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Abstract: VaR and CVaR are effective quantitative measurement of market risk. These measures can 
quantify the risk of unexpected changes within a given period. In this paper, we examine the market risk 
of four stock indices: the Czech PX, the Austrian ATX, the London FTSE, and the American S&P 500. 
First, the returns of these indices are approximated using two distributions showing semi-heavy tails: a t-
distribution and a normal inverse Gaussian distribution. For comparison, the normal and empirical 
distributions are also included since they often work as convenient alternatives. Subsequently, the VaR99 
and CVaR97.5 values corresponding to four candidate distributions are calculated for each index. We 
also analyze the ability of theoretical distribution to approximate the left tail behavior of stock market 
indices returns. It turns out that the normal distribution is not suitable for this purpose. Furthermore, it 
appears that CVaR97.5 is higher (in absolute value) for all indices than the corresponding VaR 99, which 
may require higher need for economic capital, which banks should allocate. 
  
Keywords: Stock market indices, t-distribution, normal inverse Gaussian distribution, VaR, CVaR 
  
JEL Classification: C58, G14 
  

INTRODUCTION  
Volatility is an integral part of stock market dynamics. It provides opportunities to make a lot of money 
as well as to face huge losses. Therefore, any market participant has to take adequate risk management 
measure to counter its negative exposure. In order to do so, risk has first to be quantified. The same holds 
for regulatory purposes. Value at Risk (VaR) and Conditional Value at Risk (CVaR) are ones of the main 
measurement of market risk. These two measures are very simple and popular quantificators of market 
risk and they are widely used in practice. Moreover, they are applicable in measuring other types of risk 
as well. 
Computing Var and CVaR heavily depends on the specification of distribution used for modeling price 
or return dynamics. It has been known for quite a long time that the distribution of financial asset returns 
in general as well as stock price returns has heavier tails and sharper peak than the corresponding normal 
distribution. Not only can the correct choice for their distribution help to find the answer to our problem, 
but it is also of great importance for VaR and CVaR evaluation as well as for asset. So far many efforts 
of researchers as well as practitioners have been devoted to this task. There are two ways how to deal 
with it. 
The first one, which is less inconvenient but may not yield the needed accuracy, is to replace the normal 
distribution by an alternative distribution with the same number of parameters as the normal one 
which exhibits the leptokurtic property. In general, the probability distribution with heavy ends (alpha 
stable distribution) or the distribution with so-called semi-heavy tails (generalized hyperbolic distribution 
and its special cases) are considered. For the generalized hyperbolic distribution family, see Prause 1999, 
and Eberlein and Keller 1995, for the skewed generalized t-distribution family, see Theodossiou, 1998, 
Zhu and Galbraith 2012, Platen, E., and R. Rendek. 2008.  and Guo 2017.  The second way how to solve 
this problem is to use a candidate distribution with more than two parameters. In this case, the additional 
parameter(s) will capture the tail and peak behavior of the distribution of financial asset returns. However, 
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additional parameters also make estimation procedure more complicated. In the literature, two 
distributions with semi-heavy tails are often chosen for this task: normal inverse Gaussian and Student-t 
distributions. Hence, VaR and CVaR as measures of stock market risk can be calculated with these two 
distributions. The objective of this research is to find how market risk can be adequately quantified 
by these two measures and which distribution is a good one for approximation of returns of stock market 
indices. 
To find the answer to our research question raised above, we choose two candidate distributions 
potentially suitable for capturing heavy tails. We select four stock market indices: Prague Stock Exchange 
index PX (Czech Republic), Austrian index ATX, FTSE index (Great Britain) and American index S&P 
500. The first two indices represent small stock markets and last two are the most liquid stock markets 
in the world. The data used for this research are daily series of these indices from 2000 to 2018. These 
series are converted into return series and then they are used to estimate the parameters of each chosen 
distribution which will be estimated by maximum likelihood technique. Then the suitability of each 
distribution for each series will be tested by χ^2 goodness of fit test. They will be tested for the left loss 
tail. Based on this result, the appropriate candidate distribution for returns will be recommended. Then, 
we calculate corresponding VaR99 and CVaR 97.5 for these two distributions together with normal 
and empirical distributions. The results will provide us information on the two measures as well as the risk 
pattern of the chosen stock markets. 

1. NORMAL INVERSE GAUSSIAN AND STUDENT-T DISTRIBUTIONS AS SPECIAL CASES 

OF GENERALIZED HYPERBOLIC DISTRIBUTIONS 

This generalized hyperbolical distributions was introduced by Barndorff-Nielsen (1977) and at first applied 
them to model grain size distributions of wind blown sands. Eberlein and Keller (1995) were the first 
to apply these distributions to finance. The probability density function is as follows: 
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The following distributions are the special cases of the generalized hyperbolic distribution (GH). For  λ=1, 
we get the hyperbolic distribution, for λ=1⁄2, we get the Normal Inverse Gaussian distribution (NIG). So 
the probability density function of NIG distribution is (using some properties of Bessel functions): 

𝑓(𝑥) =
𝛼𝛿 𝐾1(𝛼√𝛿2+(𝑥−𝜇)2)
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For 𝜆 = −
𝜈

2
, 𝜈 > 0, 𝛼 = 𝛽 = 0, we get Student t-distribution where  ν is the number of degrees 

of freedom, hence t-distribution is a special case. The PDF od Student t-distribution is 
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where Γ(. ) is the so called gamma function.  
The semi-fat tail property of distributions of generalized hyperbolic distribution family coming 
from the following asymptotic property of Bessel function: 

𝑃(𝑋 ≤ 𝑥) ≈ |𝑥|𝜆−1 exp[(𝛼 + 𝛽)𝑥]   as  𝑥 → −∞         (5) 
We see that t-distribution has thicker left tail than NIG for certain values of λ. 
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2. VALUE AT RISK AN CONDITIONAL VALUE AT RISK 

Value at risk (VaR) at the level 𝛼 ∈ (0,1) is defined by 
𝑉𝑎𝑅𝛼(𝑌) = 𝑖𝑛𝑓{𝑥 ∈ ℝ|𝐹𝑌(𝑥) ≥ 𝛼},           (6) 
where Y is loss random variable (losses are positive, gains negative) with cumulative distribution function  
𝐹𝑌(𝑥). 
VaR has become a standard risk measure in finance.  But it has a disadvantage of lacking subadditivity 
which means that a (diversified) portfolio may have a higher risk (VaR) than the sum of its individual parts. 
 Conditional VaR (CVaR), sometimes called Expected shortfall (ES)1 , is defined by 

𝐸𝑆𝛼(𝑌) =
1

1−𝛼
∫ 𝑉𝑎𝑅𝑠(𝑌)𝑑𝑠.

1

𝛼
           (7) 

CVaR can be interpreted as a conditional mean value of losses provided that the VaR has been exceeded. 
CVaR has been proposed as an alternative to VaR risk because its subaddition property. However, it is 
often criticized for computational difficulty, limited backtesting capabilities and high sensitivity to extreme 
data (lack of robustness). 
From a statistical point of view, CVaR should not be preferred to VaR, but CVaR has one advantage 
because it is far more difficult to manipulate. Banks can manipulate risk measures by selecting a specific 
estimation method. However, there is no certainty that the estimation method that gives positive results 
for the bank today will do the same tomorrow. 

3. EMPIRICAL RESULTS 

For our empirical analysis four stock market indices are chosen. They are the Czech stock market index 
PX, the Austrian stock market index ATX, the London stock market index FTSE, and the American stock 
market index S&P 500. Data are daily series of close index values from 2000 to 2018. Indices are obtained 
from Bloomberg database. The original series then are transformed into the return series of four stock 
market indices. We display their basic descriptive statistics in two tables 1a and 1b. 

Tab. 1a: Descriptive statistics 

Descriptive statistics of original series 

  PX ATX FTSE SP500 

mean 988,73 2438,56 5737,76 1446,34 

median 986 2394,44 5861,92 1318,32 

mode 1016,8 1127,75 4489,7 1092,54 

minimum 320,1 1003,72 3287 676,53 

maximum 1936,1 4981,87 7778,64 2872,87 

std 354,30 970,22 949,87 443,91 

skewness 0,30 0,57 -0,28 0,96 

kurtosis 2,87 2,77 2,35 3,13 

Num of ob 4773 4770 4735 4735 

Source: Authors’ own research 

  

                                                           
1 These two terms (ES and CVaR) are not exactly the same, but they are identical for continuous distributions. 
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Tab. 1b: Descriptive statistics 

Descriptive statistics of log-return series 

  PX ATX FTSE SP500 

mean 1,47E-04 2,20E-04 9,30E-06 1,31E-04 

median 4,81E-04 1,76E-04 0,00E+00 2,13E-04 

mode 0 0 0 0 

minimum -0,162 -0,103 -0,093 -0,095 

maximum 0,124 0,120 0,094 0,110 

std 0,013 0,014 0,012 0,012 

skewness -0,477 -0,340 -0,161 -0,222 

kurtosis 16,496 10,602 9,573 12,052 

Num of ob 4772 4769 4734 4734 

Source: Authors’ own research 

From Table 1b we can see that returns of index PX display the widest range, the Austrian ATX index has 
the highest risk measured by the standard deviation. The London FTXE index has the lowest risk. In terms 
of average returns, they are similar except the case of index FTSE. The skewness is negative for all four 
indices, the highest skewness (in absolute value) is the Czech index PX, the lowest value is the FTXE 
index. The PX index also has the highest kurtosis, the lowest kurtosis index FTXE. All these statistics 
suggest that the probability distribution of log-returns is not normal. 

3.1 Estimation parameters of distributions  
The return series are first used to estimate parameters of hypothesized distributions described 
in the previous section by maximum likelihood estimation technique. The normal distribution is also 
included for comparison as well as it is a special case of all multi-parameter distribution classes. All 
computation is implemented in Matlab. The estimation results are displayed in Tables 2a, 2b. Besides 
the values of the parameters of each distribution, the asymptotic standard errors (SE) of the estimates 
are also computed and they are displayed under the estimated values of the parameters in the tables. 
The estimation results show that all estimated parameters of t- distribution of all four returns series are 
statistically different from 0. The estimation results for NIG distribution are similar to the ones of t-
distribution except for the expected valued of return of index ATX. 

Tab. 2a: Parameter Estimation results for t-distribution 

  parameter estimate SE z-stat p-value 

PX 

mu 0,00048 0,00016 3,04581 0,00232 

sigma 0,00861 0,00013 68,28416 0 

nu 3,29627 0,02276 144,81449 0 

ATX 

mu 0,00076 0,00038 1,98808 0,04680 

sigma 0,00838 0,00050 16,70400 0 

nu 2,81838 0,03813 73,92200 0 

FTSE 

mu 0,00028 0,00013 2,18216 0,02910 

sigma 0,00723 0,00014 51,66309 0 

nu 2,86471 0,15189 18,86088 0 

SP500 

mu 0,00052 0,00014 3,60532 0,00031 

sigma 0,00650 0,00011 57,92318 0 

nu 2,35565 0,00519 453,69690 0 

Source: Authors’ own research 
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Tab. 2b: Parameter Estimation results for NIG-distribution 

  parameter estimate SE z-stat p-value 

PX 

alpha 60,05061 2,67299 22,46570 0 

beta -5,40087 0,67187 -8,03858 8,8818E-16 

delta 0,01014 0,00284 3,57479 0,00035 

mu 0,00106 0,00031 3,42196 0,00062 

ATX 

alpha 50,19242 11,45128 4,38313 1,1699E-05 

beta -6,07214 1,14486 -5,30382 1,1341E-07 

delta 0,00933 0,00090 10,41036 0 

mu 0,00136 0,00140 0,96618 0,33396 

FTSE 

alpha 58,95939 3,54231 16,64432 0 

beta -4,75282 1,86182 -2,55279 0,01069 

delta 0,00803 0,00028 28,62191 0 

mu 0,00066 0,00019 3,53512 0,00041 

SP500 

alpha 46,44095 2,72325 17,05351 0 

beta -4,79900 1,88373 -2,54761 0,01085 

delta 0,00666 0,00019 34,72542 0 

mu 0,00082 0,00015 5,38086 7,4129E-08 

Source: Authors’ own research 

3.2 Pearson´s Chi squared goodnes of fit test  
In this section the Pearson chi squared goodness of fit test is used to verify the suitability of each 
distribution. The advantage of this choice is that it can be applied globally as well as on individual 
segments of a distribution. It also takes into account the number of parameters of a distribution. 
The essence of the test is as follows. This test tests the null hypothesis whether data comes from a certain 
distribution. The measure of goodness of fit which is also test statistic compares the observed frequencies 
with the expected ones by summing up their differences as follows 

𝜒2 = ∑
(𝑂𝑖 − 𝐸𝑖)

2

𝐸𝑖

𝑛

𝑖=1

 

where 

𝑂𝑖 is observed frequency for the i-th bin 

𝐸𝑖 is expected frequency for this bin 

and  𝐸𝑖 is computed as folow 

𝐸𝑖 = 𝑁(𝐹(𝑢𝑏)𝑖 − 𝐹(𝑙𝑏𝑖)) 

Where N is total number of observations, F is the CDF of the hypothesized distribution, lbi and ubi are 
the lower bound and upper bound of the i-th bin respectively. The test statistic under the null hypothesis 

has 𝜒2 with n –k -1 degrees of freedom, where n is the number of bins and k is the number of parameters 
of the tested distribution (see Snedecor and Cochrane). 
The testing using chi squared goodness of fit test is proceeded as follows. First we test for the whole 
distribution. The whole interval [0,1] is divided into forty subintervals of length 0.025. If the inverse CDF 
of a distribution exists, then the boundary points for each bin are computed with the inverse CDF, 
otherwise, it is determined numerically. Then the boundary points for each bin are computed 
by interpolation. After that the number of observed frequencies is counted and so is the test statistic.  
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We also use the chi squared goodness of fit test to investigate the validity of the null hypothesis in several 
segments, namely the left tail. We test for the validity in segment (0, 0.025). This interval is divided into ten 
bins of equidistant length 0.0025 and the testing is proceeded as described above. The results are 
summarized in Table 3. 

Table 3: Pearson’s Goodness of fit test results for left tail returns of indices 

Distribution Test results PX FTSE ATX SP500 

Normal 
Test stat 155.18 113.63 215,0514 965,12 

p-value 0 0 0 0 

Student-t 
Test stat 11.07 17.92 27,5328 23,5634 

p-value 0.135 1.24E-2 2,67E-04 0,0014 

NIG 
Test stat 15.93 8.220 4,2768 6,2807 

p-value 1.41e-2 0.222 0,6393 0,3925 

Source: Authors’ own research 

The results of the goodness of fit test show that for the left tail of return distribution, normal distribution is 

an unsuitable candidate which is expected. For the other two distributions, t-distribution is more 

appropriate for returns of index PX while for the remaining three indices, NIG distribution is a better 

alternative. It fits better for their left tail. This implies that returns of index PX is heavier than returns 

of the other indices. This result is in accordance with what we observed with descriptive statistics. Among 

the remaining three indices, using equation (5) for heavy tail property and the estimation results in Table 

2b, one can infer that the left tail distribution of returns of indices ATX and FTSE is similar while the left 

tail of distribution of returns of index SP 500 is a bit tender than those of the previous two. However, it 

needs more thorough analysis to quantify the exact differences. 

3.3  VaR and CVaR computation 
We use the estimation results in the previous part to compute VaR 99 and CVaR 97.5 for return series 
of all four indices. For the sake of completeness, in addition to the Student's t-distribution and NIG, 
the results for the normal and empirical distributions (HS) are also calculated. The computation results 
of four series are shown in Tables 4, 5, and 6. In Tables 4 and 5 the adequate values of VaR99 
and CVaR975 are displayed in bold. 

Tab. 4: VaR 99 computation results of four series 

VAR99 Gauss T NIG HS 

PX -0,0312 -0,0360 -0,0386 -0,0393 

ATX -0,0321 -0,0393 -0,0422 -0,0442 

FTSE -0,0272 -0,0338 -0,0353 -0,0334 

SP500 -0,0276 -0,0365 -0,0379 -0,0348 

Source: Authors’ own research 

Tab. 5: CVaR 97.5 computation results of four series 

CVAR975 Gauss T NIG HS 

PX -0,0314 -0,0393 -0,0400 -0,0416 

ATX -0,0322 -0,0443 -0,0440 -0,0444 

FTSE -0,0274 -0,0379 -0,0367 -0,0357 

SP500 -0,0277 -0,0433 -0,0398 -0,0370 

Source: Authors’ own research 

Trendy v podnikání - Business Trends (2020), 10(4), 41-48.

https://doi.org/10.24132/jbt.2020.10.4.41_48

46 Trendy v podnikání - Business Trends 2020/4

https://doi.org/10.24132/jbt.2020.10.4.41_48


Tab 6: Differences of VaR 99 and CVaR 97.5 

VAR99 Gauss T NIG HS 

PX 0,0002 0,0034 0,0014 0,0023 

ATX 0,0002 0,0050 0,0018 0,0002 

FTSE 0,0001 0,0041 0,0014 0,0023 

SP500 0,0001 0,0067 0,0019 0,0022 

Source: Authors’ own research 

The computation results of VaR99 and CVaR97.5 in the three previous tables show that using normal 
distribution to model returns can lead to underestimation the market risk. As we know from the previous 
subsection, t-distributions is the best option for returns of index PX, then the corresponding market risk 
level of index PX measured by VaR99 and CVaR975 is 0,0360 and 0,0393, respectively. As NIG 
distribution is best option for returns of indices for ATX, FTXE and SP 500, the corresponding market risk 
level measured by VaR99 and CVaR97.5 for Austrian stock market is 0,0422 and 0,0440, for London 
stock market is 0,0353 and 0,0367 and for American stock market with index SP500 is 0,0379 and 0,0398, 
respectively. Sorting by these two measures, the market risk exposure order is the following: London, 
Prague, America and Austria. This order implies that risk exposure may not originate from the market 
liquidity, but from the nature of their volatility. The other inference we obtained from our analysis is VaR99 
and CVaR97.5 measures derived from historical simulation tend to be overestimated due to the missing 
values outsides of the observed range. For the same reason, the computed values of VaR and CVaR can 
be underestimated with historical simulation if the value of α is too small. Finally, while 
under the assumption of normal distribution, the value of VaR99 and CVaR97.5 are similar and their 
differences are negligible, for t-distribution and NIG distribution, the differences of the two measures are 
substantial and they are not interchangeable anymore. The results are consistent with what we observe. 

CONCLUSION 
We have measured the stock market risk of four markets: two very advanced and two less liquid with VaR 
and CVaR measures. Besides the traditional normal distribution and empirical distribution, we have used 
two heavy tail distributions: Student-t and NIG distributions. We have used daily data to estimate 
parameters of distributions we use and test their ability to capture left tail behavior of the distribution. Our 
results indicate that there is no distribution that can be universally used for modeling distribution of returns 
of all four indices. Further, the use of normal distribution or empirical distribution usually leads to incorrect 
evaluation of this two measures. We have also found that in general VaR99 and CVaR975 are not 
the same for distributions used in our analysis. The selection of two different type of markets in our 
analysis in terms of their respective liquidity provides us an interesting inference of the role of liquidity. 
Liquidity may not be the main driving factor of market risk. And using the appropriate distribution 
for determining VaR and CVaR leads to more correct evaluation of the risk level one may expose 
and consequently it helps to determine an adequate level of capital requirement for both risk management 
and regulatory purposes. 
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