single parameter, the modulus
of elliptical functions, which is related to the time
selectivity feature of the polynomials. On the other
hand, the approximated ZPSs have two parameters: the
non-stationary bandwidth and non-stationary index.

The DZT is defined in Sec. II-A. The direct eval-
uation of DZT coefficients is briefly explained in
Sec. II-B. An alternative novel method based on the

ZPS, of which coefficients are evaluated in the time
domain, is proposed in Sec. III. The novel method is
compared with short-time discrete Fourier transform
(STDFT) and short-time ADZT (STADZT) [11] in
Sec. IV.

II. DISCRETE ZOLOTAREV TRANSFORM

A. Definition

The DZT is described briefly for the purpose of ex-
plaining its basic principle. Radim Špetı́k’s dissertation
thesis [14] contains a detailed definition. The DZT ba-
sis is composed of ZPSs. The Zolotarev cosine (Zcos)
and Zolotarev sine (Zsin) form real and imaginary parts
of the basis, respectively [10]. The Zolotarev series [9]
expansion can be defined analogically to trigonometric
series expansion as:

Zexp(`, k′, i2πt) =

Zcos(`, k′, 2πt) + iZsin(`, k′, 2πt)
(1)

for 0 ≤ t ≤ 1, where ` is degree of ZP, and
0 ≤ k′ < 1 is modulus of elliptical functions. For
an illustration, an example of the real and imaginary
parts of the basis is given in Fig. 1. The modulus of
elliptical functions k′ defines width of center section
of the function definition interval, where the function
does not have equiripple property. The central section
forms central lobe of which width, height, and area
are functions of k′. Hence the modulus of elliptical
functions k′ controls the amount of time-selectivity of
the basis. Note that the Zsin and Zcos are mutually
almost orthogonal for all degrees ` and moduli of
elliptical functions k′ [14]:

〈Zcos(`, k′, 2πt),Zsin(`, k′, 2πt) 〉 ≈ 0 ∀k′,∀`. (2)

Since the energy of both the real and imaginary parts
of the basis increase significantly for larger degrees for
k′ > 0 the parts are normalized separately. Normal-
ization coefficients γ are chosen such that following
equation is satisfied for both parts:

γ2R,` 〈Zcos(`, k′, 2πt) , Zcos(`, k′, 2πt) 〉 =
1

2

γ2I,` 〈Zsin(`, k′, 2πt) , Zsin(`, k′, 2πt) 〉 =
1

2
∀k′,∀`,

(3)
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Fig. 1. An example of Zolotarev cosine Zcos(2πt) (blue line) and
sine Zsin(2πt) (red line) for degree ` = 4 and modulus of elliptical
functions k′ = 0.2.

where γR and γI are normalization coefficients of the
real and imaginary parts, respectively. The normalized
Zolotarev exponential denotes as:

Zexp′(`, k′, i2πt) =

γ2R,` Zcos︸ ︷︷ ︸
Zcos′

(`, k′, ωt) + i γ2I,` Zsin︸ ︷︷ ︸
Zsin′

(`, k′, ωt). (4)

The normalized DZT basis is defined using discretized
Zexp′ in analogy to the DFT basis as:

W
′`,n
N ′ (k′) =

1√
N

Zexp′
(
`, k′,

i2πn

N

)
`, n = 0 . . . N − 1.

(5)

The parameters k′ is omitted in the W parameters for
simplicity. The value of k′ is fixed for all n but it can
differ for different `. Finally, set of DZT coefficients,
DZT spectrum, is given by the scalar product of the
basis (5) and analyzed signal s[n] as:

Z ′[`] =
〈
W

′`,n
N , s[n]

〉
`, n = 0 . . . N − 1, (6)

assuming N -point discrete signal s[n], n = 0 . . . N −
1.

B. Coefficient Evaluation

The direct evaluation of the DZT spectrum coef-
ficients has not yet been achieved. There are two
main reasons why. Firstly, generation of symmetric
Zolotarev polynomials is non-trivial [15]. Secondly, en-
ergy of the Zexp (1) rises enormously with increasing
degree ` for k′ > 0. This is the reason for introduction
of the normalization. The normalization (4) makes the
basis (5) normal; however, the result of the scalar
product (6) carries little signal information. The reason
is that the normalization suppresses the equiripple,
trigonometrical, part of the basis. The trigonometrical
part exhibits the DFT behavior which is expected of
the transform; this behavior is suppressed significantly,
by the same amount as the energy of Zexp grows.

III. AN ALTERNATIVE NOVEL METHOD

A. Principle

The proposed novel method is based on the follow-
ing reasoning.
• Firstly, let’s define an assumption that the method

shall exhibit DFT spectrum’s global (long-term)

properties. Such that a stationary signal result
is similar to the DFT spectrum of the analyzed
signal.

• Secondly, let the method reflect both the global
and local spectral properties of the analyzed
signal. The global signal energy properties are
related to the signal long-term integral proper-
ties, interval within the signal can be considered
stationary. The local signal energy properties are
related to the signal envelope [12].

• Thirdly, the amount of the local analyzed signal
property is given by the scalar product of analyzed
signal and a selective basis function closely re-
lated to the ZPSs. This amount of local selectivity
is called local selectivity index K.

• Fourthly, the local properties of the analyzed
signal are imposed on the global properties. Thus,
assuming the global analyzed signal spectral prop-
erties are represented in the DFT spectrum, the
final result is the DFT spectrum multiplied by the
local selectivity index K.

Now, let’s illustrate the principle on an example. As-
sume an analyzed triangular signal with a different
offset from the center of the analyzed window. The
signal with energy centroid in the center is depicted in
Figure 2a, with right of the center in Figure 2c, and
with left of the center in Figure 2e. An illustration of
the selective basis waveform is depicted as a dashed
line in the figure. Note that for all analyzed signal shifts
the resulting DFT spectrum is equal in its absolute
value. Figure 2b, 2d, and 2f depict DFT spectrums for
respective analyzed signal shifts; the blue lines denote
the DFT spectrum amplitudes.

Consider that the DFT spectrum amplitude values
are multiplied by the scalar product of the analyzed
signal and the selective basis, the local selectivity index
K. In the first case, where the energy centroid of the
analyzed signal is at the center, the resulting spectrum
is equal to the DFT spectrum. In the second case,
where the energy centroid of the analyzed signal is
right of the center, the resulting spectrum is reduced
in amplitude by 1/K, see the red lines in the Fig-
ure 2d. Similarly, in the third case, see the red lines in
Figure 2f. The local selectivity index K is equal for
both cases since the selective basis is even symmetric
around the center. Results in the second and third case
reflect that the local analyzed signal spectral properties
are not aligned with the selective basis. Now assume
that the resulting spectrum is composed similarly to
the STDFT, using the windowing process. The output
will exhibit additional resolution in time compared to
the STDFT. The result is actually similar to the one of
the STADZT.

B. Selective Basis

The selective basis of the proposed method is com-
posed of, so-called, non-stationary part of the Zolotarev
exponential Zexp (4). Note that there are more Zsin
definitions. This work uses the definition according
to [10]. The Zexp can be decomposed into non-
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(a) Signal w1; energy at the
window center is depicted
as samples; selective basis
waveform is depicted by the
dashed line.
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(b) Left half of the DFT spec-
trum of w1: |DFT {w1} |.
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(c) Signal w2; shifted to the
right of center is depicted
as samples; selective basis
waveform is depicted by the
dashed line.
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(d) Left half of the DFT spec-
trum of w2; red samples are
the spectrum amplitudes re-
duced by the factor of |K|.
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(e) Signal w3; shifted to
the left of center is depicted
as samples; selective basis
waveform is depicted by the
dashed line.
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(f) Left half of the DFT spec-
trum of w3; red samples are
the spectrum amplitudes re-
duced by the factor of |K|.

Fig. 2. An illustration of proposed ad hoc non-stationary DFT
based method principle; an example triangular signal with different
signal shifts is depicted in (a), (c), and (e). The absolute value
of the DFT spectrum for each signal shift is depicted in (b), (d),
and (f), respectively, by the blue samples; the resulting spectrum
with imposed local spectral signal properties is depicted by the red
samples.

stationary (N ) and stationary (S) parts, see [9]. The
non-stationary part N is decomposed as:

N{Zexp(`, k′, i2πt)} = N (`, k′) =

Zexp(`, k′, i2πt)− Zexp(`, k′, i2πt)|k′=0 =

Zexp(`, k′, i2πt)− exp(`, i2πt)︸ ︷︷ ︸
S(`)

.
(7)

The decomposition of the Zcos to the stationary and
non-stationary parts is depicted in Fig. 3. Thus, the
selective basis denoted as ∆ is composed of the Zexp
non-stationary part N (7) as:

∆(`, k′) = N {Zexp(`, k′, i2πt)} . (8)

C. Definition

As outlined previously, the method weights the DFT
spectrum of analyzed signal by the local selectivity
index K. The K is a scalar product of the selective
basis ∆(m, k′) (8) and and analyzed signal, in princi-
ple. However, the fact that the energy of symmetrical
ZPs has large dynamic range (DR) has to be addressed.
The high DR is mitigated by the introduced Zexp

Fig. 3. Decomposition of Zolotarev cosine Zcos(2πt) into station-
ary part S(`) (blue line) and non-stationary part N (`) (red line) for
degree ` = 4 and modulus of elliptical functions k′ = 0.2. The
Zcos has the same parameters as in Fig. 1.

normalization (4). Additionally, the analyzed signal
window energy has to be normalized as well. Both
normalizations lead to computation of the local selec-
tivity index K as a correlation coefficient between the
analyzed signal window and the selective basis ∆ as:

K(`, k′) =
〈 ∆(`, k′), s 〉

E {∆(`, k′)}E {s}
, (9)

where ∆(`, k′) is the selective basis (8), s is discrete
analyzed signal of length N , and operator E {.} is
signal energy operator. The result is then equal to
the multiplication of the analyzed signal window DFT
spectrum by the K(`, k′) as:

|S′′Z(`)| = |DFT{s}(`)| K(`, k′)

` ⊂ {0, ..., N − 1} .
(10)

The spectrum is computed separately for the real and
imaginary parts. The DFT spectrum leakage reduction
can be employed by commonly used window functions
without a limitation.

The proposed method does not perform any opti-
mization of the selective basis; no optimal modulus of
elliptical function k′ is being found. Instead, the k′ is
a parameter of the method. The parameter k′ is related
to center frequency of zoomed-in frequency bandwidth,
where the method provides improved time-resolution
compared with the STDFT. The lower the value of k′

the higher is the value of the center frequency. This
feature is similar to, so-called, ”zoom” technique [16],
[17], where a desired frequency band is selected by
a filter bank and consequentially zoomed in. Therefore,
the proposed technique has been named ”DZT zoom”.

IV. RESULTS

An example signal is used to compare the short-time
DZT zoom spectrum with the STDFT and STADZT
ones. The signal is comprised of two sine waves mix-
ture, Gaussian pulse, and Dirac pulse, see Fig. 4. The
wideband spectrogram, Fig. 5a, of the signal localizes
the Gaussian and Dirac pulses well in time; however,
the frequency resolution is relatively poor. The two
sine waves mixture and the Dirac pulse are barely
noticeable due to the DR of the spectrum. On the other
hand, the narrowband spectrogram, Fig. 5b, has lower
DR allowing to recognize the sine waves mixture in
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Fig. 4. Example analyzed signal composed of a mixture of two sine
waves, Gaussian pulse, and Dirac pulse. The sine waves mixture
has parameters of f1 = 75 Hz and f2 = 190 Hz, same amplitude,
and zero phase. The Gaussian pulse center frequency is 190 Hz and
bandwidth is 0.2 Hz. Sampling frequency of the signal is 1 kHz.

the spectrum. It has a higher frequency resolution, but
particular parts of the signal are blurred together.

A non-stationary transform, such as STADZT, can
be used to improve the spectrum resolutions for non-
stationary signals. The STADZT spectrum of the sig-
nal, in Fig. 6, improves the time resolution while
the same frequency resolution as of the narrowband
spectrogram’s is kept. Note that the ADZT is designed
to work with rectangular signal weighting window.
The STADZT removes certain parts of the spectrum
performing hard decisions based on phase. As a con-
sequence the spectrum becomes rather intermittent.

The DZT zoom short-time spectrum is depicted in
Fig. 7a; the center focus frequency is set at ≈ 190 Hz
by the modulus of elliptical functions k′ ≈ 0.04. The
center frequency is noticeable in local selectivity index
|K| gram, Fig. 7b, as the maximum of the Dirac pulse
spectrum. The DZT zoom short-time spectrum of the
Gaussian pulse is smooth compared to the intermittent
STADZT spectrum. The intermittent spectrum of the
Gaussian pulse is specific to the STADZT. On the other
hand, the spectrum of the sine waves mixture is inter-
mittent for both methods. The intermittent spectrum
of harmonic, stationary, signals is a property of DZT
based transforms. This property is related to the beat
frequency present in the signal envelope formed by
a mixture of harmonic signals. The selectivity index
K is correlated to the envelope beat frequency.

Sine wave of the lower frequency is barely notice-
able in the DZT zoom short-time spectrum focused
at 190 Hz, Fig. 7a. Changing the center frequency
at ≈ 80 Hz, k′ = 0.07, allows to recognize it in
the spectrum, Fig. 8a. The center frequency is again
noticeable in local selectivity index |K| gram, Fig. 8b,
as the maximum of the Dirac pulse spectrum.

The spectrum of the Dirac pulse is well localized in
time by both methods.

V. CONCLUSION

This article briefly describes the DZT and the dif-
ficulty of evaluating its coefficients. A novel method,
so-called DZT zoom, based on the DZT is proposed.
The DZT zoom uses the non-stationary part of the
Zolotarev exponential as its basis. The novel method
exhibits similar behavior to the ADZT. The spectrum
time resolution is improved, the stationary signal’s
spectrum is intermittent. The intermittent spectrum
of stationary harmonic signals is a property of DZT

(a) Wideband spectrogram; window length of 64 samples.

(b) Narrowband spectrogram; window length of 256 samples.

Fig. 5. STDFT spectrum modul of the signal Fig. 4 for various
window lengths; Hamming window is used and window step is
1 sample for both spectrograms.

Fig. 6. STADZT spectrum modul of the analyzed signal Fig. 4;
window length of 256 samples and window step of 1 sample; no
weighting window is used.

based spectral methods. The important property of the
novel transform is its focus on a specific frequency
band. The band center frequency is set by a specific
modulus of elliptical functions, which is a parameter
of symmetrical Zolotarev polynomials.



(a) Short-time DZT zoom spectrum modul.

(b) Local selectivity index K modul.

Fig. 7. Short-time DZT zoom spectrum of the signal Fig. 4; the
center frequency at ≈ 190 Hz → k′ = 0.04; Hamming window
is used prior to the spectrum computation; window length of 256
samples and window step of 1 sample.

(a) Short-time DZT zoom spectrum modul.

(b) Local selectivity index K modul.

Fig. 8. Short-time DZT zoom spectrum of the signal Fig. 4; the
center frequency at ≈ 80 Hz → k′ = 0.07; Hamming window
is used prior to the spectrum computation; window length of 256
samples and window step of 1 sample.
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