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R É S U M É

The main contribution of the thesis is to extend results in Merino – Pospíšil –
Sobotka – Sottinen – Vives (2019) regarding αRFSV model and to summarize au-
thor’s research activities based on published academic articles.

shrnutí práce

Hlavním přínosem této kvalifikační práce spočívá v rozšíření výsledků získaných
v manuskriptu Merino – Pospíšil – Sobotka – Sottinen – Vives (2019) týkajících
se αRFSV modelu a ve shrnutí výzkumných aktivit studenta na základě publiko-
vaných vědeckých článků.

zusammenfassung

Der Hauptbeitrag der Arbeit besteht darin, die Ergebnisse in Merino – Pospíšil –
Sobotka – Sottinen – Vives (2019) in Bezug auf das αRFSV Modell zu erweitern
und die Forschungsaktivitäten des Autors zusammenzufassen.
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A B S T R A C T

In the thesis we provide a motivation for a class of financial market models that
has lately captured attention of both academics and practitioners – a class of
stochastic volatility (SV) models and, even more recently, rough SV models. This
is done by introducing the so called stylized facts - observed properties of markets
which should be taken into account by a good modelling approach.

After the introduction to financial markets is drawn, we provide a comprehen-
sive review of the literature on SV models which focuses on popular approaches
including the latest fractional and rough models. We briefly discuss a set of com-
mon assumptions that all mentioned approaches utilize and we also comment on
the main differences between the proposed models.

In practice, the main scope of SV models includes a management of risks com-
ing from complex financial derivatives – contracts depending on future evolution
of specific financial assets. Before being able to use SV models on these complex
derivatives, however, one needs to calibrate the models to relevant market observ-
ables. Typical instruments suitable for calibration are vanilla derivatives such as
forwards, European options and recently also variance swaps / forwards. Hence,
we introduce a standard formulation of derivative valuation and calibration prob-
lems, alongside market standard definitions of European options and variance
swaps derivative contracts in Chapter 3.

In line with recent trends in SV modelling, the main focus of this thesis is laid
on αRFSV model introduced by Merino – Pospíšil – Sobotka – Sottinen – Vives
(2019). In the reference above, we developed a short-time approximation to option
fair value under the αRFSV model and in this thesis the result is extended to
an exact semi-closed formulation of the continuous fair variance. In particular
we show how to express specific conditional expectations of the variance process
assumed by the model.

Due to the lack of publicly available data on fair variances for most of the finan-
cial assets, we have reviewed a connection between variance and option markets
using Carr – Madan (1998) approach which became a market standard for vanilla
variance swap valuation over the years. Using the Carr – Madan (1998) approach,
we are able to transform option prices into fair variances and to test the newly
introduced αRFSV formulation on the task of market calibration.

The novelty of the proposed calibration routine is that we use fair variance data
to infer a superior initial guess of model parameters for option calibration. Al-
though we retrieve a similar quality of the calibration fit as in Merino – Pospíšil
– Sobotka – Sottinen – Vives (2019) without the fair variance data, due to hav-
ing very good initial guesses we are able to increase efficiency of the calibration
task. In our small numerical experiment based on the real market data, we saved
approximately 46% of the computational time.

Last part of the thesis concludes on author’s research activities by displaying
published research articles which were co-written by the author.

Keywords: Rough volatility, fractional Brownian motion, European options, vari-
ance swaps, stylized facts, financial market models.

MSC classification: 00A69, 91G20, 91G80
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G L O S S A RY

table of abbreviations and technical terms

Abbreviation Meaning

ATM At-the-money; denoting an option with strike close to the current spot
price, i.e. intrinsic value of the option is close to zero.

δ(·) Dirac’s delta function

DF(·, ·) Discount factor DF(s, t) from time s to t for any 0 6 s < t 6 +∞.

FV Fair value of a derivative is represented by market implied expected
value of discounted future cash-flows implied by the derivative condi-
tional on current available information, see Chapter 3.

FS Fair variance (sometimes also called fair strike) of a variance swap
derivative is a strike value which would implied zero fair value for
the original variance swap.

Γ(·) Gamma function, e.g. for <(z) > 0 defined as Γ(z) =
∫∞
0 x

z−1e−xdx

{Γi} ,
{
Λj
}

Parameter sets of αRFSV model where Γ = {σt0 , ξ,H, ρ} and Λ = Γ − {ρ}

H Hurst exponent, a parameter of a fractional Brownian motion, as de-
fined in Chapter 2, but also a similar exponent parameter for e.g.
α−RFSV model as introduced in Chapter 4.

N(·) Denotes cumulative distribution function of a standard Gaussian ran-
dom variable

OTC Over-the-counter, OTC derivatives are contracts traded privately be-
tween two parties, without involving any exchange. As opposed to ex-
change traded contracts, OTC derivatives have trade terms negotiated
between the two parties and terms might not need to be disclosed.

PDE Partial differential equation

PnL Profit and loss of resulting from a particular financial position

SDE Stochastic differential equation

VSC Variance swap curve also denoted as ξs(t), is a curve containing fair
variances for variance swap started at time s and maturing at time t,
defined by (50)
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1I N T R O D U C T I O N

1.1 structure of the thesis

A structure of the thesis is described as follows. First of all, we provide a motivation on models
which are used to manage risks coming from complex derivatives and then we describe both pre-
liminary modelling set-up and basic definitions related to financial markets in Chapter 1. Last but
not least, we introduce a set of stylised facts - typically observed properties of financial markets.
These properties should be captured by a good modelling approach.

In Chapter 2 we provide a thorough review of the literature on stochastic volatility models which
are the main subject of this thesis. Not only traditional well know models, but also latest rough
volatility approaches are briefly introduced.

We also review two important tasks in practice in Chapter 3: valuation of derivative contracts and
a calibration to option markets. The last part of the chapter is devoted to the connection between
option and variance derivatives and also include reasoning why this connection can be used also
for stochastic volatility models.

Main results of the thesis are provided in Chapter 4 and in Appendix B. In Chapter 4 we describe
the αRFSV model studied by Merino – Pospíšil – Sobotka – Sottinen – Vives (2019) in detail. A
formula under this model for a quantity called the fair variance is derived and subsequently tested
on a small numerical experiment.

In Appendix B we provide published articles co-written by the thesis author. In particular, we
attach the following articles:

• Pospíšil – Sobotka (2016) – We introduced a long-memory fractional stochastic volatility
model and compare it to a more traditional approach on the real market data.

• Mrázek – Pospíšil – Sobotka (2016) – Various calibration techniques are studied alongside
several stochastic volatility models.

• Baustian – Mrázek – Pospíšil – Sobotka (2017) – A new pricing technique for a class of jump-
diffusion stochastic volatility models is derived based on a complex Fourier transformation
of the partial integral differential valuation equation.

• Merino – Pospíšil – Sobotka – Vives (2018) – A short-time / low volatility of volatility pricing
formula is developed for jump-diffusion stochastic volatility models.

• Pospíšil – Sobotka – Ziegler (2019) – Robustness of various stochastic volatility models is
tested under data-structure uncertainty.

In Chapter 5 and Appendix A we conclude the main results of this thesis and we illustrate some
of the additional market properties, respectively.

1.2 motivation

Many academics and practitioners were fascinated by financial stock markets, but it was not until
1900 when the first mathematical treatment of the stock returns and option pricing problem was in-
troduced. It was due to the thesis called Théorie de la Spéculation written by Louis Bachelier (Bachelier,
1900). Bachelier derived a relation between derivative securities and the underlying financial stock.
The relation was based on the assumption that stock prices evolve as a continuous-time stochastic
process, today known as Wiener process1. Moreover, for the first time a connection between the heat
equation and the newly introduced process was shown. Hence, Bachelier is by many considered as a
founder of the financial mathematics (Dimand – Ben-El-Mechaiekh, 2012), but his pioneering results
contributed to the theory of stochastic processes and stochastic analysis as well.

1 In fact, several mathematicians, including W. Feller and P. Lévy among others, suggested using the
term Bachelier-Wiener process (Feller, 1968; Lévy, 1948).

1
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2 introduction

Bachelier’s thesis, however, was not widely known until 1960 when its English translation was
published in Paul Cootner’s The Random Character of Stock Market Prices (Cootner, 1964). The pro-
posed approach later inspired Paul Samuelson who added a deterministic drift term to the assumed
stock price dynamics. The main breakthrough in option pricing came in 1973 and was caused by
Black – Scholes (1973) and Merton (1973) who introduced the highly regarded Black-Scholes model.
The stock prices are modelled by a geometric Brownian motion (so unlike for previous approaches,
stock prices cannot take negative values if combined with appropriate initial condition), but more
importantly the authors have justified several techniques that were intuitively used by Bachelier.
This led to a significant increase in derivative trading which resulted in the opening of the Chicago
Board Options Exchange in 1973 (Sircar – Papanicolaou, 1998). However, the Black-Scholes model
raised also a wave of criticism. Especially after the flush crises of 1987 it became apparent that the
approach insufficiently describes market movements and using the model on the option pricing
thus might not lead to a reasonably good approximation of a fair market price. Drawbacks of the
Black-Scholes dynamics are summarized by the so called stylized facts which we will discuss in the
following sections.

One of the direct application of any pricing model comes from over-the-counter (OTC) trading.
Typically, a provider of a non-traded OTC contract calibrates a trusted model to the related market(s)
and using the model assumptions alongside calibrated parameters he or she computes a fair price
of the contract. The price obtained from a good model should help in answering the question what
the contract is worth. According to the survey of the Bank for International Settlements (BIS, 2016),
the OTC trading of derivatives (excluding commodity markets) increased in the gross market value
from 5 811 billions USD in 1998 to 38 316 billions USD in 2014 while topping 55 000 billions USD in
2008 (see Figure 1). Hence, the need for an accurate and robust modelling approach for derivative
valuation and risk management is obvious.
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Figure 1: Notional amounts outstanding and gross market value per year for OTC deriva-
tives excluding commodity markets depicted from 1998 to 2014. Source:BIS
(2016) available at www.bis.org/statistics/derstats.htm.

1.3 preliminary set-up

In this section, we define our notation and a modelling set-up used throughout the thesis. The latter
will be specified more thoroughly for a particular model. We assume that the reader is familiar with
basic measure-theoretic concepts.

Modelling set-up

Unless explicitly stated otherwise, we assume a filtered probability space - a family
(
Ω,F, (Ft)t>0,µ

)
,

where Ω is the sample space, F denotes a σ−algebra on Ω, i.e. a collection of subsets of Ω such
that Ω ∈ F, F is closed under complements and closed under union of countably many subsets.
Filtration (Ft)t>0 is an increasing (in terms of inclusion) collection of sub σ−algebras of F. The last
object, µ, is a probability measure - a measure on F satisfying µ(Ω) = 1.

[ December 20, 2019 at 9:19 – version 1 ]
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1.4 financial markets 3

As a tool to describe the evolution of asset prices, we use continuous-time real-valued stochastic
processes. A real-valued stochastic process (Xt)t∈I is a family of random variables on the proba-
bility space (Ω,F,µ) with values in a common measurable space (R,B) where B denotes a Borel
σ−algebra on R.

In our case, index t represents time and hence the index set I for all considered stochastic pro-
cesses will be an interval, usually of a finite length. Instead of I we write either t > 0 or we specify
a corresponding interval for t.

Moreover, we consider in this thesis processes which are adapted to the assumed filtration. A
stochastic process (Xt)t>0 is said to be adapted to (Ft)t>0 if Xt is Ft-measurable for every t > 0.
This is essential for financial applications. By filtration we model the information known at time t
and hence all asset price processes are assumed to be non-anticipating - i.e. all modelled variables
with respect to time t are fully determined (i.e. observed) at time t, not before.

A special case of an Ft-adapted process would be a martingale with respect to the filtration Ft,
i.e. a process (Xt) satisfying the following conditions:

• E|Xt| < +∞, for any t > 0,
• E[Xu|Ft] = Xt, for any u > t > 0.

Most notorious example of a martingale process with respect to its natural filtration is a standard
Wiener process. A real-valued continuous time stochastic process (Wt)t>0 is called standard Wiener
process if

(i) W0 = 0 almost surely (a.s.),
(ii) the paths t 7→Wt are a.s. continuous,

(iii) Wt −Ws is normally distributed with zero mean and variance t− s for all 0 6 s 6 t,
(iv) for 0 < t1 < t2 < ... < tn < ∞, the increments Wt1 , Wt2 −Wt1 , ...,Wtn −Wtn−1 are

independent random variables.
An important statement provided e.g. in (Øksendal, 2003, Chapter 2) ensures the existence of a

process with above properties. Other examples of stochastic processes applied in financial models
are Poisson process (defined e.g. in Bauer (1996), Chapter VIII, §41) and a fractional Brownian
motion introduced below in Chapter 2.

In previous definitions we used a generic probability measure µ. In practice, one is often in-
terested in two specific types of probability measures - a "historical" measure P under which the
observed events occur (according to our model) and a "pricing" measure Q under which a dis-
counted asset price process (St)t>0 (yet to be specified) is a martingale with respect to the assumed
filtration. Both measures are equivalent (i.e. they agree on the null set and on Ω consequently) and
hence Q is also known as the equivalent martingale measure with respect to (St)t>0. Since we are
interested in pricing tasks, we mainly utilize the equivalent martingale measure Q. For instance, the
notation EQ[·] is used to stress out that we take the expectation with respect to the corresponding
measure.

To make this text compact, we also assume that the reader is familiar with definitions of (Itô)
stochastic integrals and stochastic differential equations alongside necessary results of stochastic
calculus. To name a few, one should be familiar with the Itô lemma and the Girsanov theorem to
fully comprehend this text. The definitions and theorems can be found e.g. in Øksendal (2003) and
Maslowski (2006).

1.4 financial markets

All considered models utilize a framework under which there are three investment types available:

1. Risk-free investment
This investment typically provides the least volatile appreciation of invested funds and in
practise is realised by money markets and government securities. The value of portfolio Bt
with $1 investment at t = 0 satisfies

dBt = r(t)Bt dt, (1)

B0 = 1, (2)

where r(t) in our case would be a positive constant, r(t) = r ∈ R+. The risk-free investment
is necessary for no-arbitrage arguments - by no-arbitrage it is meant that one cannot make
a profit without a risk and his or her own capital. This implies that if we are able to create
a risk-free portfolio containing the upcoming two investments only, a yield of the portfolio2

2 Otherwise for the annual return higher than r one would borrow money for r and after paying back
for the loan one would keep a positive profit.
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4 introduction

must be the same as in the case of Bt. A precise formulation of arbitrage opportunities is
presented e.g. in Delbaen – Schachermayer (1994).

2. Risky assets (stocks, FX pairs, commodities etc)
Evolution of the asset market price in time is harder to foreseen, hence it is modelled as a
specific stochastic process (depending on a selected model, see Chapter 2) which is set up
on a filtered probability space. In our case, we review models where the asset price follows
a continuous-time stochastic process and the filtration in consideration is the natural one
(unless specified otherwise).

3. Financial derivatives (futures, options, etc)
The last available investment choice is represented by derivatives on the risky asset. A deriva-
tive is a financial contract between two parties (i.e. buyer and seller) with a value derived
from the performance of the risky asset. Hence, the risky asset is called underlying of the
derivative.

In our case we focus on equity indices as risky assets and as derivatives we consider European
options and variance swaps, although many of the following ideas are not limited to this choice
and are applicable to different assets as well. Either Overnight Indexed Swaps (OIS) are utilized to
back up a proxy of the risk-free interest rate or inter-banking rates (LIBOR, EURIBOR etc) can be
used as a traditional approximation of the risk-free rate. We note that inter-banking rates are less
commonly used for this purpose nowadays due to their decreasing liquidity and also due to the
transition plans and regulatory reforms in favour of alternative reference rates3.

European options

A European call (put) option is a derivative that gives the buyer a right, not an obligation, to buy
(sell) a unit of the underlying risky asset for a fixed price K > 0 at a specific time in the future
called maturity and denoted by T > 0. The seller grants this right in exchange for an option price
/ premium. K is traditionally known as the strike price and we use Greek letter τ throughout this
text to denote a remaining time to the maturity of an option, i.e. τ = T − t for 0 6 t 6 T . At the
maturity T , the buyer receives a payment depending on the current price of the risky asset ST . For
a call option this can be formalized as:

PCall(ST ) = (ST −K)+ = max(ST −K, 0). (3)

The pay-off function PCall(·) takes non-negative values only, because if the asset price at maturity
is lower than the strike price K, i.e. ST < K, the buyer lets the option expire without exercising it
and, if necessary, he or she buys the asset for its market price instead. In case of European options,
the right can be only exercised at the maturity and thus PCall(St) = 0 for any t from the inception
time t0 to the maturity, i.e. t ∈ (t0, T). Similarly, we could formalize the pay-off definition for put
options.

Typically, the contracts described above are known as vanilla European options. By the key word
"European" we understand a single contractual exercise date and "vanilla" means that the payoff at
maturity depends on the underlying price solely by a relation provided above. Non vanilla options
might have, for example, a path dependency - PCall would be a function of the underlying price at
several referencing dates.

To know a fair value of an option contract is of the eminent interest for market participants. For
instance, if we knew option fair values we can pose some implications on the assumed dynamics of
the risky asset - option fair values can be viewed as a set of constraints for asset dynamics in this
context.

These constraints are posed typically by model calibration exercise which is described in Chap-
ter 3. A mathematical definition of the fair value - which defines the connection between a model
and market quoted prices - is introduced in the same chapter.

Variance swaps

A variance swap is a contract that enables its buyer to swap a future realized variance of the underly-
ing risky asset returns for a pre-agreed fixed value, denoted as a variance strike K2var. In particular,

3 For a brief overview on the situation in the UK, i.e. SONIA vs LIBOR rates please refer to
https://jwg-it.eu/sonia-and-libor-the-end-of-an-infamous-benchmark.
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1.5 desired properties of market models 5

plain vanilla variance swaps are with respect to the daily returns and a typical contractual definition
is introduced bellow:

σ2R(t0, T) =
A

M

M∑
i=1

(
ln

Sti
Sti−1

)
, (4)

PVS
T = 1002

Nvega

2Kvar

(
σ2R(t0, T) −K2var

)
, (5)

where

• A is an annualization factor (typically A = 252),

• K2var is a contractual variance strike,

• M is a number of trading days aggregated into the realized variance calculation,

• Nvega is a Vega notional and is related to the standard variance notional asNvega = 2KvarNvar,

• {t1, t2, ..., tM} is a set of M consecutive referencing dates,

• Sti is the underlying asset price at the end of trading day ti.

The Vega notional is more frequently used than the standard variance notional, because it re-
flects a PnL change, when volatility changes by one percent point (rather than the same change in
variance terms for standard variance notional). Unlike for European options, we can decompose the
pay-off function PVS into deterministic (i.e. contractual) terms and a term depending on a future
performance of the underlying asset - a stochastic term. This decomposition leads to the quantity
referred to as fair variance which will be introduced later in Chapter 3.

1.5 desired properties of market models

In this section, we introduce typical properties of risky assets also known as stylized facts. A good
modelling approach should take these properties into account. Regarding the stylized facts, Cont
(2001) noted: "As such, they should be viewed as constraints that a stochastic process has to verify in order to
reproduce the statistical properties of returns accurately". Firstly, we inspect directly observed properties
of risky assets.

Observed properties of financial assets

• Asymmetry of asset price distribution
Typically one can observe large drawdowns in asset prices, but not equally large upward
movements. This observation is common for equity markets and less typical for exchange
rates (Cont, 2001).

• Heavy tailed distribution of asset returns
This market property is widely accepted since Mandelbrot (1963) pointed out the insuffi-
ciency of the normal distribution for modelling the asset returns distribution due to the
heavy-tailed nature of returns. The Black-Scholes model assumes normally distributed loga-
rithmic returns and hence cannot reflect this fact.

• Leverage effect
The property states that realized volatility of an asset is negatively correlated to the asset
returns. According to Cont (2001), it should not matter which statistical measure of realized
volatility we use.

• Non-correlated asset returns
Autocorrelation of asset returns is typically insignificant as was shown e.g. by Čekal (2012).
However, we do not state this is the case for small time scales (due to the market microstruc-
ture) nor if we consider a non-linear dependence of returns.

• Slow decay in autocorrelation of absolute returns
Sample autocorrelation function of absolute returns decays slowly as a function of time lag λ.
Usually this decay is similar to the power law exp(−βλ), where β is typically ranging from
[0.2, 0.4], see Figure 2 and (Cont, 2001).

• Volatility clustering
Statistical measures of realized volatility exhibit a significant positive autocorrelation over
several days period. This accounts for a well documented observation that high volatility
events tend to cluster.
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Figure 2: Sample autocorrelation of returns (on the left) and absolute returns (on the right)
- FTSE 100 index (1/2000 - 2/2016).

Several other stylised facts have been observed on some markets, for a more thorough review see
Bollerslev et al. (1992), Brock – De Lima (1996), Campbell et al. (1997), Gourieroux – Jasiak (2001),
Pagan (1996), Shephard (1996) or a more recent study in Takayasu (2013). An overview without any
particular model in focus can be found in Cont (2001). In what follows, we illustrate some of the
stylized facts using time-series data sets of 5 major stock indices from January 2000 to February
20164.

In Figure 3 we depict a sample density of German industrial index DAX. Similarly to other avail-
able data sets (see Appendix A), we can notice a much sharper peak and heavier tails compared to
the fitted normal distribution. Also an asymmetry of the returns density can be observed. Sample
skewness and kurtosis of this data set reads approximately −0.1003 and 7.9647 respectively. Dif-
ference between a normal and observed distribution is well depicted by quantile-quantile plot, see
Figure 4.

Autocorrelation of daily returns is typically insignificant which we show for the 5% level of
significance and for the British FTSE 100 index in Figure 2. However, this is not the case for absolute
returns, that are only slowly decaying - see the right half of Figure 2.

To depict the other two stylized facts, we plot closing quotes of S&P 500 index and a high
frequency estimate of its realized volatility5. One can notice that the realized volatility reaches
highest levels, when the underlying value of the index is falling (e.g. time periods 2008 - 2010 or
2000− 2003, Figure 5). On the other hand, when index quotes increase, lower values of the realized
volatility are observed. The phenomenon of volatility clustering is also plain to see in Figure 5.

In Appendix B, similar figures are depicted for all 5 indices, namely for the German industrial
average index DAX, American Dow Jones Index DJIA, British FTSE 100, Japanese NIKKEI 225 and
American Standard & Poor’s 500 - S&P 500. Equity indices are (weighted) arithmetical averages
of stock prices of most capitalized or traded companies on a specific market. The equity indices
are well recognised as benchmark markets for model calibration tasks - they typically comprise of
exchange traded derivatives with highest liquidity and lowest ask-bid spreads. Hence, index options
would make a good testing data for the task of model calibration introduced in Chapter 3.

Properties implied by derivatives

These properties of risky assets are inherited from observed prices of derivatives traded on the
assets. In our case, we consider mainly properties of European option prices on equity indices.
For this purpose, we define a notion of the (Black-Scholes) implied volatility. Firstly, we look at
the well-known Black-Scholes pricing formula. Let (St)t>0 be a geometric Brownian motion6 with
constant volatility σBS defined on the filtered probability space

(
Ω,F, (Ft)t>0, P

)
and let Q denote

the uniquely defined equivalent martingale measure to P with respect to (St)t>0 and let (Ft)t>0 be
the natural filtration of the asset price process. Let CBS : R+ → R+ maps from an asset dynamics

4 Index quotes alongside high frequency estimates of realized variance thereof were obtained from
http://realized.oxford-man.ox.ac.uk/data

5 We took an estimate with 5-minutes re-sampling, see http://realized.oxford-man.ox.ac.uk/data.
6 For definition of a geometric Brownian motion see Shreve (2004).
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Figure 3: Empirical distribution of DAX Index (1/2000 - 2/2016) compared to the normal
distribution.

parameter σBS > 0 to the fair value of a call option (which is described more thoroughly in Chapter
3),

EQ
[
e−rτ(ST −K)+|Ft0

]
, (6)
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Figure 4: Quantile-quantile plot of DAX Index (1/2000 - 2/2016).
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Figure 5: S&P 500 index quotes alongside 5-min. realized volatility.

with strike K and maturity T (respectively τ := T − t0, where t0 is the corresponding inception
time 0 6 t0 6 T ). Then, as was derived in the original paper Black – Scholes (1973), CBS takes the
following form:

CBS(σ) = N(d1)St0 −N(d2)Ke
−rτ (7)

d1 =
1

σ
√
τ

[
ln
(
St0
K

)
+

(
r+

σ2

2

)
τ

]
,

d2 = d1 − σ
√
τ,

where N(·) denotes the cumulative distribution function of a standard Gaussian random variable.
The mapping CBS is strictly increasing and for σBS → 0 tends to (St0 − K exp(−rτ))+ and as
σBS → ∞ it tends to St0 . These are also the natural bounds for a market option price and thus it
makes sense to define the implied volatility σIV as follows.
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Definition 1 (Implied volatility). Let St0 be observed on the market and let C > 0 be the market
observed price of a European call option with strike K, time to maturity τ quoted at time t0, then a
unique non-negative solution σIV of

C = CBS(σ) (8)

is called the implied volatility corresponding to the market option with price C.

The uniqueness and existence of the implied volatility (also for other pricing models) is discussed
e.g. in Jacquier (2016). In practice, one can often observe market implied volatilities instead of option
prices. They are also used to depict well known discrepancies of the Black-Scholes model, dubbed
as volatility smile and volatility term structure. We will inspect these phenomena by considering a
mapping7 K× τ → σBS(K, τ) which is known as the volatility surface. Observed properties of the
surface can help us to choose an accurate pricing model and also, based on our volatility surface
data, we can reject some of the unsuitable approaches with respect to the particular data. However,
for each risky asset the surface might look differently. This can happen even for options on the same
asset only quoted at different times, see Figure 7. In this text we mention typical properties of the
surfaces with respect to index options, according to analyses by Cont – Da Fonseca (2002), Alòs et al.
(2007) and Bayer et al. (2016).

Firstly, we start with vertical slices of the implied volatility surface. Taking a vertical slice along K
for a fixed τ = τ̂we obtain a volatility smile for τ̂. In Figure 7 we depict volatility smiles for available
times to maturity with respect to DAX index options (and specific historical dates) by red curves.
In doing so, we use an interpolation technique introduced by Gatheral – Jacquier (2014). We can
observe v-shaped volatility smiles that are more pronounced for shorter times and flatter for greater
τ’s. This property is typical for equity index surfaces, but it can be observed also for different risky
assets (Cont – Da Fonseca, 2002). Unlike the Black-Scholes model, a good SV model should be able
to generate a surface that well mimics observed properties.
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(a) ATM volatility term structure, α = 0.3909,
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(15/5/2015).

Figure 6: ATM volatilities are represented by red circles and the blue curve is the least-
square fit of the form ψ(τ) = Aτ−α.

A vertical slice for a fixed strike, K̂, along τ is known as the volatility term structure or skew.
According to Gatheral et al. (2018), the at-the-money volatility (K̂ = St0 ) skew can be approximated
by a power law function ψ(τ) = Aτ−α where for equity indices α should be typically less than
0.5. In Figure 6 we fitted ψ(τ) to the data for DAX index using a least-square minimization. In the
case of the market data from 13/5/2015 we obtained α = 0.3909 and α = 0.4291 for the 15/5/2015

at-the-money volatility skew.
To create a surface by a calibrated model that fits the market data well for wide range of strikes

and time to maturities is a challenging task. E.g. the Black-Scholes model always creates a flat
shape (i.e. implied volatilities are assumed to be constant for all combinations of K and τ). As for
the models to be introduced in Chapter 2, the SABR model can capture one volatility smile and
the original Heston model can fit reasonably well two smiles at once (Gatheral et al., 2018). The

7 However, not all combinations of K and τ are typically available, in that case one has to use a suitable
interpolation technique instead of solving (8).
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power law decaying skew can be modelled by multi-factor Bergomi approach (Bergomi, 2008) and
more naturally by a stochastic volatility model where volatility process is driven by a fractional
Brownian motion with H < 0.5. The connection between the Hurst parameter H and the power law
skew exponent α is studied in Bayer et al. (2016). Fractional Brownian motion alongside recently
proposed models is introduced in Chapter 2. Although an orientation and levels of the equity index
surfaces might change for different trading days, the overall shape remains similar, see Figure 7.
Based on this observation, Bayer et al. (2016) suggest that the price process of a risky asset should
be modelled by a time-homogeneous stochastic process and the parameters of a suitable model
should be constant in time.
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(a) Implied volatilities - 13/5/2015.
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(b) Implied volatilities - 14/5/2015.
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(c) Implied volatilities - 15/5/2015.

Figure 7: Implied volatilities of DAX Index options for three different trading days. Inter-
polation of volatility surfaces is performed using SVI parametrization described
in Gatheral – Jacquier (2014).
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2S T O C H A S T I C V O L AT I L I T Y M O D E L S

In this section we review popular stochastic volatility (SV) models. Each model is set up on a fil-
tered probability space

(
Ω,F, (Ft)t>0, Q

)
where the filtration (Ft)t>0 is generated by all Wiener

processes and fractional Brownian motions (introduced later in this Chapter) considered by a spe-
cific model. I.e. for a standard SV model with two Wiener processes (Wt, W?

t )t>0, the filtration
(Ft)t>0 is given by Ft = σ(Wu,W?

u; 0 6 u 6 t). We also note that, unlike for the Black-Scholes
case, Q might not be uniquely determined. Restrictions on model dynamics to ensure existence of
the measure (which translates into the desired well-posedness of the pricing problem) are discussed
in Delbaen – Schachermayer (2006) and Jacquier (2016). A positive risk-free rate r is determined by
the unique growth rate of a risk-free investment. While in academic literature on SV models, this is
for simplicity assumed to be constant over time, typically in practice a deterministic term-structure
of the risk-free yield is imposed. In the following review we start by listing common assumptions
of all considered models, then we describe earlier and simpler approaches. Last but not least, we
describe models with fractional noise in the volatility process.

All considered models share the following classical assumptions (see e.g. Wilmott (2007) Part I,
Chapter 5 and Part IV, Chapter 51):

SV models’ assumptions

• No arbitrage opportunities occur, thus the risk-free rate r is unique. Moreover, r is
constant during the life of the given option;

• There are no transaction costs for buying nor for selling, i.e. the market is friction-
less;

• Any fraction of a risky asset can be bought and trading of assets and derivatives is
continuous in time;

• Short selling of any asset is allowed at the considered market.

We do not consider models with dynamic risk-free rate r and we focus on models where the risky
asset is assumed to be traded continuously in time. By the notion short selling, appearing in the
last assumption, we mean that an investor is allowed to sell any available asset even the one he or
she does not own at the current time. It that is the case, later the investor re-purchases the asset to
finalize the transaction.

2.1 standard sv models

In the case of standard SV models, the asset dynamics is typically modelled by a system of two
Itô stochastic differential equations (SDEs) accompanied by an initial value condition. A strong
solution St of the first SDE is a price process of the risky asset, a strong solution of the second
equation typically represents variance process of the asset price. We assume that at the inception
time t0 > 0 we can observe St0 and vt0 , hence the initial value problem is of deterministic nature,
St0 = s; vt0 = v; s, v ∈ R+.

The first acknowledged SV model was introduced by Hull – White (1987). The assumed dynamics
takes the following form:

dSt = rStdt+
√
vtSt dWt, (9)

dvt = C1vtdt+C2vt dW?
t , (10)

where C1 and C2 ∈ R are parameters of the model. Wiener processes (Wt, W?
t )t>0 are stochasti-

cally independent in the original model. Wiggins (1987) suggested the use of correlation coefficient
ρ, such that E[dWtdW

?
t ] = ρdt. For ρ < 0 processes (St, vt)t>0 can reproduce the leverage effect

property described in Chapter 1. Hence, the correlation of driving processes is assumed for all the
later approaches. The variance process vt follows a geometric Brownian motion which implies that
some of the interesting statistical properties of the volatility process are explicitly known to us, e.g.
(Jäckel, 2004):

E[
√
vt] = E[σt] = σ0 exp

{
1

2
C1t−

1

8
C22t

}
,

Var[σt] = σ20

(
1− exp

{
−
1

4
C22t

})
exp {C1t} .

13
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14 stochastic volatility models

Chin (2011) argues, using the empirical analysis of Cont (2001), that a model with variance pro-
cess vt defined by (10) cannot reflect the volatility skew observed at financial markets1. To deal
with this shortcoming, volatility mean-reverting approaches have been developed by Scott (1987).
We will review a modified version of the model introduced by Chesney – Scott (1989) defined by
the system of Itô SDEs,

dSt = rStdt+ e
ytSt dWt, (11)

dyt = −κ(yt − ȳ)dt+ σdW?
t . (12)

Unlike in most of the models, instantaneous volatility of the asset price is expressed as eyt . There
are two parameters within the drift term of dyt; κ describes a reversion rate and ȳ denotes an
average level around which process yt fluctuates. The diffusion term is represented by a constant σ.
According to Jäckel (2004), the model needs strong negative correlation to reflect observed properties
of implied volatilities.

Arguably the most popular mean-reverting model is the one proposed by Heston (1993) with the
assumed market dynamics given by,

dSt = rSt dt+
√
vtSt dWt, (13)

dvt = −κ(vt − θ)dt+ σvt dW?
t , (14)

where θ represents a long term variance, κ is a reversion rate and σ denotes volatility of vt. Popu-
larity of the model comes from its tractability and from the existence of a semi-closed solution for
European option prices. Unless the Feller’s condition is satisfied, 2κθ > σ2 (Feller, 1951), the variance
process can reach negative values, which is an issue that has to be dealt with2. Many extensions of
this model have been proposed, for instance a model where parameters v0, κ, θ, σ, ρ are (non-
constant) functions of time. The case of piece-wise constant parameters was studied in Mikhailov –
Nögel (2003), a linear time dependence in Elices (2008) and a more general case was introduced by
Benhamou et al. (2010). Due to the argument of Bayer et al. (2016) mentioned in Chapter 1, these
models might not be consistent with implied volatility surfaces. Later in this text, we will review
jump-diffusion extensions to the Heston model.

A different approach, mainly used for interpolation of a single volatility smile, has been devel-
oped by Hagan et al. (2002) and takes the form:

dSt = σtS
β
t dWt, (15)

dσt = ασt dW?
t . (16)

The approach is commonly known as the Stochastic Alpha, Beta, Rho or briefly SABR model. Unless
we are using a version with time-dependent thereof, it is well known, that the SABR model cannot
fit complex volatility surfaces (Bayer et al., 2016).

An SV model that lately caught attention of both practitioners and academics was introduced by
Bergomi (2005, 2008). Instead of modelling dynamics of variance vt, the author proposed using a
forward variance curve, defined as ξt(u) = E[vu|Ft], instead. The most general model utilizes n+ 1

Wiener processes (W, W(1) , ...,W(n))t>0 that are correlated with each other and Ft = σ{Ws, W(1)
s ,

...,W(n)
s ; 0 6 s 6 t}. Model dynamics is denoted by

dSt = rStdt+
√
ξt(t)StdWt, (17)

dξt(u) = ω

n∑
i=1

λi(t,u, ξt(u))dW
(i)
t , (18)

where ω is a common scaling factor and λi, for i = 1, 2, ...,n, depends on a forward variance curve
ξt(u) and time, but not on the underlying price St. Suitable choices of λi are discussed in Bergomi
(2008). For n > 2 the model can reproduce the volatility skew accurately, but as notes Bayer et al.
(2016), even for n = 2 the model is over-parametrized. We also review its modified version with a
single fractional Brownian motion replacing n Wiener processes.

Another important class of SV approaches are jump-diffusion models. The first model to utilise
jump-diffusion processes in finance was introduced by Merton (1976). A jump process alongside
stochastic volatility has been proposed by Bates (1996) who postulated the following model dynam-
ics:

ddSt = rSt dt+
√
vtSt dWt + St− dQt, (19)

dvt = −κ(vt − θ)dt+ σ
√
vt dW?

t , (20)

1 see Chapter 1, especially Figures 6, 7 and the accompanied text.
2 For instance, if the Feller’s condition is not satisfied, the measure Q might not be generally well

defined, see Jacquier (2016) .
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where Wiener processes are, as in previous cases, correlated with coefficient ρ. Under the notation
St− we understand limk→t− Sk, (Qt)t>0 is a compensated compound Process with jump inten-
sity λ ∈ R+ and sizes of jumps are i.i.d. random variables. Bates (1996) assumed log-normally
distributed jump sizes, later Yan – Hanson (2006) proposed a model with log-uniform distribution
thereof. Drift and diffusion terms of dvt are the same as in case of the Heston approach.

A model with jumps not only in the underlying price, but also in the variance process, was
introduced by Duffie et al. (2000). Similarly to the previous model,

dSt = rSt dt+
√
vtSt dWt + St− dQt, (21)

dvt = −κ(vt − θ)dt+ σ
√
vt dW?

t + dQ?
t . (22)

There were proposed two version of the model, either with correlated or independent compound
Poisson processes (Qt,Q?

t)t>0. As empirical studies have shown (e.g. Gatheral (2006), Gleeson
(2005)), this approach might suffer from over fitting. While having four more parameters, it might
not provide as good market fit as the Bates model.

2.2 fractional sv models

In this section we look at fractional SV models, i.e. models where the variance process is driven by
either fractional Brownian motion (fBm) or a stochastic process with a similar covariance structure.

Definition 2 (fBm). A fractional Brownian motion (WHt )t>0 with Hurst parameter H ∈ (0, 1) is a
centred continuous Gaussian process with covariance,

R(s, t) := E
[
WHs W

H
t

]
=
1

2
(s2H + t2H − |t− s|2H).

FBm was introduced by Kolmogorov (1940) and studied in more detail by Mandelbrot – Van Ness
(1968). From the definition, one can make the following observation - for H = 0.5 the covariance
function of fBm reads 12 (s+ t− |t− s|) = min(s, t) which coincides with the covariance of a standard
Wiener process. Increments of the process are positively correlated for H > 0.5 and negatively for
H < 0.5. This also effects regularity of the sample paths, see property ii. in the following summary
and Figure 8:

Properties of fBm (Decreusefond – Üstünel, 1999)

i. (Stationary increments) An increment WHt −WHs , for any t > s > 0, is a Gaussian
random variable with zero mean and variance |t− s|2H.

ii. (Hölder continuity) Sample paths of fBm are almost surely Hölder continuous of order
H− ε for ε > 0.

iii. (Self-similarity) The random variables α−HWHαt and WHt have the same distribution
for any α > 0 and t > 0.

iv. (Long-range dependence) For H > 0.5 a sequence of increments (Xn)
+∞
n=1 :=(

WHn −WHn−1
)+∞
n=1

posses a long-range dependence, i.e. the sum of auto-covariances∑+∞
k=1 Cov(Xm,Xm+k) for any m ∈N diverges.

Comte – Renault (1998) pioneered the use of a fractional Brownian motion in SV models. The pro-
posed model dynamics is a modification of the original Hull-White approach and authors assume
H > 0.5, alongside the model dynamics:

d( lnSt) = σt dWt, (23)

d( lnσt) = κ lnσt + γdWHt . (24)

(25)

WHt defined by

WHt =

∫t
0

(t− s)H−1/2

Γ(H+ 1/2)
dW?

s . (26)

which is sometimes known as the Riemann–Liouville fractional Brownian motion, because it posses
similar properties to the previously discussed fBm. Standard Wiener processes (Wt,W?

t )t>0 are,
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Figure 8: Sample paths of fBm for H = 0.2, H = 0.5 and H = 0.8

similarly to other models, instantaneously correlated with coefficient ρ, Γ(x) denotes a gamma func-
tion of x and both κ > 0, γ are parameters of the model. The authors have recently proposed an
affine fractional model with the following dynamics (Comte et al., 2012):

dSt = rSt dt+
√
vtSt dW(1)

t , (27)

dXt = −κ(Xt − θ1)dt+ γXt dW(2)
t , (28)

vt = θ2 +X
H
t . (29)

where κ, θ1, θ2,σ, ρ are model parameters and XHt can be formally expressed using the following
relation,

XHt =

∫t
−∞

(t− s)H−1/2

Γ(H+ 1/2)
Xsds. (30)

For definition of the integral (30) see Comte et al. (2012). The model is, in fact, a fractional extension
to the Heston model and the authors have proposed a simulation scheme for the stock price process
St. Gatheral et al. (2018) have shown that the model for H > 0.5 is inconsistent with the considered
realized variance data and Fukasawa (2011) noted that in case of H > 0.5 the corresponding ATM
skew ψ(τ) is an increasing function of time to maturity (see Figure 6 for the DAX market ATM
skew). A similar version of the model, only assuming H < 0.5was introduced alongside a numerical
pricing formula based on characteristic function in El Euch – Rosenbaum (2019). Many other articles
considering this extension of the original model have appeared since, e.g. El Euch et al. (2018); Forde
et al. (2019).

Bayer et al. (2016) introduced a rough Bergomi (rBergomi) model (assuming H < 0.5) which was
motivated by findings in the highly cited preprint by Gatheral et al. (2014), that was published
almost four years later as Gatheral et al. (2018).

dSt = rSt dt+
√
vtSt dWt, (31)

vt = ξ0(t) exp
{
ηŴHt −

1

2
η2r(t)

}
, (32)

where ŴHt is defined similarly to the Riemann–Liouville fBm and up to a constant factor its co-
variance structure coincides with the fBm. As in case of the original Bergomi model, ξu(t) denotes
the forward variance curve and r(t) is the variance of ŴHt . This model alongside correct parameter
values satisfies most of stylized facts introduces in Chapter 1, but until recently only a cumbersome
simulation techniques were available to obtain option prices under the model.
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2.2 fractional sv models 17

In Merino – Pospíšil – Sobotka – Sottinen – Vives (2019) we have introduced an approximative
option pricing solution for αRFSV model. We also illustrated, that the approximation works well for
short times to maturity and is more efficient than Monte-Carlo simulation techniques. Under the
model, the following dynamics of the asset price process and its variance process are assumed:

dSt = rSt dt+
√
vtSt dWt, (33)

vt = v0 exp
{
ξBt −

1

2
αξ2r(t)

}
, t > 0, (34)

where model parameters are later discussed in more details in Chapter 4 and the driving noise is
assumed to be a Gaussian Volterra process:

Bt =

∫t
0
K(t, s)dW(2)

s , (35)

with the kernel function K(t, s, ) such that
∫t
0 K(t, s)ds < ∞ and FBt = FW

(2)

t for every t > 0. Ex-
amples of Volterra process considered in Merino – Pospíšil – Sobotka – Sottinen – Vives (2019) are
standard fractional Brownian motion or, as previously, processes with a similar covariance structure
as fBm.

Many other research articles appeared recently, tackling various issues inspired by the rBergomi
model and rough volatility models alike, e.g. pricing of target volatility options under a similar
model was discussed by Alòs et al. (2019),and calibration of rough models using machine learning
methods Horvath et al. (2019).
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3 O P T I O N P R I C I N G A N D M O D E L C A L I B R AT I O N

In this section we formulate the task of model calibration as an optimization problem. This task
should answer the question what are the parameter values for which the assumed model describes
the market prices of derivatives in the best way. As noted by Jacquier – Jarrow (2000), choosing
an appropriate formulation of the problem alongside a suitable optimization method is nearly as
important as choosing the model itself.

First of all, we describe suitable pricing frameworks for SV models and we focus on a method
which is obtained by using hedging arguments.

3.1 option pricing

A model option price is denoted by a function that maps from the space of specific model parameters
Θ to a non-negative real number. This mapping also involves parameters of two kind - firstly a strike
K and a time to maturity τ both of which define the call option contract being priced. The second
kind corresponds to the observed values at the considered market, in our case it would involve a
current price of the asset s ∈ R+ and a value of the risk-free rate r ∈ R+ 1. Then the ultimate goal
is to find a mapping that assigns to a given parameters η ∈ Θ and to contractual parameters a fair
value of the contract as implied by the model.

If we assume that the asset price follows a stochastic process2 (Sηt )t06t6T alongside St0 = s

almost surely and that a filtration (Ft)t06t6T is generated by the assumed process (as mentioned
at the beginning of Chapter 2) - then we are able to express the pricing function by

F̂V(η;K, τ) = EQ
[
e−rτf(ST )

∣∣Ft0] , (36)

or specifically,

F̂Vcall(η;K, τ) = EQ
[
e−rτ

(
S
η
T −K

)+∣∣∣Ft0] , (37)

for a call option with pay-off function f and maturity T := t0 + τ. Assertion (37) has a natural
interpretation - the right hand side represents the present value of the expected discounted pay-
off under Q, hence the name fair value of the option3. As mentioned by Chin – Dufresne (2012),
typically the distribution of the risky asset is either unknown or is too complicated to directly
evaluate right-hand side of (37) as an integral with respect to the conditional distribution of SηT . To
find the relation between model parameters and the model option price, various authors propose
methods mainly of three types:

i) By hedging and no-arbitrage arguments one obtains a partial differential equation (PDE) for
the fair value time-evolution. Solving the PDE with respect to appropriate boundary conditions
for market parameters St0 , τ gives us the fair value at initial time t0.

ii) A known pricing relation of a simpler model (typically the Black-Scholes model) is perturbed in
a specific way to obtain a computational form of (37). The perturbed price (or implied volatility)
is usually expressed by a function series and, in practise, one uses only the first k ∈ N terms to
approximate the price.

iii) An estimate of the fair price can be also obtained via a Monte Carlo simulation framework, i.e.
by simulating sample paths of (St)t>0 up to time T and averaging out the option pay-offs for
different realizations. By this we essentially estimate the Q-density of the option pay-off.

More thoroughly we inspect only the first method with respect to standard SV models. To show how
the pricing PDE is obtained we assume the following dynamics of the asset price process (St)t>0,

dSt = rStdt+
√
vtStdWt, (38)

dvt = p(vt)dt+ q(vt)dW
?
t , (39)

E [dWtdW
?
t ] = ρdt, (40)

1 For simplicity neglecting risk-free curve term structure and stochasticity of rates.
2 Depending on a specific model, we choose the process (Sηt )t06t6T where superscript η is used to

stress out the dependence on model parameters.
3 Ideally, with a fair buying price of the contract one would not earn nor loose any money on the

contract in average, see Wilmott (2007).

18
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3.1 option pricing 19

where p,q ∈ C∞(0,∞) are general coefficient functions of the variance process as in Baustian –
Mrázek – Pospíšil – Sobotka (2017), ρ ∈ [−1, 1] is the correlation of the two Wiener processes and
r ∈ R+ denotes the positive risk-free rate. Differentials dWt, dW?

t are, similarly to the standard SV
models in Chapter 2, understood in the Itô sense. For dynamics of the aforementioned structure we
are able to set up a PDE for the option fair value.

Proposition 1. Let the risky asset price follow (38) - (40) and let the standard assumptions (A1) listed in
Chapter 2 be valid. Then the fair value of a European call option with strike K and maturity T as a function
F = F(S, v, t) of variables St = S, vt = v and time t satisfies

−
∂F

∂t
=− rF+ rS

∂F

∂S
+
1

2
vS2

∂2F

∂S2
+ p(v)

∂F

∂v
+
1

2
q2(v)

∂2F

∂v2

+ ρq(v)S
√
v
∂2F

∂S∂v
(41)

for S, v ∈ (0,+∞) and t ∈ [0, T ] alongside the terminal condition,

F(S, v, T) = (S−K)+. (42)

Proof. We utilize arguments of Gatheral (2006) and Wilmott (2007). Before arbitrage arguments
can be applied, we need to set up a portfolio that is hedged for t = [t0, T ] which means that the
portfolio value Πt is immune to the changes in the underlying price St and its variance vt, i.e.
∂Π
∂S

∣∣∣
t
= ∂Π
∂v

∣∣∣
t
= 0 for any t = [t0, T ]. This can be done by setting up a portfolio with one call option

on the underlying, (−∆∗) call options on instantaneous volatility and it would also involve (−∆)

shares of the risky asset. The numbers ∆,∆∗ are about to be exploited after the following step4. Let
S = St be the price of the risky asset, F = F(S, v, t), F∗ = F∗(S, v, t) be the value of an option on the
asset and on the instantaneous volatility respectively. After loosing time indices, Π = Πt is defined
by

Π = F−∆S−∆∗F∗.

The portfolio is self-financing, i.e. we cannot add nor withdraw funds and hence, assuming continuous-
time trading, a change in the portfolio value can be expressed as

dΠ = dF−∆dS−∆∗dF∗ (43)

=

[
∂F

∂t
+
1

2
vS2

∂2F

∂S2
+
1

2
q2(v)

∂2F

∂v2
+ ρ
√
vq(v)S

∂2F

∂v∂S

]
dt

−

[
∂F∗

∂t
+
1

2
vS2

∂2F∗

∂S2
+
1

2
q2(v)

∂2F∗

∂v2
+ ρ
√
vq(v)S

∂2F∗

∂v∂S

]
∆∗dt

+

[
∂F

∂S
−∆∗

∂F∗

∂S
−∆

]
dS+

[
∂F

∂v
−∆∗

∂F∗

∂v

]
dv, (44)

where differentials dF and dF∗ were obtained using the Itô lemma (Maslowski, 2006, Theorem 4.17,
32 p.) and the assumed market dynamics (38)-(40). In order to hedge the portfolio we need to choose

∆ =
∂F

∂S
−
∂F/∂v

∂F∗/∂v

∂F∗

∂S
and ∆∗ =

∂F/∂v

∂F∗/∂v
, (45)

which cancels out dv and dS terms5 in (44). In fact, we have build up a hedged portfolio that
represents a risk-free investment and due to the uniquely defined yield of those investments it
follows that

dΠ = rΠdt

= r (F−∆S−∆∗F∗)dt. (46)

Combining (44), (45) and (46) we obtain

∂F
∂t +

1
2vS

2 ∂2F
∂S2

+ 1
2q
2(v)∂

2F
∂v2

+ ρ
√
vq(v)S ∂

2F
∂v∂S + rS∂F∂S − rF

∂F
∂v

=

∂F∗

∂t + 1
2vS

2 ∂2F∗

∂S2
+ 1
2q
2(v)∂

2F∗

∂v2
+ ρ
√
vq(v)S ∂

2F∗

∂v∂S + rS∂F
∗

∂S − rF∗

∂F∗

∂v

. (47)

4 Buying a negative amount −∆ corresponds to the short selling technique mentioned in Chapter 2.
5 We briefly remark that since F∗(S, v, t) assigns the value of an option on volatility v, ∂F∗/∂v 6= 0 and

therefore ∆,∆∗ are well defined.
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20 option pricing and model calibration

We are interested in F rather than F∗ and thus we utilize an argument of (Gatheral, 2006, p. 7), that
under risk-neutral dynamics each side of (47) must be equal to the drift of dvt with a negative sign,
which leads to

∂F

∂t
+
1

2
vS2

∂2F

∂S2
+
1

2
q2(v)

∂2F

∂v2
+ ρ
√
vq(v)S

∂2F

∂v∂S
+ rS

∂F

∂S
− rF = −p(v)

∂F

∂v
.

By rearranging terms we retrieve (41) and the terminal condition follows from the pay-off of a call
option that takes place at the maturity T .

Remark 1. The classical solution (F ∈ C2) of the PDE (41) at St0 , vt0 and t0 is the model assumed fair
value (37). The solution is usually obtained by integral transform methods, e.g. Heston (1993) used the Fourier
transform, and its evaluation typically involves numerical computation of inverse transformation integrals.

Remark 2. In a similar way one can set up a partial integro-differential equation for SV models with jumps
in the assumed dynamics. This was shown for the first time by Bates (1996). For models with fBm, which
is not semimartingale for H 6= 0.5, one cannot use a standard Itô lemma to derive the pricing PDE (41).
So called approximative fractional SV models in Pospíšil – Sobotka (2016) and Mrázek – Pospíšil – Sobotka
(2016) utilize a semimartingale approximation of fBm that was introduced by Zähle (1998) and Intarasit
– Sattayatham (2011). In Pospíšil – Sobotka (2016) and Mrázek – Pospíšil – Sobotka (2016) authors show
how to obtain corresponding PDE for a call option price and they show how to solve the equation with
one linearised term by the Fourier and generalized complex Fourier transformation respectively. The former
solution is computationally more efficient which was shown in Baustian – Mrázek – Pospíšil – Sobotka (2017).

The pricing solution obtained by perturbation techniques was derived for the first popular SV
model by Hull – White (1987). Lately this approach has become more popular and has been applied
for the Bergomi and SABR models (Hagan et al., 2002; Osajima, 2007; Bergomi, 2008). Recently, sev-
eral theoretical papers on asymptotic expansions of (37) with respect to fractional SV models have
appeared, for instance Fukasawa (2011) who uses Yoshida’s martingale expansion theory (Yoshida,
1997). The option pricing task for fractional SV models has been performed by Monte-Carlo sim-
ulation schemes only and finding a more efficient relation for the option price is a matter of an
ongoing research. This fact is also mentioned by Gatheral et al. (2014) and due to the inefficiency of
simulation approach, Bayer et al. (2016) were not able to use any calibration procedure to fit market
option prices.

3.2 calibration to option markets

Before any SV model can be used in practise, one needs to calibrate the model from market data. The
model calibration task is, in fact, an inverse problem to the option pricing. During the calibration
one would like to find a parameter set from Θ such that the conditional expectation (37) corresponds
to observed option prices on derivative markets. A standard way to proceed with the calibration is
via optimization formulation of the problem. Let FV1, ..., FVN be prices of traded call options on the
underlying priced St0 ∈ R+. For each call option we know a pair (Ki, τi) that represents a strike
price and a time to maturity of the i-th option respectively. Corresponding to each pair (Ki, τi), to
observed properties of markets St0 , r and to parameters η we have a model price F̂V(η;Ki, τi). Let
also m > 1 and w1, ...,wN be a set of weights, i.e. ∀i = 1, ...,N : wi > 0, and

∑N
i=1wi = 1. Then

the standard procedure (see e.g. Mikhailov – Nögel (2003) or Mrázek – Pospíšil – Sobotka (2016)) to
obtain calibrated parameters η ∈ Θ is to minimize the following criterion,

arg inf
η∈Θ

G(η), (48)

G(η) =

N∑
i=1

wi

(
FVi − F̂V(η;Ki, τi)

)m
, (49)

wherem is usually set up to 2. In that case, (49) is a weighted least square criterion. The optimization
problem is typically non-convex and one needs to use a suitable optimization procedure, see Mrázek
– Pospíšil – Sobotka (2016). As was shown by the authors, several SV models might also attain many
local minima in their utility function (49).

Local optimizers suitable for solving the least-square minimization problem are usually based
on the Newton or Levenberg–Marquardt methods described e.g. in Kienitz – Wetterau (2012). These
methods and several modifications thereof, have to be initialized be providing an initial starting
guess η̂ ∈ Θ that is preferably in the vicinity of the global minima. In that case, one also might
modify the criterion (49) by adding a penalizing function, i.e. an increasing function of a distance
between the initial guess and η. The local methods are time-efficient, however, one might not have
such η̂ at his/her disposal.
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3.2 calibration to option markets 21

Global optimizing methods are not very sensitive to the initial guess η̂ and in theory they should
converge to a global minimum of (49). The global optimizing techniques are usually inspired by sev-
eral natural phenomena, including genetic evolution, annealing of a metal and a swarm behaviour
to name a few. Description of the methods with respect to the nonlinear least-square criterion is
available in Kienitz – Wetterau (2012) and several results alongside comments on the implementa-
tion are discussed in Mrázek – Pospíšil – Sobotka (2016). These methods are computationally very
expensive and in practise one has to impose a stopping criteria that terminates a specific algorithm
before a global minimum is reached.

Another possibility that was inspected in Mrázek – Pospíšil – Sobotka (2014) and more thor-
oughly in Mrázek – Pospíšil – Sobotka (2016) is to use a global optimization technique to obtain an
initial guess for a local optimizer. This two-step calibration procedure proved to be a superior opti-
mization strategy in terms of (49) (Mrázek – Pospíšil – Sobotka, 2016), especially for more complex
models with jump-diffusion dynamics.

Having a specific model in mind, several authors proposed specialized schemes where the cri-
terion differs from (49). For instance, in case of the Heston model Alòs et al. (2015) introduced a
new scheme based on properties of an approximation pricing function derived in Alòs (2012). This
scheme, however, might not work for complex derivative markets that involve many mid-dated
options with times to maturity 0.1 < τi < 3 - these options are not directly considered in the calibra-
tion procedure. Other schemes that differ from (49) are used for specific markets only and therefore
we do not include them into our review.

Another procedure how to identify the market parameters is via Maximum likelihood estimates
(MLE). The methods are based on finding maximum of the corresponding likelihood function on
Θ to obtain model parameters for which the observed prices of the risky assets have the greatest
probability of occurring. These methods has been applied to the task of SV model calibration e.g. by
Fatone et al. (2014); Hurn et al. (2015). However, using a time-series data of the risky asset implies
problems of two types. Firstly, the realized variance is not directly observable and secondly only
approximations of the maximum likelihood function are available even for simpler models (e.g.
for the Heston model case see Atiya – Wall (2009)). To deal with the former problem, Hurn et al.
(2015) suggested using both time-series and historical option price data and the authors proposed a
calibration scheme for the Heston model. Generally, MLE methods are not as convenient for option
pricing - one usually deals with two probability measures P and Q. We are not going to describe
MLE methods in more detail, but when using MLE one has to keep in mind that the time-series
estimates might differ from the ones obtained by solving (48) which was well documented by Bakshi
et al. (1997).
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22 option pricing and model calibration

3.3 connection between option markets and variance swaps

In this section we introduce a connection between the variance swaps and option markets by utiliz-
ing replication and hedging arguments. We start with a quantity commonly referred to as the fair
variance.

Fair Variance

The strike of a variance swap contract is determined (or agreed on) at its inception. On the other
hand, the floating leg will be determined no sooner than at the maturity. The fair variance at any
time t between the inception and maturity is a quantity that will effectively cancel out the condi-
tional expectation6 of the variance swap payoff – on average neither buyer nor seller is expected to
make any profits. Formally, we can define the fair variance as follows.

Definition 3 (Fair variance). Let σ2t be instantaneous volatility of the assumed stock evolution
process (S·) at a reference time instance t > 0 and let T > t be any end point time reference7. The
fair variance of a variance swap contract starting t, expiring at T is then defined under a market
given risk-neutral measure Q and corresponding filtration Ft as

FS := FS(t, T) = EQ

 1

T − t

T∫
t

σ2sds

∣∣∣∣∣∣Ft
 = EQ

[
σ2R(t, T)|Ft

]
(50)

Hence, the fair variance can be interpreted as a strike of a variance swap contract such that the
contract fair value equals to zero at time t under Ft. Following the quantitative finance jargon, we
will introduce a variance swap curve as observed at time t as a mapping ξt(x) : R+ 7→ R+ where

ξt(T) := FS(t, T). (51)

In what follows we will denote ξt(T) if market observed quantity is meant and FS(t, T) if the
same quantity is calculated.

Replication arguments of Carr – Madan (1998)

The replication technique firstly introduced by Carr – Madan (1998) is the market standard approach
to price vanilla variance swaps and it is also used for quoting volatility indices such as VIX8. The
main advantages of their approach are listed below:

a) Only a static hedge of vanilla options is used (i.e. no dynamic hedging).

b) It does not need to specify the volatility process of the underlying.

Property a) is considered to be important for practitioners, wheras property b) will be of an
essential importance for us – it enables us to use option market implied variance swap prices to
be used for calibration of rough volatility models. However, rough volatility models are typically
not consistent with the Carr-Madan approach – we will devote a separate paragraph to justify why
well calibrated rough volatility models should be fairly in-line with Carr-Madan variance swap fair
values. Also there are several ways how one can derive Carr – Madan (1998) replication formula –
we will start by postulating local volatility assumptions which are key to this approach.

In particular we posit that asset evolves according to the following Itô SDE:

dSlt = µS
l
tdt+ σ(t,S

l
t)S
l
tdWt (52)

Sl0 = S0 ∈ R+ (53)

where we assume that (Wt) is a standard Wiener process under a market given risk neutral
measure Q and furthermore:

• (A1): µ – is a constant drift which represent risk-free interest yield, subtracts any yield divi-
dend and borrow costs.

6 Conditioned on Ft under a market implied risk-neutral measure
7 Typically called fair variance tenor, i.e. maturity of an associated Variance swap contract
8 See http://www.cboe.com/vix for more details on VIX.
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3.3 connection between option markets and variance swaps 23

• (A2): σ(t,Slt) – is a Dupire local volatility function – a deterministic function (non-parametric)
of the time t and spot price, such that the Fair Values of all observable European options at
t = 0 on the modelled asset with underlying price S0 are matched by the model. For all
observed call options with time to maturities (τ) and strikes (K) holds:

FVmarket(τi,Ki) = DF(τ)EQ[max(Slτi −Ki; 0)|F0] (54)

and similarly for observed put options.

• (A3): Since (52) is a pure Itô diffusion process, there are no jumps assumed. In practise,
jump-like evolution of the asset price might be observed due to:

a) Cash dividends paid by the stock, corporate actions (mergers, stock splits) etc.
b) Idiosyncratic reasons – i.e. caused by a sudden change in market expectations.

The postulate9 (A1) tells us that we neglect dynamics of the yield curve, but also we neglect
the current term structure of the yield curve. The second part of the postulate is introduced here
only to simplify the notation. In practise, the term structure will be considered where typically, the
yield-curve dynamics (i.e. stochastic rates model) is not used to model stock prices.

To specify (52) in more detail – we use Dupire original idea (Dupire, 1994): there exists a unique
diffusion process which is in-line with risk neutral densities derived from market traded European
options. This is given by (A2).

The last postulate (A3) will in practise introduce errors any time:

a) market knows that there is a scheduled corporate action or cash dividend event – they are in-
cluded in observed option fair values, but we would incorrectly re-adjust local volatility function
σ to match the fair values;

b) market has indication that our underlying asset prices might include idiosyncratic jumps10.

In the following section we will show how these postulates alongside standard market assump-
tions translate into variance swap replication formula.

Log-contract and a strip of vanilla options

Proposition 2 (Fair variance under assumptions (A1)-(A3)). Let the underlying asset price process
follows diffusion (52) (incl. assumptions (A1)-(A3)). Then the continuously aggregated fair variance can be
expressed in terms of the fair value of a log-contract as

FS(t, T) =
2

T − t

{
µ(T − t) − EQ

[
ln

(
SlT
Slt

)∣∣∣∣∣Ft
]}

. (55)

Proof. Assuming (52), we can obtain the relation for dln(Slt) using Itô lemma,

dlnSlt =
(
µ−

σ2(t,Slt)
2

)
dt+ σ2(t,Slt)dWt. (56)

Subtracting (56) from (52) leads to the continuous increments aggregating to the realized variance
of Slt,

dSlt
Slt

− dln(Slt) =
σ2(t,Slt)

2
dt, (57)

which can be integrated e.g. on interval (0, T); T > 0, without any loss of generality.

1

T

T∫
0

σ2(t,Slt)dt =
2

T

T∫
0

dSlt
Slt

− ln

(
SlT
Sl0

) (58)

9 Here we understand a postulate as an assumption which is taken to be true without being verified.
Indeed, some of (A1)-(A3) do not hold, but the impact of these assumptions is typically neglected,
unless it is material.

10 I.e. crash cliquet prices or other jump-sensitive derivatives are marked to higher levels for this asset.
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To get the stated expression for the fair variance, we need to apply conditional expectation operator
and algebraic operations.

FS(0, T) =
2

T
EQ

 T∫
0

dSlt
Slt

− ln

(
SlT
Sl0

)∣∣∣∣∣∣Ft


=
2

T

EQ

 T∫
0

dSlt
Slt

∣∣∣∣∣∣Ft
− EQ

[
ln

(
SlT
Sl0

)∣∣∣∣∣Ft
]

=
2

T

(
µT − EQ

[
ln

(
SlT
Sl0

)∣∣∣∣∣Ft
])

.

Remark 3. The previous statement indicates that the variance swap can be replicated by a log-contract with

fair values, EQ
[

ln
(
SlT
Sl0

)∣∣∣Ft], which depends only on the terminal distribution of the underlying asset at
time T .

In fact, we switched from computing the fair variance to finding a fair value of the log contract
paying ln(SlT /S

l
t). However, since these contracts are typically not exchange traded, we will use the

following lemma to express log contracts in terms of vanilla options.

Lemma 1. Let f : R+ → R be a twice differentiable function and let S∗ > 0 be a known constant. Then

f(x) = f(S∗) + f ′(S∗)(x− S∗) +

S∗∫
0

f ′′(K)(K− x)dK+

+∞∫
S∗

f ′′(K)(K− x)dK (59)

Proof. The above statement can be proved using a Dirac’s delta function, δ(), to represent f(x),

f(x) =

∫S∗

0
f(K)δ(x−K)dK+

∫+∞
S∗

f(K)δ(x−K)dK,

for any S∗ > 0, and applying consecutive integration by parts of the integrals above (until we reach
the statement).

Theorem 1 (Carr – Madan (1998)). Under market dynamics (52) and assumptions A1-A3, the valuation
of a continuous fair variance, FS(t, T), is down to a semi-closed form expression for 0 6 t < T :

FS(t, T) =
2

τ

µτ−(Slt
S∗
eµτ − 1

)
− ln

S∗

Slt
+ e−µτ

S∗∫
0

1

K2
FVput(τ,K)dK

+e−µτ
+∞∫
S∗

1

K2
FVcall(τ,K)dK

 , (60)

where S∗ is a positive constant - in practise typically set to the value of the forward with maturity T , τ = T − t
is the time to maturity and FVcall / put is the fair value of a call / put option with time to maturity τ and strike
K implied from the market (and also consistent with dynamics (52)).

Proof. Firstly, we apply technical Lemma 1 on f(x) = ln(x) for x = SlT , to obtain:

lnSlT − lnS∗ =
SlT
S∗

− 1−

S∗∫
0

1

K2
(K− SlT )

+dK−

+∞∫
S∗

1

K2
(K− SlT )

+dK (61)

Then we take into consideration that the following relations hold:

• Slt = e
−µτE

[
SlT |Ft

]
(by definition of (52))

• ln S
l
T

Slt
= ln S

l
T
S∗ + ln S

∗

Slt
, for arbitrary positive S∗

• FVput(τ,K) = e−µτE
[
(K− SlT )

+|Ft
]

, τ = T − t

• FVcall(τ,K) = e−µτE
[
(SlT −K)+|Ft

]
, τ = T − t

• FS(t, T) = 2
T−t

{
µ(T − t) − EQ

[
ln
(
SlT
Slt

)∣∣∣Ft]} (See Proposition 2)
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3.3 connection between option markets and variance swaps 25

Combining the above with (61) and integrability properties of 1
K2
FVput/call(τ,K), we retrieve the

statement (60).

Remark 4. The famous replication formula in Theorem 1 transforms the problem of pricing unquoted log-
contracts into pricing of liquid vanilla options. However, it is assumed that we have an infinite strip of call
/ put options, whereas in practise we have quotes for a finite number of options. Hence, in order to obtain
the fair strike for a particular variance swap contract we need to interpolate volatility smile for corresponding
maturity T . I.e. a well interpolated / extrapolated volatility surface is needed, but in practise, the issue is how
to extrapolate for strikes x < Kmin, where Kmin is the smallest observed strike. This is due to the fact that
the formula is not sensitive to changes of implied volatilities for x > Kmax where Kmax is the highest traded
strike on the valuation date.

Application of Gyöngy’s Theorem

Up to now, we have derived a known formula for the fair variance under standard market assump-
tions of local volatility. Nevertheless, local volatility dynamics do not mimic empirically observed
properties of financial time-series which were discussed in Section 1. Even more importantly for
this study, the local volatility assumption seems to be not in-line with stochastic volatility dynamics
which will be used in the upcoming sections.

There is a known market wisdom - local volatility models can almost perfectly fit arbitrage-free
volatility surfaces observed on various markets, but Greeks – fair value sensitivities to particular
risk factors – of the model might be contradicting what we empirically observe.

To understand why capturing volatility surface - i.e. having marginal distribution implied from
the market quotes - does not necessarily guarantee that we retrieve reasonable dynamical assump-
tions, we introduce Gyöngy (1986) theorem. Interpretation of the theorem will give us a link between
local-volatility dynamics (52) and more complex stochastic volatility models.

Theorem 2 (Gyöngy (1986) theorem). Let (Zt) be an m-dimensional standard Wiener process adapted to
filtration (Ft) and

dXt = α(t,ω)dt+β(t,ω)dZt (62)

be an n-dimensional Itô stochastic differential equation with n× 1 and n×m bounded Ft−adapted processes
α and β, respectively, and ω denotes a sample path of Zt. Then, there exists an Itô stochastic differential
equation,

dYt = a(t, Yt)dt+ b(t, Yt)dZt, (63)

with measurable deterministic coefficient functions a,b, such that the marginal distributions of Xt and Yt are
the same. Moreover, the coefficient functions are given by:

a(t,y) =E [α(t,ω)|Xt = y] (64)

b(t,y)bT (t,y) =E
[
β(t,ω)βT (t,ω)|Xt = y

]
, (65)

where by bT (t,y) we denote a transposition of the vector coefficient function b.

Proof. See Gyöngy (1986).

Remark 5. In our case, our local volatility function σlt will be given by

σlt(t,y) = b(t,y)/y (66)

assuming vanilla option fair values are given by a stochastic process Xt.

Remark 6. This theorem, which has been recently generalized by several authors, is of great importance in
our use case, because it implies that fair values of vanilla European options can be correctly repriced under
local volatility set-up (52), although the actual dynamics of the underlying follows a much more complex
process (possible with a stochastic drift and diffusion).

On the other hand, if we manage to calibrate perfectly a stochastic volatility model to a particular volatility
surface, we will retrieve the marginals of Dupire’s local volatility approach (52).
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26 option pricing and model calibration

Since we have used only vanilla European options and forwards to replicate variance swaps, we
can conclude that fair variances should be correct under specific assumptions, even if a non-local
volatility model drives the underlying asset evolution. Hence, many practitioners are using formula
(60), although this is an approximation only11.

11 In practice, one has only limited amount of traded contracts, hence one needs to interpolate /
extrapolate implied volatilities. Moreover, the formula (60) is sensitive on implied volatilities for
low strikes which are typically illiquid - they are obtained by a combination of expert judgement
and jump-sensitive instrument marking.

[ December 20, 2019 at 9:19 – version 1 ]



4VA R I A N C E S WA P S U N D E R R O U G H V O L AT I L I T Y

In previous sections, we described how closely linked is the computing of variance swap fair values
to computing particular fair variances. Thus, we limit ourselves on deriving the fair variance in
this section and we base our derivation on a rough volatility model which we have introduced in
Merino – Pospíšil – Sobotka – Sottinen – Vives (2019) - the αRFSV model. Moreover, knowing the
fair variance under particular model, we can also derive fair values of several non-vanilla variance
swaps as e.g. gamma and corridor variance swaps (using similar replication arguments).

4.1 assumed rough volatility model

Let (St, t ∈ [0, T ]) be a strictly positive asset price process under a market chosen risk neutral
probability measure Q,

dSt
St

= µdt+ σt

(
ρdWt +

√
1− ρ2 dW̃t

)
, (67)

St0 ∈ R+, t > t0, (68)

where St0 is the current price, µ > 0 is the risk-neutral drift of the modelled asset1, Wt and W̃t are
independent standard Wiener processes defined on a filtered probability space (Ω,F, (Ft)t>0,Q)

and ρ ∈ (−1, 1) is a constant instantaneous correlation of the two Wiener processes. FWt and FW̃t
are the filtrations generated by Wt and W̃t, respectively. Then, we define Ft := FWt ∨FW̃t .

The volatility process σt is a square-integrable process adapted to the filtration FWt with almost
surely càdlàg trajectories which are strictly positive almost everywhere and is given explicitly by

σt = σt0 exp
{
ξYt −α

1

2

[
(t+ ε)2H − ε2H

]}
, (69)

where ξ > 0,α ∈ [0, 1],H ∈ (0; 0.5] are model parameters, ε > 0 is a positive constant and process Yt
is defined as a Volterra process,

Yt =
√
2H

∫t
0
(t− s+ ε)H− 1

2 dWs. (70)

We note that the same Wiener process Wt appears also in (67). In Merino – Pospíšil – Sobotka
– Sottinen – Vives (2019), we analyzed a more general class of models where a square integrable
volatility process was given by a class of functions of two variables - time and a state variable
represented by a general Volterra process. Few examples of Volterra processes were also specified,
e.g. a fractional Brownian motion represented by Volterra process with a Molchan – Golosov (1969)
kernel.

In what follows, we denote two ordered sets of model parameters: Λ = {σt0 , ξ,H,α} and Γ =

Λ∪ {ρ}.
Argumentation on why we use the process (70) in this thesis follows

• The process is a semi-martingale unlike a standard fractional Brownian motion (this was
shown in Zähle (1998) and Sattayatham et al. (2007)). Tools as Itô lemma for semi-martingales
can be used.

• It attains similar path-wise properties as the standard fractional Brownian motion and if we
let ε −→ 0 then also variances of the two processes coincide for all t.

• Under the model (81) alongside Volterra process (70), we have derived a numerically tractable
solution to price European option in Merino – Pospíšil – Sobotka – Sottinen – Vives (2019).

• The process (70) with ε = 0 appears in various recent articles, e.g. in McCrickerd – Pakkanen
(2018).

1 Again, for simplicity assuming it is constant. However, derivations introduced in Merino – Pospíšil
– Sobotka – Sottinen – Vives (2019) and here would hold only with minor adjustments in a deter-
ministic, but non-constant setting.

27
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28 variance swaps under rough volatility

Properties of Volterra process (70)

In order to have a pricing approximation for European options as derived in Merino – Pospíšil –
Sobotka – Sottinen – Vives (2019), we need to compute the conditional mean and covariances of
the process. Unsurprisingly, these quantities will prove to be useful for derivation of fair variances
under the model.

To shorten our notation all following expectations will be under Q measure unless mentioned
otherwise and we use a short-hand notation:

mt(u) := E[Yu|Ft], (71)

for 0 6 t < u, where mt(u) is a conditional mean process and r(u, s), r(u), rt(u, s),

r(u, s) := E [(Yu − E[Yu])(Ys − E[Ys])] = E [YuYs] (72)

r(u) := r(u,u) (73)

rt(u, s) := E [(Yu −mt(u)) (Ys −mt(s)) |Ft] (74)

for u, s > 0, denote autocovariance, variance and conditional covariance process of (Yt), respectively.
We also define a kernel function2

K(t, s) =
√
2H(t− s+ ε)H− 1

2 (75)

for t, s,> 0.
In the text below, we utilize a theorem which we introduced in Merino – Pospíšil – Sobotka –

Sottinen – Vives (2019) to extend results of Sottinen – Viitasaari (2018).

Proposition 3 (Prediction law for process (70), based on general Theorem 4.1 in Merino – Pospíšil –
Sobotka – Sottinen – Vives (2019)). Let (Yt, t > 0) be the Gaussian Volterra process defined by (70). Then,
the conditional process (Yu|Ft, 0 6 t 6 u) is also Gaussian with mean

mt(u) =

∫t
0
K(u, s)dWs =

√
2H

∫t
0
(u− s+ ε)H− 1

2 dWs, (76)

and deterministic covariance function

rt(u1,u2) = r(u1,u2) −
∫t
0
K(u1, s)K(u2, s)ds

(77)

for u,u1,u2 > t. Variance function of the conditional process is expressed as

rt(u) = (u− t+ ε)2H − ε2H (78)

Proof. Since for t ∈ R+,

t∫
0

K2(t, s)ds <∞, (79)

holds and since the process Yt is adapted to the filtration of the Wiener process in (70), FWt , the
proof for the statements of (76) follows directly from Theorem 4.1. and Example 4.11 in Merino –
Pospíšil – Sobotka – Sottinen – Vives (2019). The variance function is then retrieve using calculations,

rt(u) = r(u) −

∫t
0
K2(u, s)ds

= (u+ ε)2H − ε2H − 2H

∫t
0
(u− s+ ε)2H−1 ds

= (u+ ε)2H − ε2H + (u− t+ ε)2H − (u+ ε)2H

= (u− t+ ε)2H − ε2H.

2 This corresponds to the Volterra kernel function of (70)
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4.2 fair variance formula 29

4.2 fair variance formula

Using the set-up introduced in the previous section, we would like to find a parametric expression
which is tractable (not necessary analytic) for the fair variance (50) with respect to the market
dynamics given by (67)-(70). As previously, instead of discrete fair variance, we use its continuous
version

FS(t0, T) = E

 1

T − t0

T∫
t0

σ2udu

∣∣∣∣∣∣Ft0
 . (80)

where, T denotes time to maturity of the variance swap. Using the continuously aggregated variance
helps us to express the fair variance under specified market model dynamics which is also assumed
to be continuous.

We note that the variance process of the αRFSV model is given by:

σ2u = σ2t0 exp
{
2ξBu −αξ2r(u)

}
. (81)

Theorem 3 (Fair variance under αRFSV model). Under assumptions of αRFSV model on asset dynamics
(67)-(70) alongside Volterra kernel function K(t, s) defined in (70), we obtain the following fair variance:

FSαRFSV (t0, T) =
1

T − t0

T∫
t0

E
[
σ2u|Ft0

]
du (82)

where the conditional expectation of σ2u can be expressed by

E[σ2u|Ft0 ] = σ
2
0 exp

{
−αξ2r(u) + 2ξmt0(u) + 2ξ

2rt0(u)
}

. (83)

Proof. To lighten the notation, we also use here Et0 [·] = E[·|Ft0 ]. Starting from the variance process
(81) for 0 6 t0 < u we retrieve:

Et0 [σ
2
u] = Et0

[
σ20 exp

{
2ξBu −αξ2r(u)

}]
(84)

= σ20 exp
{
−αξ2r(u)

}
Et0 [exp {2ξBu}] (85)

Using the explicit expression for σt0 we further obtain,

Et0 [σ
2
u] = σ

2
t0 exp

{
−αξ2[r(u) − r(t0)]

}
Et0 [exp {2ξ(Bu −Bt0)}] (86)

Since Bt0 is Ft0 -measurable and since we can divide the Volterra integral into two parts:

Bu =

∫t0
0
K(s, z)dWz +

∫u
t0

K(u, z)dWz, (87)

we decompose the right-hand side of (86) into

Et0 [σ
2
u] = σ

2
t0 exp

−αξ2[r(u) − r(t0)] + 2ξ

t0∫
0

K(u, z) −K(t0, z)dWz

 ·
·Et0

exp

2ξ
u∫
t0

K(u, z)dWz


 (88)

Let Mt = 2ξ
∫t
t0
K(t, z)dWz for finite t > t0, where thanks to the kernel K, the process Mt is an

Ft semi-martingale. Then using Itô lemma we can express exp {Mt} in the following way.

d
(
eMs

)
= 2ξK(u, s)eMs dMs +

1

2
4ξ2K2(u, s)eMs ds

eMu − 1 = 4ξ2
u∫
t0

K2(u, s)eMs dWs + 2ξ2
u∫
t0

K2(u, s)eMs ds

Moreover, if we apply the conditional expectation operator on both sides and the Fubini’s theo-
rem to exchange expectation and integration, we retrieve

Et0

[
eMu − 1

]
= 2ξ2

u∫
t0

K2(u, s)Et0e
Ms ds (89)
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30 variance swaps under rough volatility

Using a separation of variables and substituting the result into (88), we recover statement (83) of
the proposition, as shown below:

Et0 [σ
2
u] = σ

2
t0 exp

−αξ2[r(u) − r(t0)] + 2ξ

t0∫
0

K(u, z) −K(t0, z)dWz

 ·
· exp

2ξ2
u∫
t0

K2(u, z)du


= σ20 exp

−αξ2r(u) + 2ξ

t0∫
0

K(u, z)dWz + 2ξ2
u∫
t0

K2(u, z)dz

 . (90)

Since the integral in (82) is by assumptions on the asset evolution finite (for a finite integration
domain τ = T − t0) and because its integrand is strictly positive, we can use the Fubini’s theorem
as previously to interchange the conditional expectation and the integral.

Remark 7. The fair variance could be also derived under a more general setting (e.g. for standard fractional
Brownian motion), however with much more technically demanding derivation. For more details, please refer
to Merino – Pospíšil – Sobotka – Sottinen – Vives (2019), Lemma 4.3.

Remark 8. Should there be no liquid quotes on variance swap for a given financial asset, we can use Carr-
Madan approach discussed in Section 3.3 to infer fair variance from liquid European options and equate
them with (82). Solving this equation would lead to a model which is in-line with variance swap replication
techniques.

However, the Carr-Madan approach is based on various assumptions which typically create a gap between
actual market fair strikes and replicated fair variances using option markets.

4.3 hybrid calibration using variance swaps

In this section, we will introduce a novel calibration approach with respect to the αRFSV model.
The procedure can be divided into 3 steps:

Step 1 A given variance swap curve is fitted by finding optimal subset of model parameters (we
can only find parameters which appear in (83)).

Step 2 All parameters are to be found by a calibration task with respect to the observed vanilla
option surface. The subset of parameters obtained in the previous step are used as an initial
guess for the calibration and also a regularization term is introduced for these parameters.

Step 3 Quality of the fit to the variance swap curve and option surface is checked, if it is un-
satisfactory, then step 2 is repeated with a scaled regularization term or the calibration is
terminated.

Below, we provide a detailed description of each step.

Step 1

In particular, step 1 is obtained by a simple least square minimization technique, where market
variance curve (or approximation thereof) is fitted at all observed points by (82).

f(Λ) =

M∑
i=1

[
ξt(Ti) − FS

αRFSV (t0, Ti|Λ)
]2

(91)

Λopt = arg min
Λ∈IΛ

f(Λ), (92)

where by FSαRFSV (t0, Ti) = FSαRFSV (t0, Ti|Λ) we denote explicit dependence on model parameters
Λ and IΛ ⊂ R4 is a state space of admissible parameter values and M is the total number of fair
variances observed.

We note that the step 1 takes the least computational time out of the three steps due to tractability
of (82)-(83) which expresses FSαRFSV (t0, Ti|Λ). Only one numerical integration is necessary and
hence adding this step does not worse the total computational time significantly. On the other hand,
in the following text we will show how the computational time can be improved using this step.
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Step 2

The step 2 involves calibration to vanilla options using information on parameters inferred from the
variance swap curve (step 1). For this purpose, we use an approximation formula we introduced in
Merino – Pospíšil – Sobotka – Sottinen – Vives (2019) for options with time to maturity less than
τ < 0.5 and MC simulation scheme in McCrickerd – Pakkanen (2018) otherwise.

Again we formulate the problem as a least-square minimization problem. This time we also use
a regularization term to penalize major discrepancies from Λopt.

g(Γ) =

N∑
i=1

wi

[
FV(Ti,Ki) − FVαRFSV (Ti,Ki|Γ)

]2
−Θ

|Λ|∑
j=1

∣∣∣Λoptj − Γj

∣∣∣ (93)

Γopt = arg min
Γ∈IΓ

g(Γ), (94)

whereN is the total number of calibrated options, (wi)N1 are weights associated to each option3, Θ >
0 is a scaling parameter which affects a "strength" of the regularization term and FVαRFSV (Ti,Ki|Γ)
is the option price under αRFSV model with model parameters Γ .

Step 3

Last but not least, we check a fit to the variance swap curve by evaluating

AAEVSC =
1

M

M∑
i=1

|ξt(Ti) − FS
αRFSV (t0, Ti|Γopt)|, (95)

and we compare it to the optimal fit obtained with parameters Λopt within step 1.

AAE
step1
VSC =

1

M

M∑
i=1

|ξt(Ti) − FS
αRFSV (t0, Ti|Λopt)|, (96)

MAE
step1
VSC = max

i=1,..,M
|ξt(Ti) − FS

αRFSV (t0, Ti|Λopt)|, (97)

∆VSC = AAEVSC −AAEstep1VSC . (98)

Similar measures are also evaluated for calibration to option markets – this time we measure
differences in terms of relative option FV. In particular, we are interested in

AAEFV =
1

NSt0

N∑
i=1

|FV(Ti,Ki) − FVαRFSV (Ti,Ki|Γopt)|, (99)

MAEFV = max
i=1,..,N

|FV(Ti,Ki) − FVαRFSV (Ti,Ki|Γopt)|. (100)

Using the formulation above, two correction measures are instantly available:

• In case we are not satisfied with calibration quality to option markets we can rerun the
calibration lowering Θ. If we don’t have confidence in variance swap marking we can also
set Θ = 0.

• On the other hand, should we get further away from the optimal fit of the variance curve
after calibration to option markets, we can strengthen the regularization term and rerun the
option calibration (step 2).

4.3.1 Illustration of hybrid calibration - numerical results

In this section, we present results of few numerical experiments. The main idea is not to substanti-
ate enough evidence that the introduced calibration scheme is superior to all alternative schemes,
but rather to illustrate suitability of this approach on a selected real-market data set under few
simplifying assumptions.

3 Typically, the weights are expressed as a function of liquidity of the particular contract or for sim-
plification as a function of the bid-ask spread.
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32 variance swaps under rough volatility

Simplifying assumptions of the numerical experiments

(S1) Market variance curve data is not at our disposal for this test, hence we use a market-standard
Carr – Madan (1998) approach to get approximation thereof. For simplicity, we use a linear
interpolation in variance terms of the market observed implied volatilities and we use a basic
data cleaning for variance swap curve approximation, more details on this are provided below.

(S2) We assume there is no borrow / no dividend term for our underlying asset to simplify the
calibration procedure.

(S3) We use option calibration (step 2) only for smiles with short time to maturity (up to approx-
imately 1 month), to be able to use Merino – Pospíšil – Sobotka – Sottinen – Vives (2019)
approximation pricing technique only – i.e. without utilizing Monte-Carlo simulations.

Detailed description of experiments

For the numerical experiments we use a set of European options on Apple Inc. stocks as observed
on 15th March 2015. The data were obtained from Bloomberg L.P. alongside data sets discussed
in Pospíšil – Sobotka – Ziegler (2019). Only basic data cleaning was performed – in case some of
the information for a particular option were not available (e.g. missing ask / bid quotes), we got
rid of the particular option. Also for the fair variance computation, we interpolated / extrapolated
implied volatilities linearly in variance terms in the strike dimension from 30%S0 to 500%S0 and we
used only time to maturities from ca 0.019 to 0.67 years not to have too sparse implied volatilities.

Due to simplification (S3), we focus on calibration to short-maturity options only, in particular to
options with time to maturity ca 1 week (7 trading days) and ca 1 month (24 trading days). However,
options with longer maturities are utilized in fair variance calibration (step 1) – to reconstruct
approximation of the variance swap curve.

We further note that we have used the same factor ε = 10−5 as in Merino – Pospíšil – Sobotka –
Sottinen – Vives (2019) and regularization scaling constant was set to Θ = 0.1. To solve constrained
optimization problems in step 1 and step 2, we use a Trust-Region-Reflective optimization method
implemented in Matlab’s lsqnonlin function4. Equidistant weighting for option calibration was
used, i.e. wi = 1 for all i. This was mainly due to calibrating only to two volatility smiles, if more
expiries were considered non-constant weights might prove useful. Optimization setting in Table 1

was utilized to retrieve all results:

Table 1: Optimisation parameters

Parameter Description Setting

MaxFunEvals Maximal number of utility function evaluations 400

MaxIter Maximal number of iteration steps 40

TolX Tolerance in the parameter space 1e-6

TolFun Tolerance in the utility function 1e-6

We note that whenever optimizer reaches Maximal number of iterations or function evaluations,
it stops prematurely. This wasn’t the case for our experiments, the utility function tolerance criterion
was the stopping rule for all our experiments.

Obtained results

Starting from calibration to the variance swap curve, we note that we have retrieved a model
variance curve which correctly captures overall shape of the fitted curve, but cannot mimic non-
monotonous behaviour of the input curve. The fitting errors are described in Tables 2 and 3.

Although the calibration results on the VSC curve are far from perfect, we also back-test the
calibration on option markets. In particular, in Figure 9 we display how we fitted 1W and 1M
volatility smiles in terms of relative FV after VSC calibration. Here we have found a very good
match between market and model prices, especially considering the fact that calibration to the
variance swap curve took less then 1 sec in our case5. To see how a typical initial guess (prior to
knowing calibrated parameters) might fit the option markets we provided illustration in Figure 10.

4 For more details please refer to https://www.mathworks.com/help/optim/ug/lsqnonlin.html.
5 Retrieved on a PC with i7-6500 CPU, 8 GB memory and MATLAB 2015b.
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Table 2: Fitting errors - initial VSC calibration

Error measure Result

AAE
step1
VSC 1.6pp

MAE
step1
VSC 2.0pp

Table 3: Calibrated parameters - initial VSC calibration

σt0 ξ H α

0.05 1.27 0.49 0.37

We also tried to improve already a reasonably good fit to the options by solving optimization
problem defined in step 2. The fit obtained using initial parameters from VSC calibration (Table
3) is illustrated in Figure 11 for 1W and 1M maturities. We also display absolute differences from
reference relative FV. We note that absolute value of calibration errors below 0.1% mark is typically
considered as a very good result and anything above 0.5% should be understood as a significant
miss-calibration.

As for the final calibration illustrated in Figure 11, all obtained errors stayed within ±0.5pp
bound and most of them were lower in absolute value than 0.1pp mark. When back testing with
variance swap curve, we retrieved ∆VSC = 0.27pp. Should we have more trust in variance swap
curve marking we could potentially lower ∆VSC by increasing the value of Θ to have stronger
regularization term. However, this is not our case, because we used only an approximation of the
VSC which is also sensitive to the least liquid options from our data set.

We also calibrated αRFSV model using initial guess as in Figure 10. We have retrieved a very sim-
ilar calibration fit (same number of options outside ±0.1pp bound), but there was a major difference
in the computational time. E.g. for 1W time to maturity options we needed only 42 utility function
evaluations starting from VSC calibrated parameters (i.e. 840 option prices computed). Compared
to the situation without a good initial guess, we had to perform 78 evaluation and hence computing
1560 option prices. Due to the multiple numerical integrations needed to approximate one option
price, we managed to save a significant portion of the total calibration time – approx. 46% saving.

The calibrated parameters from option market slightly differed compared to the VSC calibration
parameters. The most significant change was in the Hurst parameter which decreased from 0.49 to
0.34. In our case, lower values of H enabled a good fit to short-term options with strikes close to
at-the-money.
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Figure 9: Fit to the option market using VSC calibration parameters and ρ = −0.4

Figure 10: Fit of the initial guess, with σt0 = 0.3, ξ = 0.5ρ = −0.4,H = 0.1,α = 0.5
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Figure 11: Final calibration to option markets, using VSC calibration parameters as a ini-
tial guess
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5 C O N C L U S I O N

Aim of the thesis is threefold. Firstly, we review author’s contribution due to published articles. We
also extend the latest article and we show how the extension could significantly improve the original
goal of the model. Last but not least, we include a comprehensive introduction to selected financial
engineering tasks, corresponding financial markets and most common modelling approaches.

One of the main challenges of a financial engineer within financial market risk areas is to be
able to find a fair value of a particular derivative contract which is consistent with relevant market
observables. Unless the derivative is exchange traded with observable fair value, a modelling choice
has to be made and the challenge is typically divided into two tasks:

i. Calibration of the model parameters to market observables – to make sure our underlying
model is as close as possible to the market implied properties;

ii. Utilizing calibrated model to retrieve a non-observed fair value and sensitivity to risk factors
for the derivative contract subject to analysis.

For plain vanilla derivative contracts – i.e. contracts similar to the exchange traded derivatives
– both of the tasks above typically simplify to interpolation / extrapolation of market observable
values. Importance of the model calibration is fully acknowledged when non-vanilla derivatives are
to be analyzed. In this case, one should find such a model that

• can be efficiently and accurately calibrated to the most relevant market1,

• makes sense in terms of typical behaviour of markets (consistent with so called stylized facts,
see Section 1) and provides intuitive interpretation of the modelling outcomes.

Having in mind derivative valuation and risk management tasks for non-vanilla derivatives, a
popular class of models are stochastic volatility (SV) approaches. These models have been vastly
studied since the original article by Hull – White (1987). The main common idea of the SV models
is that not only the first risk factor (typically market observable price of the underlying asset) is
stochastic, but also its second moment is of a random nature as well.

Formally, let (St)t>0 be a stochastic process defined on a filtered probability space (Ω,F, (Ft)t>0,Q)

where the filtration Ft represents the information known at time t and Q is a market chosen risk-
neutral probability measure. Then, the fair value of a derivative paying to its holder at some future
time T , f(ST ) for a pre-defined T−measurable function f : R+ 7→ R, is given by:

FV = EQ [DF(t0, T)f(ST )|"model parameters"∪Ft0 ] (101)

whereDF(t0, T) is a discount factor from t0 to T which is – for the sake of simplicity – represented
by e−r(T−t0) throughout the thesis. Typically, we might have market observable fair values of
vanilla derivatives on our underlying asset and hence, should we have a tractable representation of
(101), then we can infer model parameters (i.e. the only unknown entity) by means of

• bootstrapping – in case of a simple relation with only a few parameters (e.g. observed FV
mapped to implied volatility),

• calibration – finding parameters with an optimal fit to the observable fair values.

Since the SV models tend to be more complex in terms of parametrization, bootstrapping meth-
ods are not applicable. Hence, we focus only on the calibration techniques.

For traditional SV models, both task i. and ii. are well developed in the literature. However, for
a special case – rough fractional volatility models – a lack of thorough treatment for both tasks is
apparent as of the date this thesis is compiled. These models, as reviewed in Section 2, add extra
complexity due to its non-Markovianity2, irregularity of paths etc. In particular, the driving noise
considered in the volatility / variance process of the asset price is not a standard Wiener process,
but either a fractional Brownian motion or a process with similar path-wise properties.

1 For the sake of low dimensionality and tractability, one typically calibrates only to the most relevant
markets that drive the main risk factors of the selected derivative.

2 Sample realizations depend on all previous realizations.
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In particular, a fractional Brownian motion (WHt )t>0 with Hurst parameter H ∈ (0, 1) is a centred
continuous Gaussian process with covariance,

R(s, t) := E
[
WHs W

H
t

]
=
1

2
(s2H + t2H − |t− s|2H).

Most interesting, from the financial applications point of view, is the case when the process attains
rough paths, i.e. for H ∈ (0, 0.5), see Figure 12 and also Section 2.2 for a more detailed discussion.
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Figure 12: Sample paths of a fractional Brownian motion for H = 0.2 (rough paths), H =

0.5 (standard Wiener case) and H = 0.8

Recently, many articles on rough volatility models appeared, Bayer et al. (2016), Gatheral et al.
(2018), El Euch et al. (2018), Alòs et al. (2019), El Euch – Rosenbaum (2019) to name a few, where
authors either propose a new way to approach several financial engineering tasks or show a remark-
able ability of rough models to mimic various market observables.

In our thesis we extend an approach which we introduced in Merino – Pospíšil – Sobotka –
Sottinen – Vives (2019) – a short-term option price approximation technique introduced for volatility
models driven by a class of Volterra processes which also include a standard fractional Brownian
motion with H < 0.5 as a special case. Moreover, for a Volterra process which can be formally
denoted as

Yt =
√
2H

∫t
0
(t− s+ ε)H− 1

2 dWs (102)

where dWs is the standard Wiener process and ε > 0, we have shown that a corresponding ex-
ponential rough volatility model can be successfully calibrated using the approximation to short
maturity options and via Monte-Carlo simulation techniques to medium and long maturity options
in (Merino – Pospíšil – Sobotka – Sottinen – Vives, 2019).

However, although the approximation tends to be more computationally efficient than Monte-
Carlo simulations, due to multiple numerical procedures to approximate one option fair value, it
is still significantly slower compared to the best practises for standard SV models. This is an issue,
especially for the task of model calibration, which might include numerous evaluations of option
fair values.

To remediate the issue above we propose a way for a potential shortening of calibration compu-
tational time under the considered rough volatility model. The main idea is to leverage not only
European options as market observables, but also variance swap contracts.

Variance swaps have become increasingly popular in the past 10 years and for several financial
assets they are also considered as market observables3. To be able to illustrate our idea, we have

3 Either thanks to observable volatility indices or due to consensus pricing services.
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reviewed a market standard approach of Carr – Madan (1998) which connects vanilla options and
variance swaps, in case the latter is not observed. Although, the connection holds under certain
assumptions (see Section 3.3), it enables us to build an approximation of the so called variance
swap curve (VSC), defined in (51), from market observable fair values of options. Moreover, we
were able to derive a tractable formula for VSC under the studied rough model (see Section 4),
which helps to calibrate the model to variance swap data.

To make the calibration task significantly more efficient with respect to the main market observ-
ables – European options, we calibrate the studied model first to VSC using the newly introduced
approach in Section 4. This extra step takes only few computation resources4 and overall provides
a very good initial guess for the option calibration. Having a good initial guess, typically means
that our standard calibration procedure needs fewer iterations – and hence less function evaluations
which are expensive – to reach the optimal solution. We illustrate this on a small numerical exercise
on Apple Inc. options and on VSC constructed using Carr – Madan (1998) approach, to show that
in our case we have saved approximately 46% of the total computational time, while obtaining as
good fit as in Merino – Pospíšil – Sobotka – Sottinen – Vives (2019).

Last but not least, in Appendix B we attached other articles related to SV models where the
author has contributed while pursuing his PhD candidature.

4 It takes less than few seconds in our numerical examples.
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A A P P E N D I X A

In what follows, we provide further illustration of financial market stylized facts, as introduced in
Chapter 1. The illustration is based on a data comprising of historical quotes with respect to 5 equity
indices from 2000 to 2016. The data were obtained from http://realized.oxford-man.ox.ac.uk/

data and figures are listed in the alphabetical order.

a.1 autocorrelation plots

50 100 150 200 250
−0.2

0

0.2

0.4

0.6

0.8

Lag

S
a
m
p
le

a
u
to
co
rr
el
a
ti
o
n

Sample autocorrelation of DAX returns

0 50 100 150 200 250
−0.2

0

0.2

0.4

0.6

0.8

Lag

S
a
m
p
le

a
u
to
co
rr
el
a
ti
o
n

Sample autocorrelation of absolute DAX returns

Figure 13: Sample autocorrelation of returns (on the left) and absolute returns (on the
right) - DAX index (1/2000 - 2/2016).
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Figure 14: Sample autocorrelation of returns (on the left) and absolute returns (on the
right) - DJIA index (1/2000 - 2/2016).
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Figure 15: Sample autocorrelation of returns (on the left) and absolute returns (on the
right) - FTSE 100 index (1/2000 - 2/2016).
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Sample autocorrelation of NIKKEI225 returns
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Figure 16: Sample autocorrelation of returns (on the left) and absolute returns (on the
right) - NIKKEI 225 index (1/2000 - 2/2016).
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Figure 17: Sample autocorrelation of returns (on the left) and absolute returns (on the
right) - SPX 500 index (1/2000 - 2/2016).
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a.2 histograms
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Figure 18: Empirical distribution of DAX Index (1/2000 - 2/2016) compared to the normal
distribution.
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Figure 19: Empirical distribution of DJIA Index (1/2000 - 2/2016) compared to the normal
distribution.
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Figure 20: Empirical distribution of FTSE 100 Index (1/2000 - 2/2016) compared to the
normal distribution.
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Figure 21: Empirical distribution of NIKKEI 225 Index (1/2000 - 2/2016) compared to the
normal distribution.
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Figure 22: Empirical distribution of SPX 500 Index (1/2000 - 2/2016) compared to the
normal distribution.
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a.3 historical quotes
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Figure 23: DAX index quotes alongside 5-min. realized volatility.
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Figure 24: DJIA index quotes alongside 5-min. realized volatility.

[ December 20, 2019 at 9:19 – version 1 ]



52 bibliography

2000 2002 2004 2006 2008 2010 2012 2014 2016

3000

4000

5000

6000

7000

Years

In
d
ex

cl
o
se

2000 2002 2004 2006 2008 2010 2012 2014 2016
0

0.02

0.04

0.06

0.08

0.1

Years

5
m
in
.
re
a
li
ze
d
v
o
la
ti
li
ty

Figure 25: FTSE 100 index quotes alongside 5-min. realized volatility.
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Figure 26: NIKKEI 225 index quotes alongside 5-min. realized volatility.
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Figure 27: SPX 500 index quotes alongside 5-min. realized volatility.
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a.4 quantile-quantile plots
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Figure 28: Quantile-quantile plot of DAX Index (1/2000 - 2/2016).
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Figure 29: Quantile-quantile plot of DJIA Index (1/2000 - 2/2016).
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Figure 30: Quantile-quantile plot of FTSE 100 Index (1/2000 - 2/2016).

−4 −3 −2 −1 0 1 2 3 4
−0.2

−0.15

−0.1

−0.05

0

0.05

0.1

0.15

Standard normal quantiles

In
d
e
x
re
tu
rn
s

NIKKEI225
Fitted normal distribution

Figure 31: Quantile-quantile plot of NIKKEI 225 Index (1/2000 - 2/2016).
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Figure 32: Quantile-quantile plot of SPX 500 Index (1/2000 - 2/2016).
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Market calibration under a long memory stochastic volatility
model
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ABSTRACT
In this article, we study a long memory stochastic volatility model
(LSV), under which stock prices follow a jump-diffusion stochastic
process and its stochastic volatility is driven by a continuous-time
fractional process that attains a long memory. LSV model should
take into account most of the observed market aspects and unlike
many other approaches, the volatility clustering phenomenon is
captured explicitly by the long memory parameter. Moreover, this
property has been reported in realized volatility time-series across
different asset classes and time periods. In the first part of the
article, we derive an alternative formula for pricing European
securities. The formula enables us to effectively price European
options and to calibrate the model to a given option market. In
the second part of the article, we provide an empirical review of
the model calibration. For this purpose, a set of traded FTSE 100
index call options is used and the long memory volatility model is
compared to a popular pricing approach – the Heston model. To
test stability of calibrated parameters and to verify calibration
results from previous data set, we utilize multiple data sets from
NYSE option market on Apple Inc. stock.
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1. Introduction

The purpose of this article is to revisit a jump-diffusion and fractional stochastic
volatility approach proposed by Intarasit and Sattayatham (2011). Using our alternative
formula for pricing European options, we present empirical calibration results and we
comment on suitability of this approach.

First of all, we define a long-range dependence (LRD or equivalently a long memory)
property. Let ðΩ;F ; PÞ be a generic probability space that is used for all stochastic processes
in this article unless explicitly stated otherwise. Let Xtð Þt2Rþ be a stationary stochastic
process defined on the probability space. Then, its auto-covariance function for arbitrary
real s; t : 0 � s < t depends only on the lag k :¼ t � s and is denoted by γXðkÞ,

γX kð Þ ¼ E Xs � EXsð Þ Xsþk � EXsþkð Þ½ �:
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A stochastic process Xt is said to have a LRD if

lim
k!þ1

γX kð Þ
Ck�α

¼ 1; (1)

where both C and α are constants and α 2 ð0; 1Þ. Also, the sum of auto-covariances for
different lags diverges,

Xþ1

k¼1

γX kð Þ ¼ þ1: (2)

One can understand the LRD phenomenon quite intuitively. For increasing lag,
the dependence might be small, but its cumulative effect is not negligible (due
to (2)).

One of the first evidences of LRD in market volatility comes from Taylor (1986) and
Ding, Granger and Engle (1993). In both studies, a strong evidence of autocorrelation of
absolute returns is presented (even for longer lags). Authors also noticed that correla-
tion estimates decay significantly slower for absolute returns than for the returns
themselves. Breidt, Crato and De Lima (1998) used spectral tests and R/S analysis to
estimate a long memory parameter for volatility of market indexes’ daily returns from
1962 to 1989. To incorporate the long memory phenomenon into volatility modelling,
Bollerslev and Mikkelsen (1996) suggested a modification of a well-known GARCH
(Generalized Auto-Regressive Conditional Heteroskedasticity) model – fractionally
integrated GARCH. The authors compare several models in terms of forecasting
realized volatility and they also compare model prices of (synthetic) options. Further
improvement of the ARCH-type approach to option pricing is suggested by Zumbach
and Fern´Andez (2013) and Zumbach and Fern´Andez (2014). They provide an insight
into construction of the risk-neutral measure and explain how to estimate the para-
meters, reproduce the volatility smile and the term structure of the surfaces without any
calibration of the observed option prices.

Another discrete-time modelling approach that captures LRD is ARFIMA model
(fractionally integrated ARMA) (Granger and Joyeux 1980). Martens, Van Dijk and De
Pooter (2004) have shown, using their own study alongside similar works by various
authors, that ARFIMA models can provide more satisfactory results than GARCH-type
approaches. The estimates of a fractional differencing parameter for market volatility
typically lie in [0.2, 0.4] which is equivalent to the Hurst exponent ranging in [0.7, 0.9].
Koopman, Jungbacker and Hol (2005) also empirically confirmed that long memory
ARFIMA models seem to provide the most accurate forecasts of realized volatility.
Lately, Asai, McAleer and Medeiros (2012) introduced a new correction term for the
ARFIMA model with respect to volatility modelling. For an empirical comparison of
ARMA and ARFIMA models, see e.g. the thesis by Čekal (2012). Beran et al. (2013),
Zumbach (2013) and the references therein provide a comprehensive review of recent
advances in discrete-time long memory modelling.

Many practitioners prefer continuous-time models for calibration to the whole
volatility surface. Pioneering a long memory stochastic volatility (LSV), Comte and
Renault (1998) introduced a modification of the Hull–White model. The stochastic
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volatility process is driven by a fractional Brownian motion (fBm), i.e. a centred
Gaussian process, Btð Þt2Rþ , defined via its covariance structure

E BtBs½ � ¼ 1
2

t2H þ s2H � jt � sj2H� �
; (3)

where H is a constant in (0,1), commonly known as the Hurst exponent. This process
possesses many interesting properties, most noticeably, for H 2 ð1=2; 1Þ, fBm exhibits a
LRD (Mandelbrot and Van Ness 1968). Comte and Renault also comment on a no-
arbitrage condition which is satisfied by a market model with the suggested dynamics
alongside a standard class of admissible portfolios. This differs from a situation where
market dynamics is due to the fractional Black–Scholes model (i.e. stock prices follow a
geometric fBm). In that case, one has to come up with a different integration theory
accompanied by a different class of admissible strategies (on that matter, see e.g.
Øksendal 2003). Comte, Coutin and Renault (2012) introduced a more refined model
with more degrees of freedom where stochastic volatility follows a fractional CIR
process. Since fBm is not a semimartingale for H � 0:5, we cannot use a well-devel-
oped Itô stochastic calculus on any of the aforementioned fractional stochastic volatility
models.

Intarasit and Sattayatham (2011) came up with a new LSV model which would
be subject to the main focus of this article. Authors applied theoretical results by
Thao (2006) and Zähle (1998) to overcome restrictions inherited from the usage of
fBm. They started with fBm in the Liouville form (Mandelbrot and Van Ness
1968),

Bt ¼ 1
ΓðH þ 1=2Þ Zt þ

ðt
0

ðt � sÞH�1=2dWs

2
4

3
5;

where Zt ¼
ð0

�1
ðt � sÞH�1=2 � ð�sÞH�1=2
h i

dWs and Wtð Þt2Rþ is a standard Wiener

process. The stochastic process Zt has continuous trajectories and thus, for the sake of
long memory, one can consider only the following part of Bt with the Hurst expo-
nent H 2 ð1=2; 1Þ.

B̂t ¼
ðt
0

ðt � sÞH�1=2dWs: (4)

Thao (2006) showed that one can approximate B̂t by

B̂ε
t ¼

ðt
0

ðt � sþ εÞH�1=2dWs; B̂ε
t !L

2ðΩÞ
B̂t; (5)

as ε ! 0þ. Also, B̂ε
t is a semimartingale with respect to the filtration F tð Þt2Rþ gener-

ated by the standard Wiener process Wt. Intarasit and Sattayatham (2011) proposed a
jump-diffusion model with approximative fractional volatility. In this paper, we focus
on similar dynamics of the stock prices that follow a system of two stochastic
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differential equations which under a risk-neutral probability measure1 take the fol-
lowing form,

dSt ¼ rSt dt þ ffiffiffiffi
vt

p
St dW

ð1Þ
t þ YtSt� dNt; (6)

dvt ¼ �κ vt � �vð Þdt þ �
ffiffiffiffi
vt

p
dB̂ε

t ; (7)

where κ;�v; � are model parameters such that, κ is a mean-reversion rate, �v stands for an
average volatility level and, finally, � is so-called volatility of volatility. Under the

notation St�, we understand limτ!t�Sτ and Ntð Þt2Rþ ; Wð1Þ
t

� �
t2Rþ are a Poisson process

and a standard Wiener process, respectively. Yt denotes an amplitude of a jump at t

(conditional on occurrence of the jump) and differential dB̂ε
t corresponds to the

following integral which Thao and Nguyen (2003) defined for arbitrary stochastic
process with bounded variation Ftð Þt2Rþ ;

It ¼
ðt
0

FsdB̂
ε
s :¼ FtB̂

ε
t �
ðt
0

B̂ε
sdFs � F; B̂

ε
h i

t
; (8)

provided the right-hand side integral exists in a Riemann–Stieltjes sense, while F; B̂
ε

h i
t

being a mixed variation of Ft and B̂ε
t .

The use of approximation B̂ε
t instead of fBm provides several advantages. Most

significantly, we are able to derive a pricing PDE using Itô calculus and standard
hedging arguments. Moreover, using theoretical results of Thao and Nguyen (2003),
we can transform volatility process into standard settings similarly as was shown by
Intarasit and Sattayatham (2011),

dvt ¼ ða�φt

ffiffiffiffi
vt

p � θþ κvtÞdt þ �εa
ffiffiffiffi
vt

p
dWð2Þ

t ; (9)

where a :¼ H � 1=2, θ :¼ κ�v is a constant and φt represents an Itô integral,

φt ¼
ðt
0

ðt � sþ εÞH�3=2dWð3Þ
s ; (10)

Wð2Þ
t

� �
t2Rþ ; Wð3Þ

t

� �
t2Rþ are standard Wiener processes. To have a more realistic model

of market dynamics, we also add an instantaneous correlation ρ : E Wð1Þ
t Wð2Þ

t

h i
¼ ρ to

mimic the stock-volatility leverage effect. Also, we assume Wð3Þ
t is stochastically indepen-

dent on Wð1Þ
t ;Wð2Þ

t and the jump part YtSt� dNt which is yet to be defined.

2. An alternative semi-closed form solution

Up to now, we have introduced a theoretical background for the model mainly using
the original research by Intarasit and Sattayatham (2011). In this section, we consider
a model with dynamics (6) and (7) and we derive an alternative formula for pricing
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European contracts and thereafter, we show, employing empirical data sets, that this
formula can be efficiently used for applications in practise, such as a market
calibration.

We utilize dynamics (6) and (7) with process Nt defined as

Nt ¼
XPt
i¼1

Yi; (11)

where ðYnÞ are i.i.d. random variables Yn ¼ exp αJ þ γJψn

n o
� 1, ψn , Nð0; 1Þ and Pt

is a Poisson process with hazard rate λ.
Unlike in case of Intarasit and Sattayatham (2011), we will assume2 that the jump

part is stochastically independent on diffusion processes in market dynamics (6) and (7)
which will significantly simplify the option pricing problem. Instead of solving partial
integral differential equations with respect to (6) and (7), we consider the following
system of market dynamics without jumps.

dSt ¼ rSt dt þ ffiffiffiffi
vt

p
St dW

ð1Þ
t ; (12)

dvt ¼ α dt þ β
ffiffiffiffi
vt

p
dWð2Þ

t ; (13)

where the functions α and β take the following form α ¼ α St; vt; tð Þ :¼
a�φt � κ
� �

vt þ θ, β ¼ β St; vt; tð Þ :¼ �εa. We will derive the valuation PDE which can
be solved using the Fourier method. The price of a European option is expressed in
terms of characteristic functions and to include jumps in the stock price process, it is
sufficient to multiply these characteristic functions with their jump counterparts.3 A fair
price of a vanilla option V is expressed as a discounted expectation of the terminal pay-
off. In case of a call option, this reads

Vc St; vt; tð Þ ¼ e�rτE ST � Kð Þþ� �
¼ StP1 xt; vt; τð Þ � e�rτKP2 xt; vt; τð Þ
¼ extP1 xt; vt; τð Þ � e�rτKP2 xt; vt; τð Þ;

(14)

where parameters of the contract K and τ :¼ T � t represent a strike price and time to
maturity, respectively. P1; P2 can be interpreted as the risk-neutral probabilities that
option expires in the money conditional on the value of xt ¼ ln St and finally, r is
assumed to be a uniquely determined risk-free rate constant.

Applying standard hedging arguments alongside constant risk-free rate paradigm,
one arrives at the initial value problem (Sobotka 2014),

� @Vc

@τ
þ 1
2
vt
@2Vc

@x2t
þ r � 1

2
vt

	 

@Vc

@xt
þ ρβvt

@2Vc

@vt@xt
� rVc þ 1

2
vtβ

2 @
2Vc

@v2t
þ α

@Vc

@vt
¼ 0;

(15)

Vc ST ; vT ; τ ¼ 0ð Þ ¼ ST � Kð Þþ: (16)

As we would like to express probabilities P1; P2, we input (14) therein. Equation
(15) has to be satisfied for any combination of parameters K; r 2 R; τ 2 Rþ and for
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any price St � 0. Thus, we are able to set K ¼ 0; St ¼ 1, to obtain a PDE with
respect to P1 only.

� @P1
@τ

þ 1
2
vt
@2P1
@x2t

þ r þ 1
2
vt

	 

@P1
@xt

þ ρβvt
@2P1
@vt@xt

þ 1
2
vtβ

2 @
2P1
@v2t

þ αþ ρβvtð Þ @P1
@vt

¼ 0:

(17)

Following similar arguments, we retrieve a PDE for P2 only by set-
ting St ¼ 0;K ¼ �1.

� @P2
@τ

þ 1
2
vt
@2P2
@x2t

þ r � 1
2
vt

	 

@P2
@xt

þ ρβvt
@2P2
@vt@xt

þ 1
2
vtβ

2 @
2P2
@v2t

þ α
@P2
@vt

¼ 0: (18)

Instead of solving the system of two PDEs (17) and (18) directly, we express
characteristic functions fj ¼ fj ϕ; τð Þ, j ¼ 1; 2. After analytical expressions for fj are
known, we can easily obtain Pj using the inverse Fourier transform,

Pj ¼ 1
2
þ 1
π

ð1
0
<e eiϕ lnðKÞfj

iϕ

" #
dϕ; (19)

where <eðxÞ denotes a real part of a complex number x. As in the original paper by
Heston (1993), we are looking for characteristic functions fj in the form,

fj ¼ exp Cjðτ;ϕÞ þ Dj τ;ϕð Þvt þ iϕx
� �

: (20)

As a direct consequence of the discounted version of Feynman–Kac theorem (as e.g.
in Shreve 2004), fj follows PDE (17) and (18). First, we substitute assumed expression
(20) with respect to f1.

� @C1
@τ þ vt

@D1
@τ

� �
f1 þ ρβvtiϕD1f1 � 1

2 vtϕ
2f1 þ 1

2 vtβ
2D2

1f1

þ r þ 1
2 vt

� �
iϕf1 þ αþ ρβvtð Þf1D1 ¼ 0;

(21)

f1 cannot be identically equal to zero which enables us to get the following relation.

� @C1
@τ þ vt

�@D1
@τ þ ρβvtiϕD1 � 1

2 vtϕ
2 þ 1

2 vtβ
2D2

1

þ r þ 1
2 vt

� �
iϕþ αþ ρβvtð ÞD1 ¼ 0:

(22)

Now, we are ready to substitute back for α. After rearranging terms with C1;D1 and
factoring out vt , we obtain the upcoming PDE,

vt � @D1

@τ
þ ρβiϕD1 � 1

2
ϕ2 þ 1

2
β2D2

1 þ
1
2
iϕþ a�φ0 � κþ ρβ

� �
D1


 �
� @C1

@τ
þ riϕþ θD1 ¼ 0;

(23)

where we recall that φt is a martingale and φ0 ¼ E φt

� �
is used. None of the terms

outside brackets involves vt; hence, we can split (23) into a system of two equations.

@D1

@τ
¼ ρβiϕD1 � 1

2
ϕ2 þ 1

2
β2D2

1 þ
1
2
iϕþ a�φ0 � κþ ρβ

� �
D1; (24)
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@C1

@τ
¼ riϕþ θD1; (25)

provided vt > 0 for t : 0 � t � T. Following the same steps, one can obtain a similar
system for f2 as well. As a result thereof, characteristic functions fj defined by (20) have
to satisfy the following system of four differential equations

@D1

@τ
¼ ρβiϕD1 � 1

2
ϕ2 þ 1

2
β2D2

1 þ
1
2
iϕþ a�φ0 � κþ ρβ

� �
D1; (26)

@D2

@τ
¼ ρβiϕD2 � 1

2
ϕ2 þ 1

2
β2D2

2 �
1
2
iϕþ a�φ0 � κ

� �
D2; (27)

@Cj

@τ
¼ riϕþ θDj; (28)

with respect to the initial condition

Cj 0; ϕð Þ ¼ Dj 0; ϕð Þ ¼ 0; (29)

where j ¼ 1; 2. The first two equations for Dj are known as the Riccati equations with
constant coefficients. Once Dj are obtained, one can solve the last two ODE’s by a direct
integration.

First, we show how to express Dj from the Ricatti equations. For the sake of a simpler
notation, we will rewrite Equations (26) and (27) using abbreviated form.

@Dj τ;ϕð Þ
@τ

¼ AjD
2
j þ BjDj þ Kj; (30)

where Aj;Bj and Kj 2 C. Let us also denote:

Δj ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
B2
j � 4AjKj

q
; Yj ¼

�Bj þ Δj

2Aj
; gj ¼

Bj � Δj

Bj þ Δj
:

Proposition 2.1: Assuming Aj � 0 for j ¼ 1; 2, Ricatti equation (30) attain an
analytical solution with respect to the initial condition Dj 0; ϕð Þ ¼ 0,

Dj τ;ϕð Þ ¼ Yj 1� eΔjτð Þ
1� gjeΔjτ

:

Proof: Without loss of generality, we will solve the equation for a fixed index j and
for y :¼ Dj, while A :¼ Aj;B :¼ Bj;K :¼ Kj

y0 ¼ Ay2 þ By þ K; (31)

Ay0 ¼ ðAyÞ2 þ AByþ AK; (32)

Since A;B and K are constant in time (or with respect to τ), we are able to
substitute v ¼ Ay; v0 ¼ Ay0 þ A0y ¼ Ay0.

v0 ¼ v2 þ Bvþ AK; (33)

APPLIED MATHEMATICAL FINANCE 329



� u00

u
¼ �B

u0

u
þ AK; (34)

where v ¼ �u0=u; v0 ¼ � u00u� ðu0Þ2� �
=u2 ¼ v2 � u00=u0. The equation can be rewritten

in the following form

0 ¼ u00 � Bu0 þ AKu: (35)

We are able to solve (35) explicitly.

uðτÞ ¼ I1 exp
B�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
B2 � 4AK

p

2
τ

( )
þ I2 exp

Bþ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
B2 � 4AK

p

2
τ

( )

¼ I1e
B�Δð Þ=2ð Þτ þ I2e

BþΔð Þ=2ð Þτ;

where I1; I2 2 R are both constants can be expressed due to the initial condition:

u0ð0Þ ¼ I1 B�Δ
2

� �þ I2 BþΔ
2

� � ¼ 0;
uð0Þ ¼ I1 þ I2 ¼ γ; γ 2 R � 0f g:

Solving the system of two linear equations, we retrieve I1; I2,

I1 ¼ γ BþΔ
2Δ ;

I2 ¼ �γ B�Δ
2Δ ;

and the solution uðτÞ;

uðτÞ ¼ γ
Bþ Δ

2Δ

	 

e B�Δð Þ=2ð Þτ � B� Δ

2Δ

	 

e BþΔð Þ=2ð Þτ


 �
: (36)

To obtain yðτÞ, we go through steps (31)–(35) backwards. The first derivative of u
takes the form

u0 ¼ γ
AK
Δ

e B�Δð Þ=2ð Þτ � AK
Δ

e BþΔð Þ=2ð Þτ

 �

(37)

and since v ¼ �u0=u, v reads

v ¼ �2AK e B�Δð Þ=2ð Þτ � e BþΔð Þ=2ð Þτ� �
ðBþ ΔÞe B�Δð Þ=2ð Þτ � ðB� ΔÞe BþΔð Þ=2ð Þτ :

Using y ¼ v=A, one can obtain the solution,

y ¼ �2K e B�Δð Þ=2ð Þτ � e BþΔð Þ=2ð Þτ� �
ðBþ ΔÞe B�Δð Þ=2ð Þτ � ðB� ΔÞe BþΔð Þ=2ð Þτ

¼ �2K e B�Δð Þ=2ð Þτ � e BþΔð Þ=2ð Þτ� �
ðBþ ΔÞe B�Δð Þ=2ð Þτ 1� B� Δð Þ= Bþ Δð ÞeΔτð Þ

¼ �2K= Bþ Δð Þ 1� eΔτð Þ
1� B� Δð Þ= Bþ Δð ÞeΔτ :

(38)
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Hence, we have arrived at the expression in Proposition 2.1.
In the next step, we integrate the right-hand side of (28) for t 2 ½0; τ� to

express Cj.

Cjðτ;ϕÞ ¼ riϕτ þ θ

ðτ
0

Dj t;ϕð Þdt

¼ riϕτ þ θ

ðτ
0

Yj 1� eΔjtð Þ
1� gjeΔjt

dt

¼ riϕτ þ θYj τ þ
ðτ
0

gj � 1
� �

eΔjt

1� gjeΔjt
dt

2
4

3
5

¼ riϕτ þ θYjτ � θYj
gj � 1

Δjgj
ln

1� gjeΔjτ

1� gj

	 


¼ riϕτ þ θYjτ � θ

A
ln

1� gjeΔjτ

1� gj

	 

:

(39)

Characteristic functions fj, under the original notation, take the following form

fj τ;ϕð Þ ¼ exp Cj τ;ϕð Þ þ Dj τ;ϕð Þvt þ iϕ ln Stð Þ þ ψj ϕð Þτ
n o

;

with

Cjðτ;ϕÞ ¼ rϕiτ þ θYjτ � 2θ

β2
ln

1� gjedjτ

1� gj

	 

;

Djðτ;ϕÞ ¼ Yj
1� edjτ

1� gjedjτ

 !
;

ψ2ðϕÞ ¼ � λJ iϕ eαJþ γ2J=2ð Þ � 1
� �

þ λJ eiϕαJ� ϕ2γ2J=2ð Þ � 1
� �

;

ψ1ðϕÞ ¼ ψ2 ϕ� ið Þ;

Yj ¼
bj � ρβϕiþ dj

β2
;

gj ¼
bj � ρβϕiþ dj
bj � ρβϕi� dj

;

dj ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ρβϕi� bj
� �2 � β2 2ujϕi� ϕ2

� �q
;

β ¼ �εH�1=2;

u1 ¼ 1=2; u2 ¼ �1=2; θ ¼ κ�v; b1 ¼ κ� H � 1=2ð Þ�φ0 � ρβ;

b2 ¼ κ� H � 1=2ð Þ�φ0:

To obtain the price of a European call, one numerically computes the integral in
Equation (19). The result thereof goes into the first part of the formula, expression (14).
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Themain advantage of this approach lies in its tractability. In fact, only the aforementioned
Fourier integral has to be dealt with by numerical procedures. Moreover, its integrand is
well behaved for a wide range of model parameters (see Table 1 and Figure 1).

For numerical evaluation, one also might set a finite upper integration limit u in the
integral (or apply a suitable transformation). In case of the Heston model, it has been
shown that when using the alternative option pricing formula as in Gatheral (2006),
even a basic choice of the upper limit, u ¼ 100, can be justified. For the presented long
memory model, an illustration of the price sensitivity with respect to finite values of the
integration bounds is provided by Figure 1 and by Table 1. In the latter, we display
average, 99% quantile and maximal absolute differences between the reference price and
convenient choices of the upper limits across various model parameter sets.

The choice of the upper integration limit plays a crucial role in the task of market
calibration, especially when using heuristic optimization procedures. Since all values in

Table 1. Price differences for various choices of the upper integration limit in integral (19) across
various parameter sets.a

Upper integration limit 50 100 150 200 250 300

ITM Average absolute differences 2.1 × 10–8 2.8 × 10–8 2.4 × 10–8 2.5 × 10–8 2.1 × 10–8 2.1 × 10–8

ITM 99-percentile differences 1.5 × 10–7 1.6 × 10–7 1.4 × 10–7 1.4 × 10–7 1.4 × 10–7 1.4 × 10–7

ITM Maximal absolute differences 1.1 × 10–3 1.1 × 10–3 1.1 × 10–3 1.1 × 10–3 1.1 × 10–3 1.1 × 10–3

ATM Average absolute differences 2.6 × 10–8 3.3 × 10–8 2.7 × 10–8 2.7 × 10–8 2.4 × 10–8 2.3 × 10–8

ATM 99-percentile differences 1.9 × 10–7 2.0 × 10–7 1.8 × 10–7 1.9 × 10–7 1.9 × 10–7 1.9 × 10–7

ATM Maximal absolute differences 1.1 × 10–3 1.1 × 10–3 1.1 × 10–3 1.1 × 10–3 1.1 × 10–3 1.1 × 10–3

OTM Average absolute differences 3.0 × 10–8 3.9 × 10–8 3.2 × 10–8 3.2 × 10–8 2.9 × 10–8 2.0 × 10–8

OTM 99-percentile differences 2.5 × 10–7 2.6 × 10–7 2.3 × 10–7 2.4 × 10–7 2.4 × 10–7 2.5 × 10–7

OTM Maximal absolute differences 1.5 × 10–3 1.5 × 10–3 1.5 × 10–3 1.0 × 10–3 1.0 × 10–3 1.0 × 10–3

a792,000 distinct parameter sets for each trial. The first experiment deals with in-the-money call option (ITM, money-
ness 90%), second with at-the-money call (ATM) and the final one is with respect to out-of-the-money call option
(OTM, moneyness 110%).

Computation using upper limit u ¼ 1000 is considered as the reference price.
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Figure 1. Numerical prices of a European call option and values of option delta using (19) with finite
upper integration limits. Values correspond to the parameters of the contract:
S0 ¼ 1; K ¼ 0:9; T ¼ 1; r ¼ 0:009, model parameters κ ¼ 2; v0 ¼ 0:15; �v ¼ 0:15; � ¼ 0:5;
ρ ¼ �0:7; λJ ¼ 1; αJ ¼ �0:5; γJ ¼ 1; H ¼ 0:7. The computation is performed with approximating
factor ε ¼ 10�5.
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the previous experiment provided a sufficient level of precision, we focus on computa-
tional efficiency when choosing integration bounds.

3. Market calibration

In this section, we employ the previously derived formula to retrieve risk-neutral
market parameters with respect to a given set of traded call options. This procedure
is known as a market calibration. Another way of looking at the task can be obtained
via mathematical programming. One tries to find a set of model parameters Θ? such
that the criterion (40) is minimized.4

GðΘÞ ¼
XN
i¼1

wi C S0;Ki;Ti; rð Þ � Cmodel S0;Ki;Ti; r;Θð Þ�� ��p; (40)

Θ? ¼ arg inf
Θ2A

GðΘÞ; (41)

for a market that consists of N traded call contracts. We set the value of p; p � 1;
and we choose appropriate weight sequence wið Þi¼1;...;N . An intuitive setting, wi ¼ 1=N

for all i ¼ 1; . . . ;N and p ¼ 2, brings us to the classic least square minimization
problem. Using distinct weights for each contract, we can emphasize more liquid
options over the less traded contracts. For the first empirical study, we calibrate models
using three choices of weights which are defined,

wð1Þ
i ¼ 1

CðaskÞ
i � CðbidÞ

i

��� ��� ; (42)

wð2Þ
i ¼ 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

CðaskÞ
i � CðbidÞ

i

��� ���r ; (43)

wð3Þ
i ¼ 1

CðaskÞ
i � CðbidÞ

i

� �2 ; (44)

for i ¼ 1; . . . ;N. CðbidÞ
i ;CðaskÞ

i stand for a bid price of the ith market option and ask price,
respectively. Also, we assume that the price spread is strictly positive for all quoted
contracts. The minimization is with respect to simple bounds (see Table 2) which are
introduced to ensure that all parameters stay in their domains (e.g. we con-
sider H 2 ½0:5; 1Þ).

As several authors pointed out (e.g. Mikhailov and Nögel 2003), the minimization
problem (41) is typically non-convex and without a very good initial guess, it might be
hard to solve using local optimization techniques only. Hence, for the task of model
comparison, we utilize global procedures, a genetic algorithm (GA) and simulated
annealing (SA), as well as a local trust-region method for least square problems (LSQ).

Table 2. Parameter bounds for optimization problem.
κ v0 �v � ρ λJ αJ γJ H

Lower bound 0 0 0 0 –1 0 –10 0 0.5
Upper bound 50 1 1 4 1 100 5 4 0.9999
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Results obtained by a global heuristic optimizer may vary significantly depending on
how the routine is set. Most important criteria with respect to the global optimization
are of two types: evolution and stopping rules. For both GA and SA, we altered
stopping rule defaults used in the Matlab’s Global Optimization Toolbox. First and
foremost, we did not want the solver to stop prematurely – algorithms should terminate
on a Function tolerance criterion, i.e. if the value of utility function (40) declines over
the successive iteration by less than a given tolerance (1e − 8). For comparison
purposes, we also employed the same settings for both less complex Heston model
and LSV approach. The complete evolution and stopping rules used in the upcoming
experiments are listed in Table 3.

3.1. Error measures

In order to compare the presented long memory volatility approach with the Heston
model, we evaluate these market fit criteria,

AAEðΘÞ ¼ 1
N

XN
i¼1

Ci � Cmodel
i ðΘÞ�� ��; (45)

AAREðΘÞ ¼ 1
N

XN
i¼1

Ci � Cmodel
i ðΘÞ�� ��
Ci

; (46)

MAEðΘÞ ¼ max
i¼1;2;...;N

Ci � Cmodel
i ðΘÞ�� ��: (47)

Due to varying price levels, the most interesting error measure is represented by
AAREðΘÞ which reflects the average absolute values of relative errors. AREðΘÞ, on the
other hand, represents the average absolute errors. We also might want to fit the
calibrated surface with a preset error bound. The minimal bound that will suffice for
each calibration trial is denoted by the maximal absolute error measure, MAEðΘÞ.

Table 3. Optimizer settings for market calibration.
GA criterion Value SA criterion Value

Evolution rules
Population size 60 Annealing fun Uniform direction,

temp. step length
Elite count 20% Initial temperature 100
Selection distribution Uniform Temperature fun Exponential
Mutation distribution Gaussian Reannealing

interval
100

Crossover fun Random binary scatter Acceptance fun Exp. decaya

Stopping rules
No of generations 500 Maximum

iterations
–

Time limit – Time limit –
Fitness limit – Fitness limit –
Stall generations 60 Maximum fun.

evaluations
100,000

Fun. tolerance 1e − 8 Fun. tolerance 1e − 8
Constraint tolerance 1e − 6
Stall time limit –
Stall test Average change

aExponentially decaying acceptance function (acceptancesa) is defined in Matlab documentation, see also www.
mathworks.com/help/gads/simulated-annealing-options.html.
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3.2. Empirical study – FTSE 100 vanilla call market

The main data set was obtained on 8 January 2014 and consists of 82 traded call
options. The underlying is FTSE 100 index, quoted at 6721.80 points. The considered
prices range from 17:5 to 514:5 and the data sample includes both in-the-money (ITM),
at-the-money (ATM) and out-of-the-money (OTM) calls.5

Using combined optimization approaches that first utilize global (heuristic) methods
and then the solution is improved by a local search method, we were able to retrieve
superior results for both models. For these routines, the LSV model achieved a better
market fit compared to the Heston model. The lowest value of the absolute relative error
was obtained for the LSV model using a GA combined with a trust region method
alongside weights wð3Þ. However, the results for weights wð1Þ;wð2Þ and also for a com-
bined SA (SA + LSQ) are almost indifferent with respect to the selected error measures.

Option premia surface, created by the Heston model with calibrated parameters, is
not consistent with market prices especially for OTM calls. This is partly because of the
preset weights and partly, it might be caused by a low degree of freedom of the model.

When calibrating the LSV model by using combined approaches, we retrieved values of
the Hurst parameter H 2 ½0:5935; 0:6654�. This result is in line with several statistical
studies on long memory estimation for realized volatility time series (e.g. Breidt, Crato,
and De Lima 1998) and implied values are only slightly lower than their time-series
estimates (Sobotka 2014, FTSE 100 realized volatilities, 2004–2014). All calibration errors
are displayed in Table 4 and the corresponding price surfaces are depicted in Figure 2 for a
combined GA and in Figure 3 for a combined SA method, respectively. We also illustrate
errors retrieved only by heuristic optimization methods in Figure 4. Unlike previous
calibration trials, the quality of market fit for the latter calibration is far from perfect.

3.3. Empirical study – stability of parameters in time – AAPL call options

We also compared the models on Apple Inc. European call options traded on NYSE
MKT LLC. This time, however, we considered 21 data sets, i.e. close quotes from Apple
Inc. option market for all trading days in April 2015. Each data set included at least 113

Table 4. Calibration errors for weights wð1Þ, wð2Þ and wð3Þ.
Weights Model Error measure GA GA + LSQ SA SA + LSQ

wð1Þ LSV model AARE (%) 4.29 2.34 3.79 2.34
AAE () 7.33 3.27 5.52 3.27
MAE () 49.34 17.13 24.17 17.13

Heston model AARE (%) 3.72 3.36 3.67 4.43
AAE () 6.54 5.85 7.83 6.22
MAE () 30.65 30.69 32.25 29.30

wð2Þ LSV model AARE (%) 4.61 2.34 3.01 2.34
AAE () 7.57 3.27 5.04 3.27
MAE () 35.74 17.13 25.84 17.13

Heston model AARE (%) 3.10 3.35 3.78 3.52
AAE () 6.05 5.85 6.68 5.90
MAE () 30.84 30.69 31.09 30.68

wð3Þ LSV model AARE (%) 5.95 2.33 4.33 2.34
AAE () 12.34 3.27 9.02 3.27
MAE () 81.79 17.14 45.71 17.13

Heston model AARE (%) 5.56 5.07 6.59 4.15
AAE () 7.16 6.42 9.89 8.20
MAE () 31.07 30.83 32.49 32.30
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options (at most 212) and as in our previous experiment, we considered ITM, ATM and
OTM contracts with moneyness ranging from 64.18% to 250.30% (in 30 April).6

Following results from previous study, we calibrated models using only GA + LSQ
optimizers alongside weights wð3Þ. As a main measure for model comparison, we consid-
ered weighted square errors. Namely, we compared both approaches with respect to the
value of utility function GðΘ?Þ (40) where Θ? denotes the calibrated parameter set for a
specific model.7 Unlike in previous experiment, some data sets contained options with very
low prices where both models were prone to big relative errors. Therefore, we utilized the
weighted error measure rather than AARE. However, one should not compare values of

0.12
0.20

0.28
0.45

0.70
0.98

6450
6600

6725
6850

7100
0

5

10

15

20

25

30

6300 6500 6600 6800
100

150

200

250

300

350

400

450

(a) Long memory SV model

0.12
0.20

0.28
0.45

0.70
0.98

6450

6600

6725

6850

7100
0

5

10

15

20

25

30

6300 6500 6600 6800
100

150

200

250

300

350

400

450
Data
Model prices

Data
Model prices

(b) Heston model

Figure 2. Calibration from FTSE 100 call option market using genetic algorithm combined with a
local search method. Displayed average relative errors were obtained for weights wð3Þ
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GðΘ?Þ across different trading days – the total number of options might vary for each data
set. To measure stability of the calibrated parameters over time, we employed two criteria –
average absolute difference and standard deviation of parameter values.

Obtained values GðΘ?Þ ranged from 223.85 to 1711.37 and 346.61 to 1718.20 for LSV
and Heston model, respectively. For 20 out of 21 data sets, Heston model was out-
performed with respect to the weighted criteria – only on 29 April, we did not obtained
a superior fit by LSV approach with our settings (479.51 vs. 528.85, parameters in
Table 5). The lowest average absolute error (2.78%) was retrieved by LSV model on a
data set from 4 April (Heston AARE – 3.37%, parameters in Table 5) and conversely,
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Figure 3. Calibration from FTSE 100 call option market using simulated annealing combined with a
local search method. Displayed average relative errors were obtained for weights wð1Þ

i .

APPLIED MATHEMATICAL FINANCE 337



the worst value thereof was reached by Heston model on 20 April (5.77%). All results
are conveniently listed in Table 6.

Average absolute differences alongside standard deviations of calibrated parameters
are shown in Table 7. In our experiment, we managed to get similar values of the
aforementioned measures for both models with respect to diffusion parameters.
Evolution of v0 and �v over time is depicted by Figure 5. Calibration of LSV jump
parameters, especially αJ and γJ , provided us with more varying values compared to

both diffusion parameters and the Hurst exponent. This might be due to the calibration
procedure (global heuristic GA) and due to the fact that one can retrieve similar skew of
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the volatility smile for different combinations of jump parameters. This shortfall can be
partially improved by incorporating penalizing term in the utility function GðΘÞ or by
using local-search algorithm only (e.g. with initial guess from previous day calibration).

4. Summary

In the first part of the article, an alternative formula for pricing European options under
a LSV model was derived. The formula is in a semi-closed form – one has to
numerically evaluate a Fourier transform integral (19). For most of the observed market
parameters, truncation of the upper integral bound alongside an appropriate numerical
procedure leads to satisfactory results both in terms of precision (see Figure 1 and
Table 1) and computational efficiency.8

Table 5. Calibrated parameters for two trading days.
Date κ v0 �v � ρ λJ αJ γJ H

LSV model
10 April 2015 42.5642 0.1804 0.0598 3.8964 −0.1343 0.0088 0.2545 0.1922 0.5130
29 April 2015 17.3866 0.0496 0.0611 4.0000 0.0111 0.0058 −1.0000 4.0000 0.5000

Heston model
10 April 2015 49.9995 0.1829 0.0632 2.3976 −0.0602
29 April 2015 20.8354 0.0569 0.0688 2.5694 −0.1425

Table 6. Calibration errors for weights wð3Þ, Apple Inc. stock options.
LSV model Heston model

Date GðΘ?Þ AARE (%) AAE ($) MAE ($) GðΘ?Þ AARE (%) AAE ($) MAE ($)

1 April 2015 223.85 4.16 0.32 1.42 346.61 5.49 0.34 1.50
2 April 2015 954.71 5.49 0.28 2.19 1368.39 4.58 0.26 1.77
6 April 2015 441.27 3.01 0.31 2.56 546.32 4.05 0.31 2.15
7 April 2015 501.13 3.42 0.31 1.28 665.78 4.33 0.35 1.81
8 April 2015 285.26 3.77 0.24 1.26 355.21 4.42 0.26 1.30
9 April 2015 697.95 3.67 0.37 1.58 715.79 4.07 0.37 1.55
10 April 2015 313.85 2.78 0.24 1.97 421.97 3.37 0.23 1.52
13 April 2015 588.05 3.15 0.24 1.25 704.98 3.31 0.26 1.27
14 April 2015 329.33 3.70 0.19 1.06 423.08 3.91 0.22 1.05
15 April 2015 408.80 3.44 0.27 1.72 542.65 3.80 0.25 1.29
16 April 2015 363.29 3.83 0.22 1.25 464.46 4.20 0.23 1.35
17 April 2015 453.36 3.06 0.20 1.14 544.60 3.20 0.21 1.08
20 April 2015 844.47 5.40 0.25 1.97 931.10 5.77 0.27 1.62
21 April 2015 686.47 5.46 0.22 1.80 856.57 4.32 0.25 1.50
22 April 2015 1711.37 5.03 0.42 3.15 1718.20 5.13 0.38 2.12
23 April 2015 693.37 3.97 0.24 1.22 700.66 3.83 0.22 1.15
24 April 2015 998.50 3.19 0.23 1.56 1062.61 3.21 0.22 1.37
27 April 2015 306.37 3.32 0.30 2.07 484.13 2.96 0.28 1.43
28 April 2015 1043.10 4.25 0.34 3.15 1093.86 3.76 0.35 3.60
29 April 2015 528.85 5.25 0.29 2.27 479.51 3.91 0.29 2.63
30 April 2015 517.68 3.92 0.20 1.33 527.31 3.88 0.20 1.28

Table 7. Stability of calibrated parameters.
Model Measure κ v0 �v � ρ λJ αJ γJ H

LSV Average abs. difference 5.671 0.024 0.003 0.963 0.232 0.006 1.017 1.434 0.0596
Standard deviation 11.110 0.049 0.003 0.976 0.294 0.006 1.331 1.459 0.084

Heston Average abs. difference 8.744 0.0344 0.003 0.921 0.142
Standard deviation 10.702 0.052 0.003 0.957 0.188
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In practice, one is typically interested in a real-data performance of a particular
model. To illustrate the quality of market fit, we introduced two empirical studies, both
of them included a comparison with a popular approach, the Heston model. In the fist
study, we utilized traded European call options on FTSE 100 index. Also, four different
optimization routines and three sets of calibration weights were applied. Heuristic
algorithms provided a solution that was suboptimal but (especially in case of GA) the
solution represented a good initial guess for a local-search method. Since the optimiza-
tion problem is non-convex, local routines, as the trust region or Levenberg–Marquardt
method, need to be initialized in the vicinity of a (global) minimum.

The second study involved 21 data sets, i.e. Apple Inc. call options for all trading days in
April 2015. This time, we applied GA and refined the solution by LSQ. On 20 days, LSV
approach outperformed Heston model having superior (weighted) residual sum of squares
as highlighted in Table 6. The inferior result on the data set from 29 April (parameters in
Table 5) was obtained after GA procedure provided initial guess that for three parameters
reached parameter bounds. The solution can be improved by providing better initial guess
(preferably not very close to parameter bounds) or by increasing bounds. We increased an
upper bound for � to 10 for both models,9 Heston solution for 29 April remained the same,
unlike under LSV where parameters changed to:

which provided GðΘÞ ¼ 473:61 and 4.15% AARE.
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Figure 5. Evolution of calibrated parameters v0, �v for both models.

κ v0 �v � ρ λJ αJ γJ H

18.3005 0.0544 0.0649 8.3030 −0.0753 0.0046 −1.0010 0.1477 0.5000
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We managed to calibrate the LSV model using combined optimization approaches
mostly with better error measures compared to the Heston model. This result was
expected, since the proposed model utilizes more parameters and thus has more degrees
of freedom to fit the market. However, this might not be the case of all stochastic
volatility models as was shown by Duffie, Pan and Singleton (2000). The authors
compare market fits of diffusion models with jumps in the underlying only to results
obtained by models with jumps both in the underlying and volatility process. Although
the latter approaches typically include more parameters, they might not provide a better
market fit of observed option prices.

The proposed LSV model might provide better market fit compared to Heston
model; however, an increased complexity of the calibration problem is the price one
has to pay. To improve this issue, one might derive a pricing formula using the complex
Fourier transform as suggested by Lewis (2000) for Heston model. Since calibrated
parameters do change over time, one might also be interested in a time-dependent
version of the LSV approach, either with piece-wise constant (Mikhailov and Nögel
2003) or functional parameters (Osajima 2007).

Another important aspect, which is out of scope of this paper, would be a compar-
ison of the empirical and model distribution for the underlying. We commented on
realized volatility time-series estimates of H which are only slightly greater than implied
values obtained by calibration of the LSV approach (w.r.t. FTSE 100 index).

Notes

1. A risk-neutral probability measure for this model is not uniquely defined due to the
incompleteness of the market, purely for derivatives pricing we do not need to specify it.
Comments on the equivalent martingale measures for classical stochastic volatility models
are available, for instance, in Sircar and Papanicolaou (1999) and references therein.

2. This assumption is taken into consideration in many jump-diffusion stock models, e.g. Bates
(1996).

3. This is possible due to the stochastic independence with diffusion processes and log-normal
distribution of the jumps, see Gatheral (2006).

4. In case of the presented approach, Θ? takes form: Θ? :¼ κ?; v?0;�v
?; �?; ρ?; λ?J ; α

?
J ; γ

?
J ;H

?
n o

5. Data set obtained from OMON Screen, Bloomberg L.P. 2014.
6. Other data sets possessed slightly narrower moneyness range.
7. In fact, GðΘ?Þ represents weighted least squares of the market fit.
8. One can calibrate the model using heuristic algorithms that evaluate model prices very

frequently.
9. Under Heston model, � represents volatility of volatility and thus, one would intuitively expect

that the increased upper bound would not affect the solution. Under the LSV approach,
however, vol. of vol. takes the following form, �εH�1=2 and thus, � might take greater values.
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In this paper we study optimization techniques for calibration of stochastic volatility models to real mar- 

ket data. Several optimization techniques are compared and used in order to solve the nonlinear least 

squares problem arising in the minimization of the difference between the observed market prices and 

the model prices. To compare several approaches we use a popular stochastic volatility model firstly in- 

troduced by Heston (1993) and a more complex model with jumps in the underlying and approximative 

fractional volatility. Calibration procedures are performed on two main data sets that involve traded DAX 

index options. We show how well both models can be fitted to a given option price surface. The routines 

alongside models are also compared in terms of out-of-sample errors. For the calibration tasks without 

having a good knowledge of the market (e.g. a suitable initial model parameters) we suggest an approach 

of combining local and global optimizers. This way we are able to retrieve superior error measures for all 

considered tasks and models. 

© 2016 Elsevier B.V. All rights reserved. 

1. Introduction 

In finance, stochastic volatility (SV) models are used to evalu- 

ate derivative securities, such as options. These models were de- 

veloped out of a need to modify the Nobel price winning ( Black & 

Scholes, 1973 ) model for option pricing, which failed to effectively 

take the volatility in the price of the underlying security into ac- 

count. The Black Scholes model assumed that the volatility of the 

underlying security was constant, while SV models consider it to 

be a stochastic process. Among the first publications about stochas- 

tic volatility models were Hull and White (1987) , Scott (1987) , 

Stein and Stein (1991) and Heston (1993) . 

Later several extensions to SV models were proposed. In partic- 

ular, to fit the short term prices, a model with stochastic volatility 

and jumps was introduced by Bates (1996) , who combined ap- 

proaches of Heston (1993) and Merton (1976) . Furthermore, in 

order to capture volatility clustering phenomenon in the SV model 

explicitly, long memory driving process in volatility was used for 

example by Intarasit and Sattayatham (2011) . This property is 

described by a long memory parameter named after hydrologist 

H. E. Hurst. Its value can be estimated from the realized volatility 

time-series as in Bollerslev and Mikkelsen (1996) , Breidt, Crato, 

and de Lima (1998) and Martens, van Dijk, and de Pooter (2004) , 

or it can be obtained from the calibration to the market data. 

∗ Corresponding author. Tel.: +420 37763 2675; fax: +420 37763 2602. 

E-mail addresses: mrazekm@ntis.zcu.cz (M. Mrázek), honik@ntis.zcu.cz 

(J. Pospíšil), sobotkat@ntis.zcu.cz (T. Sobotka). 

Calibration is the process of identifying the set of model pa- 

rameters that are most likely given by the observed data. Heston 

model was the first model that allowed reasonable calibration to 

the market option data together with semi-closed form solution 

for European call/put option prices. Heston model also allows cor- 

relation between the asset price and the volatility process as op- 

posed to Stein and Stein (1991) . Although the Heston model was 

already introduced in 1993 and several other SV models appeared, 

it is nowadays still one of the most popular models for option pric- 

ing. 

Many other SV models have been introduced since, including a 

more flexible version of the Heston model which involves time- 

dependent parameters. The case of piece-wise constant parame- 

ters in time is studied in Nögel and Mikhailov (2003) , a linear 

time dependence in Elices (2008) and a more general case is in- 

troduced in Benhamou, Gobet, and Miri (2010) . The later result in- 

volves only an approximation to the option price. However, Bayer, 

Friz, and Gatheral (2015) suggest that the general overall shape 

of the volatility surface does not change in time, at least to a 

first approximation. Hence, it is desirable to model volatility by 

a time-homogeneous process. Other generalizations of the Heston 

model with time-constant parameters include jump processes in 

asset price, in volatility or in both (see e.g Duffie, Pan, & Singleton, 

20 0 0 ). 

The industry standard approach to calibration is to minimize 

the difference between the observed prices and the model prices. 

Option pricing models are calibrated to prices observed on the 

market in order to compute over-the-counter derivative prices or 

http://dx.doi.org/10.1016/j.ejor.2016.04.033 
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hedge ratios. The complexity of the model calibration process in- 

creases with more realistic models and the fact that the estimation 

method of model parameters becomes as crucial as the model it- 

self is mentioned by Jacquier and Jarrow (20 0 0) . 

In our case, the input parameters cannot be directly observed 

from the market data, thus empirical estimates are of no use. 

It was well documented in Bakshi, Cao, and Chen (1997) that 

the model implied parameters differ significantly from their time- 

series estimated counterparts. For instance, the magnitudes of 

time-series correlation coefficient of the asset returns and its 

volatility estimated from the daily prices were much lower than 

their model implied counterparts. 

Moreover, the information observed from market data is insuf- 

ficient to exactly identify the parameters, because several sets of 

parameters may be performing well and provide us with model 

prices that are close to the prices observed on the market. This is 

what causes the ill-posedness of the calibration problem. 

The paper is organized as follows. In Section 2 we briefly intro- 

duce the stochastic volatility models under consideration, in par- 

ticular the Heston model and the approximative fractional model 

together with their semi-closed form solutions for vanilla options. 

In Section 3 we introduce the testing methodology – most impor- 

tantly we disclose how we measure the model performance, how 

calibration tasks are formulated and we also comment in detail on 

the data structure. Among the considered methods there are three 

global optimizers, i.e. genetic algorithm (GA), simulated annealing 

(SA) and adaptive simulated annealing (ASA) as well as the local 

search method (denoted by LSQ). 

In Section 4 we demonstrate how the optimization procedures 

can be used for the calibration problem on particular data sets. We 

will conclude our results in Section 5 . 

2. Stochastic volatility models 

2.1. Heston model 

Following Heston (1993) and Rouah (2013) we consider the 

risk-neutral stock price model: 

dS t = rS t dt + 

√ 

v t S t d ̃  W 

S 
t , (1) 

dv t = κ(θ − v t ) dt + σ
√ 

v t d ̃  W 

v 
t , (2) 

d ̃  W 

S 
t d ̃

 W 

v 
t = ρ dt, (3) 

with initial conditions S 0 ≥ 0 and v 0 ≥ 0 , where S t is the price of 

the underlying asset at time t , v t is the instantaneous variance at 

time t , r is the risk-free rate, θ is the long run average price vari- 

ance, κ is the rate at which v t reverts to θ and σ is the volatility of 

the volatility. ( ̃  W 

S , ̃  W 

v ) is a two-dimensional Wiener process under 

the risk-neutral measure ̃  P with instantaneous correlation ρ . 

Stochastic process v t is referred to as the variance process (also 

known as volatility process) and it is the square-root mean revert- 

ing process, CIR process ( Cox, Ingersoll, & Ross, 1985 ). It is strictly 

positive and cannot reach zero if the Feller condition 2 κθ > σ 2 is 

satisfied ( Feller, 1951 ). 

Heston SV model allows for a semi-closed form solution for 

vanilla option, which involves numerical computation of an inte- 

gral. Several pricing formulas were added to the original one by 

Heston (1993) in order to overcome numerical problems that the 

integrand poses. The following formulation by Albrecher, Mayer, 

Schoutens, and Tistaert (2007) eliminates the possible discontinu- 

ities in the integrand by only simple modifications of the original 

formula by Heston. Let K be the strike price and τ = T − t be the 

time to maturity. Then the price of a European call option at time 

t on a non-dividend paying stock with a spot price S t is 

V (S, v , τ ) = SP 1 − e −rτ KP 2 , (4) 

P j (x, v , τ ) = 

1 

2 

+ 

1 

π

∫ ∞ 

0 

Re 

[ 
e −iφ ln (K) f j (x, v , τ, φ) 

iφ

] 
dφ, 

where x = ln S and 

f j (x, v , τ, φ) = exp { C j (τ, φ) + D j (τ, φ) v + iφx } , 
and where 

C j (τ, φ) = rφiτ + 

a 

σ 2 

{ 

(b j − ρσφi − d) τ

− 2 ln 

[ 
1 − ge −dτ

1 − g 

] } 

, 

D j (τ, φ) = 

b j − ρσφi − d 

σ 2 

[ 
1 − e −dτ

1 − ge −dτ

] 
, 

g = 

b j − ρσφi − d 

b j − ρσφi + d 
, 

d = 

√ 

(ρσφi − b j ) 2 − σ 2 (2 u j φi − φ2 ) , 

for both j = 1 , 2 , where the parameters u j , a and b j are defined as 

follows: 

u 1 = 

1 

2 

, u 2 = −1 

2 

, a = κθ, b 1 = κ − ρσ, b 2 = κ. 

Different approaches are taken in e.g. Kahl and Jäckel (2005) , 

Lewis (20 0 0) or Zhylyevskyy (2012) . We will use here the formula 

by Lewis (20 0 0) , which is well-behaved and compared to the for- 

mulation by Albrecher et al. (2007) requires the numerical compu- 

tation of only one integral for each call option price. 

V (S, v , τ ) = S − Ke −rτ 1 

π

∫ ∞ + i/ 2 

0+ i/ 2 
e −ikX 

ˆ F (k, v , τ ) 

k 2 − ik 
dk, (5) 

where X = ln (S/K) + rτ and 

ˆ F (k, v , τ ) = exp 

(
2 κθ

σ 2 

[ 
q g − ln 

(
1 − he −ξq 

1 − h 

)] 
+ 

+ v g 
(

1 − e −ξq 

1 − he −ξq 

))
, 

where 

g = 

b − ξ

2 

, h = 

b − ξ

b + ξ
, q = 

σ 2 τ

2 

, 

ξ = 

√ 

b 2 + 

4(k 2 − ik ) 

σ 2 
, 

b = 

2 

σ 2 

(
ikρσ + κ

)
. 

The Lewis formula (5) uses the (inverse) complex Fourier trans- 

form of the so called fundamental transform 

ˆ F (k, v , τ ) , where k 

is complex-valued. Given the fundamental transform (of the cor- 

responding pricing partial differential equation) one can obtain an 

option price for different particular payoff functions, not only the 

European call. Equivalence of the Lewis and Heston (and hence Al- 

brecher) formulas can be found for example in Baustian, Mrázek, 

Pospíšil, and Sobotka (2016) . 

2.2. Model with approximative fractional stochastic volatility 

We also consider a model with approximative fractional 

stochastic volatility that was motivated by Intarasit and Sattay- 

atham (2011) and firstly introduced by Pospíšil and Sobotka (2015) . 

Under a risk-neutral measure, the model dynamics takes the fol- 

lowing form: 

dS t = (r − λβ) S t dt + 

√ 

v t S t d ̃  W 

S 
t + S t− dQ t , (6) 

dv t = κ(θ − v t ) dt + σ
√ 

v t d ̃  B 

ε,H 
t , (7) 
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where κ , θ , σ are model parameters, such that, κ is a mean- 

reversion rate, θ stands for an average volatility level and finally, 

σ is so-called volatility of volatility. Under the notation S t− we 

understand lim k → t− S k . (W 

S 
t ) t≥0 is a standard Wiener process and 

( Q t ) t ≥ 0 is a compound Process with E [ Q t ] = λβt, i.e. jumps occur 

with intensity λ and jump sizes are i.i.d. random variables with 

common mean β . Similarly to the Bates (1996) model, we will con- 

sider log-normally distributed jump sizes with mean μJ , variance 

σ J and hence with 

β = exp 

{ 

μJ + 

1 

2 

σ 2 
J 

} 

− 1 . (8) 

. 

A stochastic process (B ε,H 
t ) t≥0 can be formally defined as 

B 

ε,H 
t = 

∫ t 

0 

(t − s + ε) H−1 / 2 dW s , (9) 

where H is a long-memory parameter, ε is a non-negative 

approximation factor ( Pospíšil & Sobotka, 2015 ) and, as pre- 

viously, ( W t ) t ≥ 0 represents a standard Wiener process. Thao 

(2006) showed that for ε → 0 , (B ε,H 
t ) ε converges uniformly to a 

non-Markov process and H in that case coincides with the well- 

known Hurst parameter ranging in [0, 1]. For financial applications 

we are interested in a long-range dependence of volatility, there- 

fore we consider H ∈ (0.5, 1]. Moreover, if ε > 0 then B ε,H 
t is a 

semi-martingale ( Zähle, 1998 ). Hence, the Itô stochastic calculus 

can be used when deriving an explicit model price for European 

options. Stochastic integral with respect to B ε,H 
t is defined for ar- 

bitrary stochastic process with bounded variation ( G t ) t ≥ 0 as ( Thao 

& Nguyen, 2002 ) ∫ t 

0 

G s d B 

ε,H 
s := G t B 

ε,H 
t −

∫ t 

0 

B 

ε,H 
s d G s −

[
G, B 

ε,H 
]

t 
, (10) 

provided the right-hand side integral exists in a Riemann–Stieltjes 

sense, while [ G , B ε, H ] t being a quadratic variation of G t B 
ε,H 
t . 

According to Thao (2006) (Lemma 2.1) we can write the ap- 

proximative fractional Brownian motion 

˜ B ε,H 
t as 

d ̃  B 

ε,H 
t = (H − 1 / 2) ψ t dt + ε H−1 / 2 d ̃  W 

v 
t (11) 

where H > 1/2 and ψ t is a stochastic process defined by the Itô

integral 

ψ t = 

∫ t 

0 

(t − s + ε) H−3 / 2 dW 

ψ 

s . 

We substitute (11) into (7) to get the market dynamics in the 

form, 

dS t = (r − λβ) S t dt + 

√ 

v t S t d ̃  W 

S 
t + S t−dQ t , (12) 

dv t = 

[
(H − 1 / 2) ψ t σ

√ 

v t + κ(θ − v t ) 
]
d t + ε H−1 / 2 σ

√ 

v t d ̃  W 

v 
t . (13) 

To mimic the stock-volatility leverage effect, we will also as- 

sume that both Wiener processes ˜ W 

S 
t and 

˜ W 

v 
t are instantaneously 

correlated, i.e. 

d ̃  W 

S 
t d ̃

 W 

v 
t = ρ dt. (14) 

The above described setting is referred to as the FSV model 

throughout this text. In the calibration problem for the FSV 

model, the vector of parameters to be optimized will be 

� = (v 0 , κ, θ, σ, ρ, λ, μJ , σJ , H) . Their meaning is summarized in 

Table 1 . 

Pospíšil and Sobotka (2015) showed that the semi-closed for- 

mula for the European call option price V expiring at time T with 

pay-off (S T − K) + , where K is a strike price of the contract, has the 

form 

V (S, v , τ ) = e −rτ
E 

[
(S T − K) + 

]
= SP 1 (S, v , τ ) − e −rτ KP 2 (S, v , τ ) , 

Table 1 

List of FSV model parameters. 

v 0 κ θ

Initial volatility Mean reversion rate Average volatility 

σ ρ λ

Volatility of volatility Correlation coef. Poisson intensity 

μJ σ J H 

Expected jump size Variance of jump sizes Hurst parameter 

where τ = T − t is time to maturity and P 1 , P 2 are risk-neutral 

probabilities that option expires in the money conditional on the 

value of S and finally r is assumed to be a uniquely determined 

risk-free rate constant. Pospíšil and Sobotka (2015) derived P 1 , P 2 
in terms of characteristic functions. Recently, a new approach to 

SVJD models was proposed by Baustian et al. (2016) . It uses a sim- 

ilar techniques as Lewis used for the Heston model. 

The problem of pricing an option in a model with jumps 

corresponds to a partial integro-differential equation (PIDE), see 

Hanson (2007 , Theorem 7.7). Denoting x = ln S we get the PIDE for 

f (x, v , τ ) = V (e x , v , τ ) 

f τ = −r f + (r − λβ − 1 

2 

v ) f x + [(H − 1 / 2) ψσ
√ 

v + κ(θ − v )] f v 

+ 

1 

2 

v f xx + 

1 

2 

ε 2 H−1 σ 2 v f vv + ε H−1 / 2 ρσv f x v 

+ λ

∫ ∞ 

−∞ 

[ f (x + y, v , t) − f (x, v , t) ] ϕ(y ) dy, (15) 

where 

ϕ(y ) = 

1 

σJ 

√ 

2 π
exp 

{
− (y − μJ ) 

2 

2 σ 2 
J 

}
, 

ψ = ψ t and subindices denote corresponding partial derivatives, 

e.g. f x v = 

∂ 2 f 
∂ x∂ v , etc. 

We want to apply the complex Fourier transform like in Lewis 

(20 0 0 , chap. 2), 

F [ f ] = 

ˆ f (k, v , τ ) = 

∫ ∞ 

−∞ 

e ikx f (x, v , τ ) dx 

with the inverse transform 

F 

−1 [ ̂  f ] = f (x, v , τ ) = 

1 

2 π

∫ ∞ + ik i 

−∞ + ik i 
e −ikx ˆ f (k, v , τ ) dk, 

where k i is some real number such that the line (−∞ + ik i , ∞ + 

ik i ) is in some strip of regularity depending on the restrictions 

given by the payoff ( Baustian et al., 2016; Lewis, 20 0 0 ). After the 

Fourier transform, PIDE (15) becomes 

ˆ f τ = [ −r − ik (r − λβ) ] ̂  f − c(k ) v ̂  f 

+ [(H − 1 / 2) ψσ
√ 

v + κ(θ − v ) − ikρσv ] ̂  f v 

+ 

1 

2 

ε 2 H−1 σ 2 v ̂  f vv + λ ˆ f [ ̂  ϕ (−k ) − 1] , (16) 

where 

ˆ ϕ (k ) = exp 

{ 

iμJ k − 1 

2 

σ 2 
J k 2 

} 

(17) 

and 

c(k ) = 

1 

2 

(k 2 − ik ) . (18) 

Let 

ˆ F (k, v , τ ) = exp 

(
−[ −r − ik (r − λβ) + λ( ̂  ϕ (−k ) − 1) ] τ

)
× ˆ f (k, v , τ ) . 
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Then from (16) we get 

ˆ F τ = 

1 

2 

ε 2 H−1 σ 2 v ̂  F vv 

+ 

[
(H − 1 / 2) ψ t σ

√ 

v + κ(θ − v ) − ikρε H−1 / 2 σv 
]

ˆ F v + c(k ) v ̂  F . 

Solution to this equation with initial condition 

ˆ F (k, v , 0) = 1 is 

referred to as the fundamental solution. We are looking for the so- 

lution in the form 

ˆ F (k, v , τ ) = exp (C(k, τ ) + D (k, τ ) v ) , 

where C and D do not depend on v . After substitution we get 

C τ + D τ v = 

1 

2 

ε 2 H−1 σ 2 v D 

2 

+ 

[
(H − 1 / 2) ψσ

√ 

v + κ(θ − v ) − ikρε H−1 / 2 σv 
]
D 

+ c(k ) v , 

with initial values C(k, 0) = D (k, 0) = 0 . We recall that ψ = ψ t is a 

martingale and ψ 0 = E [ ψ t ] = 0 . Hence 

v 
[ 
−D τ + 

1 

2 

ε 2 H−1 σ 2 D 

2 −
(
κ + ikρε H−1 / 2 σ

)
D − c(k ) 

] 
− C τ + κθD = 0 . (19) 

Since (19) must hold for all v we can split it into a system of 

two equations 

D τ = 

1 

2 

ε 2 H−1 σ 2 D 

2 −
(
κ + ikρε H−1 / 2 σ

)
D − c(k ) , (20) 

C τ = κθD. (21) 

Eq. (20) is a Ricatti equation and can be solved explicitly, see for 

example Pospíšil and Sobotka (2015 , Proposition 2.1), and then we 

get C by integrating (21) . Pricing formula for the FSV model is 

V (S, v , τ ) = S − Ke −rτ 1 

2 π

∫ ∞ + i/ 2 

−∞ + i/ 2 
e −ikX 

ˆ F (k, v , τ ) 

k 2 − ik 
φ(−k ) dk, (22) 

with 

X = ln 

S 

K 

+ rτ, 

ˆ F (k, v , τ ) = exp (C(k, τ ) + D (k, τ ) v ) , 

C(k, τ ) = κθY τ − 2 κθ

B 

2 
ln 

(
1 − ge −dτ

1 − g 

)
, 

D (k, τ ) = Y 
1 − e −dτ

1 − ge −dτ
, 

Y = −k 2 − ik 

b + d 
, 

g = 

b − d 

b + d 
, 

d = 

√ 

b 2 + B 

2 (k 2 − ik ) , 

b = κ + ikρB, 

B = ε H−1 / 2 σ, 

φ(k ) = exp 

{ 

−iλβkτ + λτ
[ 

ˆ ϕ (k ) − 1] 

] } 

. 

and β is given in (8) and ˆ ϕ (k ) in (17) . We will use this formula in 

our calibration tasks below. 

3. Methodology and optimization techniques 

The model calibration is formulated as an optimization prob- 

lem. The aim is to minimize the pricing errors between the model 

prices and the market prices for a set of traded options. A common 

approach to measure these errors is to use the squared differences 

between market prices and prices returned by the model, this ap- 

proach leads to the nonlinear least square method 

inf 
�

G (�) , 

G (�) = 

N ∑ 

i =1 

w i | ν�
i (τi , K i ) − ν∗

i (τi , K i ) | 2 , (23) 

where N denotes the number of observed option prices, w i is a 

weight, ν∗
i 
(τi , K i ) is the observed market price of the call option 

and ν�(τi , K i ) denotes the model price computed using (4), (5) or 

(22) and the vector of model parameters �. 

The function G is an objective function of the optimization 

problem (23) and it is neither convex nor of any particular struc- 

ture. It may have more than one global minimum and it is not 

possible to tell whether a unique minimum can be reached by gra- 

dient based algorithm. When searching for the global minimum, a 

set of linear constraints must be also added to the problem, be- 

cause of the parameters values. For example in Heston SV model, 

ρ represents correlation coefficient and thus ρ needs to only attain 

values within the interval [ −1 , 1] . 

Local deterministic algorithms can be used to solve the calibra- 

tion problem, but there is significantly high risk for them to end 

up in a local minimum, also initial guess needs to be provided for 

them, which appears to affect the performance of local optimizers 

severely. 

Different take on the calibration is represented by the regular- 

ization method. Penalization function, e.g., f ( �) such that 

inf 
�

G (�) + α f (�) 

is convex, is added to the objective function (23) , which enables 

the usage of gradient based optimizing procedures. This method 

yields another parameter to be estimated α, which is called regu- 

larization parameter. More details on this approach can be seen in 

Cont and Hamida (2005) . 

3.1. Considered algorithms 

Facing the calibration problem (23) , we consider both global 

and local optimizers for the calibration of models to the real 

market data. Global optimizers are represented by genetic al- 

gorithm (GA), simulated annealing (SA) and adaptive simulated 

annealing (ASA). GA and SA are available in MATLAB’s Global 

Optimization Toolbox, 1 for ASA there exists a MATLAB gateway 

routine 2 to Lester Ingber’s ASA software. 3 

Genetic algorithm is inspired by the natural selection, the pro- 

cess that drives biological evolution. GA repeatedly modifies a pop- 

ulation of individual solutions to the minimization problem. At 

each iteration individuals are selected at random from the current 

population to become parents and uses them to produce their chil- 

dren, the next generation. The same individual can appear more 

than once in the population. Populations in successive generations 

then lead down to an optimal solution – a global minimum. Based 

on empirical trials, we chose the size of the population to be 100 

and the number of generations to be 500. In Heston case, num- 

ber of variables in the fitness (objective) function (23) is 5, i.e. the 

population is represented by a 100-by-5 matrix. In FSV case it is 

100-by-9 matrix. 

To create a new generation from the current population, GA 

uses three types of rules. In our case we used a stochastic uniform 

selection , heuristic crossover (positive preference of the parent with 

higher fitness) and a Gaussian distribution for mutations . 

1 mathworks.com/help/gads , functions ga() and simulannealbnd(). 
2 ssakata.sdf.org/software , function asamin(). 
3 ingber.com/#ASA . 

http://mathworks.com/help/gads
http://ssakata.sdf.org/software
http://ingber.com/#ASA
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The algorithm stops when one of the stopping criteria is met, 

either the maximum number of generations is reached or if the 

average relative change in the best fitness function value is less 

than a specified tolerance, we used the order of 1e-12 . 
Simulated annealing, first introduced by Metropolis, Rosenbluth, 

Rosenbluth, Teller, and Teller (1953) , is a an optimization method 

inspired by the physical process of cooling down a hot metallic 

material. This process is called annealing and during the slow pro- 

cess of cooling a minimum energy structure is reached. At each 

iteration of the SA algorithm, a new point is randomly generated. 

The distance of the new point is based on a given probability dis- 

tribution with a step-size proportional to the a parameter called 

”temperature”. SA accepts both new points that lower the objec- 

tive function, as well as points that raise the objective function (to 

avoid a possible trap in local minima). An annealing schedule is se- 

lected to decrease the temperature at each iteration step. Similarly 

to the physical real process of annealing, the chances of finding an 

optimal solution are higher when the rate of temperature decrease 

is slower. Price paid is the longer annealing time, and hence the 

computational cost. 

Adaptive simulated annealing introduces an annealing schedule 

for temperature that is decreasing exponentially. The proposed re- 

annealing Ingber (1989) also permits adaptation to changing sen- 

sitivities in the multi-dimensional parameter-space. According to 

Ingber, re-annealing with adaptation is faster than fast Cauchy an- 

nealing and much faster than Boltzmann annealing. ASA software 

has over 100 options to provide robust tuning of our optimization 

problem. Their complete description goes beyond the scope of this 

article. Only slight modifications to the default option values lead 

to good optimization results mentioned below. 

Although global optimizers can give us a reasonably good min- 

imum, the value of the objective function can be further reduced 

by applying a local minimizer. This approach – a combination of 

global and local minimizers – approved to be the most efficient 

optimization strategy. Local optimizers can perform very well on 

their own when looking for the local minima, but a choice of initial 

starting point is crucial and obtained results can be very sensitive 

to this choice. 

Local search method (denoted by LSQ) for nonlinear least 

squares problems is available in MATLAB’s Optimization Toolbox 4 

as function lsqnonlin() that implements the Gauss–Newton 

trust-region-reflective method with the possibility of choosing the 

Levenberg–Marquardt algorithm. Next to MATLAB, it is also possi- 

ble to use the MS Excel’s solver that implements generalized re- 

duced gradient method. Although it has been shown that MS Ex- 

cel’s solver can perform calibration tasks well for the Heston model 

( Mrázek, Pospıšil, & Sobotka, 2014 ), we excluded it from our tests 

due to computational inefficiency. Recently we also performed the 

optimization using the variable metric methods for nonlinear least 

squares as they are introduced in Lukšan and Spedicato (20 0 0) , but 

we abandoned the results here since for large values of the utility 

function this method behaved badly and for the values that were 

close to the minima (for example those obtained from the global 

optimizers) the performance was comparable to the Gauss–Newton 

method. 

3.2. Measured errors 

As a criterion for the performance evaluation of the optimizing 

methods we were recording the following errors: 

AARE (�) = 

1 

N 

N ∑ 

i =1 

| ν�
i 

− ν∗
i 
| 

ν∗
i 

; (24) 

4 mathworks.com/help/optim . 

MARE (�) = max 
i 

| ν�
i 

− ν∗
i 
| 

ν∗
i 

(25) 

for i = 1 , . . . , N. MARE denotes maximum absolute value of relative 

error and AARE is the average of the absolute relative error across 

all strikes and maturities. 

3.3. Considered weights 

Weights in (23) are denoted by w i . It makes sense to put the 

most weight where the most liquid quotes are on the market, 

which is usually around ATM. We employed the bid ask spreads 

δi > 0 with our market data and aimed to have the model prices 

close to the mid prices, that are considered as the market prices 

V ∗
i 

. Another approach might be to set weight function according to 

the Black–Scholes Vega Greek. The main idea behind this approach 

lies in the interpretation of obtained residuals – one can consider 

them as a first order approximation to implied volatility errors, see 

Christoffersen, Heston, and Jacobs (2009) . We decided not to limit 

ourselves with just one choice for the weight function, but to test 

more of these and explore any influence on the results caused by 

the particular choice of the weight function. The weights are de- 

noted by capital letters A, B, C, D and we also compare the results 

for the uniform weights E. 

weight A: w i = 

| δi | −1 ∑ N 
j=1 | δ j | −1 

, (26) 

weight B: w i = 

δ−2 
i ∑ N 

j=1 δ
−2 
j 

, (27) 

weight C: w i = 

δ−1 / 2 
i ∑ N 

j=1 δ
−1 / 2 
j 

, (28) 

weight D: w i = 

Vega 2 i ∑ N 
j=1 Vega 2 i 

, (29) 

weight E: w i = 

1 

N 

. (30) 

For weights A–C the following holds: the bigger the spread the 

less weight is put on the particular difference between the model 

price and the market price (mid price) during the calibration pro- 

cess. The weights are also normalized, which does not effect ob- 

tained results, however one can easily compare values of the util- 

ity function (23) for different weights. Weights of each contract 

are available as a supplementary material of Pospíšil and Sobotka 

(2016) . 

3.4. In-sample vs. Out-sample data 

Two market data set were used for empirical comparison of the 

models and algorithms: 

• 97 ODAX calls traded on March 18, 2013 ranging from 86 . 5 per- 

cent to 112 . 0 percent moneyness across 5 maturities from ca. 

13.5 weeks to 1.76 years; 
• 107 ODAX calls traded on March 19, 2013 ranging from 88 . 5 

percent to 112 . 2 percent moneyness across 6 maturities from 

ca. 13.4 weeks to 1.75 years. 

Both data sets were obtained using Bloomberg’s Option Monitor 

and they comprise of call contracts on the Deutsche Boerse AG 

German Stock Index (DAX). A systematic illustration of the data 

structure is conveniently shown in Fig. 1 . As the risk-free rate we 

took the corresponding EURIBOR rate. The primary data set was 

used only to compare the in-sample calibration errors defined by 

(24) and (25) respectively. The larger data set was used for 

i. out-of-sample comparison, 

ii. computation of prediction errors. 

http://mathworks.com/help/optim
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Fig. 1. Option price structure in the strike/maturity plane for the primary data set (18/3/2013) on the left and for the secondary set (19/3/2013) on the right side of the 

figure respectively. The center of each circle corresponds to the strike/maturity parameters of the traded contract, circle diameter is proportionate to the option premium. 

Data source: Bloomberg Finance L.P. 
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Fig. 2. Calibration results for the FSV model using SA (left figure) and SA combined with LSQ. 

The first task was performed for both models and all combined 

approaches by dividing the set into two – we separated 71 op- 

tions for calibration task and the rest (36 options) was included 

in the out-of-sample set. This provided us with error measures of 

two types, we evaluated (24) and (25) for both out-of-sample and 

calibration set. 

The second task was motivated by the assumption of time- 

constant parameters employed by both models. Each model was 

calibrated on the primary data set (close prices of March 18, 2013) 

and then the introduced errors were evaluated on data from the 

consequent trading day. The structure of both sets is similar, how- 

ever the second out-of-sample set is larger and involves one more 

time to maturity. Hence, we do not expect as good results, but we 

would like to find out whether the calibration procedures intro- 

duced with respect to the models are robust enough to provide a 

reasonable market fit for the next trading day. 

A complex robust and uncertainty analyses of SV models based 

on equity option markets can be found in Pospíšil, Sobotka, and 

Ziegler (2016) . 

4. Empirical results 

4.1. Primary data set: in-sample calibration results 

For the task of model calibration we chose to adopt the ap- 

proach of combining the global and local optimizers. We would 

start with a global optimizer (GA, SA, ASA) and provide the re- 

sult as an initial guess to a local optimizer (LSQ). The global op- 

timizers were quite often unable to provide competitive results for 

both models on their own (see Table 4 , 5 and Fig. 2 ). Using only 

a local optimizer without a good initial guess, on the other hand, 

one might struggle to obtain calibrated parameters that correspond 

to a reasonably good market fit. Combining the routines, however, 

were able to retrieve significantly better error measure values for 

both models and all sets of weights. 

GA and SA algorithms provided us with calibrated parameters 

of the Heston model that translated into average relative errors 

well over 1 percent and maximal relative errors topping 47 . 24 per- 

cent (SA, weights A). For the FSV model the situation was quite 
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Fig. 3. Results of calibration for pair GA and LSQ for weights C – Heston model on the left and FSV model on the right. 

Fig. 4. Results of calibration for pair SA and LSQ for weights E – Heston model on the left and FSV model on the right. 

similar, only with better values of measured errors, that never ex- 

ceeded maximal error of 37 . 74 percent. Adaptive simulated anneal- 

ing was the only global approach that got close to 1 percent AARE 

for the Heston model and reached 0 . 59 percent AARE for the FSV 

model. One can argue that the results are effected by algorithm 

settings, but in our case when increasing the number of total gen- 

erations (GA) or the number of re-annealings (SA, ASA) we did not 

get significantly better results in a reasonable time-frame. 

Combination of global and local optimizers provided us with 

superior results. The best market fit with respect to the Heston 

model was retrieved for weights B, reading 0 . 50 percent AARE and 

2 . 81 percent MARE. In this case we also managed to show that 

all global routines served the local optimizer with a suitable ini- 

tial guess. The FSV model calibrated using SA+LSQ reached even 

better market fit, in terms of AARE we obtained 0 . 39 percent and 

0 . 38 percent for weights B and A respectively. However, we did 

not manage to get as good results for weights B and combined GA 

approach and similarly ASA failed to provide a good initial guess 

for the local optimizer – we ended up with a result comparable to 

the Heston model, despite using an approach with more degrees of 

freedom. Nevertheless, the FSV model calibrated using combined 

approaches was much more consistent with the shortest maturity 

call options (see Figs. 3 and 4 ). 

To justify a combination of global and local optimizers one also 

has to take into consideration the time consumed by the calibra- 

tion trial. Computational times were measured on a reference PC 

equipped with 16 gigabytes RAM and Intel i7-4770K CPU. Codes 

were run on MATLAB R2015a and MS Windows (x64) platform. 

Calibration times for global optimizers exceeded significantly those 

obtained by the LSQ routine itself. ASA took the most time by far, 

but this was mainly due to the overhead that was caused by call- 

ing the asamin wrapper. A calibration of the FSV model consumed 

similar amount of time as in case of the Heston model with pric- 

ing formula (4) . However, one integral formula proposed by Lewis 

(20 0 0) fastened the calibration process which we have shown in 

Table 4 . 

Calibration trials with Black–Scholes Vega weights (weights D) 

were typically outperformed by trials with different weights in the 

utility function, which became especially significant for combined 

approaches and the Heston model. All in-sample results are con- 

veniently shown in Table 4 and 5 for the Heston and FSV model 

respectively and are also visually depicted in supplementary mate- 

rials of Pospíšil and Sobotka (2016) . 

4.2. Secondary data set: out-of-sample and prediction errors 

On the secondary data set, as was expected, we managed to get 

better in-sample errors out of the FSV model. Average relative cali- 

bration errors ranged from 0.45 percent to 0.61 percent for the FSV 

model and from 0.63 percent to 0.79 percent for the Heston model 

respectively. In terms of maximal errors, the difference between 

the two considered models is similar. More importantly, we were 

able to show that the out-of-sample errors were of the same or- 

der as the calibration ones and also that the option prices surface 

generated by the FSV model remained consistent with our out-of- 

sample data set. Hence, in this case we were also able to retrieve 

better fit compared to the simpler Heston model. As previously, we 

also noticed that weights D were least suitable for the calibration 

task with respect to the non-weighted errors, see Table 2 . 
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Table 2 

Results for the secondary data set – out-of-sample errors. 

In-sample errors Out-of-sample errors 

Model Algorithm Weights G ( �) AARE (percent) MARE (percent) AARE (percent) MARE (percent) 

FSV GA+LSQ A 0.063 0.45 1.89 0.46 1.65 

GA+LSQ B 0.100 0.61 2.52 0.70 5.06 

GA+LSQ C 0.079 0.45 1.71 0.46 1.71 

GA+LSQ D 0.124 0.53 3.51 0.63 5.96 

GA+LSQ E 0.101 0.48 2.40 0.49 2.27 

SA+LSQ A 0.063 0.45 1.89 0.46 1.65 

SA+LSQ B 0.042 0.47 2.39 0.54 3.31 

SA+LSQ C 0.022 0.45 1.71 0.46 1.71 

SA+LSQ D 0.124 0.53 3.51 0.63 5.96 

SA+LSQ E 0.101 0.47 2.41 0.50 2.29 

Heston GA+LSQ A 0.117 0.65 2.42 0.69 2.67 

GA+LSQ B 0.081 0.63 1.77 0.66 2.08 

GA+LSQ C 0.137 0.67 3.66 0.73 4.07 

GA+LSQ D 0.160 0.79 7.45 0.90 8.20 

GA+LSQ E 0.160 0.72 5.01 0.80 5.58 

SA+LSQ A 0.117 0.65 2.42 0.69 2.67 

SA+LSQ B 0.081 0.63 1.77 0.66 2.08 

SA+LSQ C 0.137 0.67 3.66 0.73 4.07 

SA+LSQ D 0.160 0.79 7.45 0.90 8.20 

SA+LSQ E 0.160 0.72 5.01 0.80 5.58 

Table 3 

Results for the secondary data set – prediction errors. 

Prediction errors 

Model Algorithm Weights AARE (percent) MARE (percent) 

FSV GA+LSQ A 2.12 8.04 

GA+LSQ B 2.15 9.18 

GA+LSQ C 2.06 7.33 

GA+LSQ D 2.10 7.92 

GA+LSQ E 2.02 7.51 

SA+LSQ A 2.12 8.04 

SA+LSQ B 2.17 8.30 

SA+LSQ C 2.06 7.33 

SA+LSQ D 1.87 6.47 

SA+LSQ E 2.02 7.49 

Heston GA+LSQ A 2.18 10.58 

GA+LSQ B 2.13 9.21 

GA+LSQ C 2.19 11.36 

GA+LSQ D 2.23 11.14 

GA+LSQ E 2.21 12.08 

SA+LSQ A 2.18 10.58 

SA+LSQ B 2.13 9.21 

SA+LSQ C 2.19 11.36 

SA+LSQ D 2.23 11.14 

SA+LSQ E 2.21 12.08 

Prediction results comprised of much greater average errors 

( Table 3 ) – this observation could be partly caused by a slight dif- 

ference in the March 19 data structure. As previously, the FSV ap- 

proach provided a bit more robust results. For instance, the maxi- 

mal errors never exceeded 10 percent unlike in case of the Heston 

model. The overall results, however, were not as good as we ob- 

served before and average error measures are of the similar mag- 

nitude for both models. 

On the other hand, calibrated parameters from the previous day 

appeared to be good choices of initial parameters for the local 

search method. Using these parameters we were able to retrieve 

similar calibration errors as for the combined approaches used on 

the 19 March data set. 

5. Conclusion 

In this paper, we compared several optimization approaches to 

the problem of option market calibration. For the empirical study 

we chose a popular SV model, firstly introduced by Heston (1993) , 

and a more up to date approximative fractional jump-diffusion 

model (FSV) alongside DAX index call options. The primary data 

set involved contracts traded on 18 March 2013, the secondary set 

used also for an out-of-sample comparison comprised of market 

data from 19 March 2013. 

The corresponding optimization problem is non-convex and 

may contain many local minima, hence any local search method 

without a good initial guess may lead to unsatisfactory results. 

We have shown that the global optimizers on their own were un- 

able to provide a very good market fit in a reasonable time frame. 

The calibrated parameters thereby obtained, however, appeared to 

be (in most cases) an appealing choice of initial guess for the lo- 

cal search method LSQ. This method further helped to improve all 

measured errors significantly, reaching 0 . 50 percent average abso- 

lute relative error (AARE) and 2 . 81 percent maximal absolute rela- 

tive error (MARE) for weights B and the Heston model while also 

preserving time efficiency. The FSV model with one integral for- 

mula introduced in Section 2 was able to fit the market with 0.38 

percent AARE for weights A and with initial guess provided by sim- 

ulated annealing method (SA). 

In case of the simpler Heston model, all global routines pro- 

vided a sub-optimal solution in the neighborhood of the same local 

minima. Hence using any suggested combined approach we were 

able to get a satisfying result with respect to a particular weight 

function. For a more complex model, this might not be the case, 

which we illustrated on the FSV model. Best results (in terms of 

stability and absolute errors) were obtained for SA combined with 

LSQ, followed by genetic algorithm (GA) with the local refinement. 

Although adaptive simulated annealing (ASA) provided best results 

of all global optimizers alone, we conclude those parameters were 

typically the worst initial guesses for the local optimizer and thus 

this is not favorable routine for combined approaches, especially in 

case of the FSV model. 

Another important aspect of calibration routines is the compu- 

tational efficiency. We measured the amount of time it took to get 

the calibrated parameters. The greatest amount of time was con- 

sumed by global methods, especially by ASA which also included 

a costly overhead at each function evaluation. 5 In comparison, the 

refinement by LSQ is swift, especially for the Heston model. For 

5 This is however an implementation issue that might be cured by writing all 

codes in C. 
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the FSV model LSQ took slightly more time – it does N + 1 function 

evaluations at each step, where N is the number of model parame- 

ters. However, despite having more degrees of freedom, the time of 

FSV calibration is similar (and typically shorter) to the calibration 

of Heston model using solution (4) . We have also shown, on the 

other hand, that the Heston model calibration could be fastened by 

employing Lewis (20 0 0) pricing formula. For the FSV model, the 

best overall approach for our data sets, taking also the computa- 

tional time into consideration, turned out to be a combination of 

SA + LSQ alongside weights that take into account ask-bid spreads 

(weights A–C). 

Investigation of optimization techniques for calibration of 

stochastic volatility models is an ongoing research. The presence of 

the numerical integral with several parameters affects the speed of 

calibration, which is crucial for practical use of the models. This is 

pointed out by Date and Islyaev (2015) , who suggest a new ran- 

dom volatility model, which is computationally significantly less 

demanding to calibrate due to the use of Taylor series expansion 

of the option price. Their numerical experiments show for exam- 

ple that their high order moment-based stochastic volatility model 

can keep up with Heston model in terms of accuracy despite the 

easy pricing formula. 

Possible performance and accuracy improvements of Gauss–

Newton methods used in our case involve precalculation of gradi- 

ents or Hessian matrix of objective functions which is rather com- 

plicated task even under the Heston model dynamics. Another pos- 

sibility is to use the variable metric methods for nonlinear least 

squares as they are introduced in Lukšan and Spedicato (20 0 0) . 

Complexity of the FSV model then opens space for fine tuning 

the global optimizers whose implementation in parallel and dis- 

tributed computing environments is a further issue. 
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Appendix A. Calibration results in detail 

Table 4 

Calibration results for March 18, 2013 – Heston model. 

Algorithm Weight AARE (percent) MARE (percent) Time (seconds) a v 0 κ θ σ ρ

GA A 2.33 9.76 180 (305) 0.02756 14.15620 0.03927 1.88249 −0.71580 

GA B 1.34 6.76 179 (308) 0.04550 9.19613 0.04531 2.50198 −0.59138 

GA C 2.15 9.02 182 (308) 0.03638 18.96873 0.04221 3.49958 −0.65120 

GA D 2.65 13.41 254 (339) 0.02489 31.13232 0.03901 3.99901 −0.70506 

GA E 2.62 17.92 195 (327) 0.03175 19.62524 0.04436 3.98662 −0.67873 

SA A 4.08 47.24 38 (99) 0.03956 1.17994 0.10314 1.73777 −0.33177 

SA B 4.35 14.90 91 (248) 0.01332 11.08051 0.03625 0.92149 −0.48677 

SA C 3.15 23.27 64 (84) 0.01474 14.25742 0.04043 1.65886 −0.80250 

SA D 2.97 29.44 107 (289) 0.03910 19.28854 0.04099 2.87547 −0.82827 

SA E 2.96 11.36 151 (200) 0.01812 14.74490 0.03961 1.81461 −0.61193 

ASA A 1.05 7.70 319 (553) 0.03269 2.93130 0.05617 1.22382 −0.57411 

ASA B 1.38 7.61 326 (558) 0.04 86 8 11.30381 0.04606 3.16684 −0.57539 

ASA C 1.55 13.87 343 (538) 0.04877 8.43288 0.05322 3.39390 −0.53460 

ASA D 1.34 6.23 420 (838) 0.02978 2.81918 0.05719 1.14524 −0.60785 

ASA E 1.37 8.78 310 (534) 0.03817 5.17080 0.05457 2.11144 −0.55358 

GA+LSQ A 0.55 3.44 183 (307) 0.02747 1.09713 0.06823 0.57392 −0.65061 

GA+LSQ B 0.50 2.81 181 (312) 0.02757 1.27690 0.06406 0.59618 −0.66211 

GA+LSQ C 0.58 4.16 184 (311) 0.02728 0.96942 0.07129 0.54100 −0.65341 

GA+LSQ D 0.74 6.22 257 (342) 0.02608 0.53968 0.08948 0.39121 −0.69779 

GA+LSQ E 0.61 4.68 197 (330) 0.02696 0.83390 0.07497 0.49443 −0.66541 

SA+LSQ A 0.55 3.44 40 (102) 0.02747 1.09714 0.06823 0.57392 −0.65061 

SA+LSQ B 0.50 2.81 93 (251) 0.02757 1.27680 0.06406 0.59614 −0.66212 

SA+LSQ C 0.58 4.16 66 (88) 0.02728 0.96943 0.07129 0.54101 −0.65341 

SA+LSQ D 0.74 6.22 110 (292) 0.02608 0.53968 0.08948 0.39121 −0.69779 

SA+LSQ E 0.61 4.68 153 (204) 0.02696 0.83390 0.07497 0.49442 −0.66541 

ASA+LSQ A 0.55 3.44 321 (555) 0.02747 1.09710 0.06824 0.57390 −0.65061 

ASA+LSQ B 0.50 2.81 327 (560) 0.02757 1.27684 0.06406 0.59615 −0.66212 

ASA+LSQ C 0.58 4.16 345 (540) 0.02728 0.96946 0.07129 0.54102 −0.65341 

ASA+LSQ D 0.74 6.22 424 (842) 0.02608 0.53968 0.08948 0.39121 −0.69779 

ASA+LSQ E 0.61 4.68 311 (537) 0.02696 0.83389 0.07497 0.49442 −0.66541 

a Times in brackets are with respect to formula (4) . Due to implementation issues, computational times for ASA are significantly greater than 

times of other approaches. 

http://dx.doi.org/10.13039/501100001824
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Table 5 

Calibration results for March 18, 2013 – FSV model. 

Algorithm Weight AARE (percent) MARE (percent) Time (seconds) a v 0 κ θ σ ρ λ μJ σ J H 

GA A 2.88 37.74 262 0.05649 1.03334 0.17120 3.24594 −0.50095 0.25879 −0.07312 0.01975 0.50599 

GA B 1.20 4.94 280 0.02833 4.70411 0.04184 1.76938 −0.73438 9.13326 0.01486 0.00172 0.58135 

GA C 1.43 6.89 251 0.02900 7.47922 0.04577 3.52082 −0.69418 2.71330 −0.04831 0.0 0 051 0.53266 

GA D 1.71 19.32 265 0.03126 0.26349 0.19881 3.48131 −0.53215 0.03496 −0.06160 0.03224 0.72626 

GA E 1.58 20.40 255 0.02409 2.79933 0.02564 3.95672 −0.28680 0.19449 −0.24111 0.26883 0.71469 

SA A 1.44 11.70 114 0.01975 0.11422 0.10905 2.17402 −0.47231 0.06968 −0.53671 0.57367 0.81586 

SA B 3.26 22.85 118 0.01659 0.0 0 0 01 0.91156 3.70953 0.24377 0.06427 −1.58758 1.06552 0.94404 

SA C 1.85 6.69 218 0.01430 0.52089 0.04028 0.55556 −0.74846 0.58599 −0.09014 0.15352 0.63296 

SA D 1.27 9.22 324 0.01856 0.07224 0.86217 2.91177 −0.82467 3.53808 −0.01874 0.06127 0.61067 

SA E 1.76 6.53 143 0.01294 0.61823 0.01421 0.36563 −0.59360 0.37251 −0.18013 0.23885 0.64913 

ASA A 1.22 10.72 2057 0.05878 37.86172 0.00592 3.63032 −0.99683 0.50964 −0.14148 0.24882 0.79761 

ASA B 0.59 4.92 1110 0.04473 28.14749 0.01820 1.42396 −0.93989 0.03537 −2.75358 1.83538 0.55999 

ASA C 1.48 15.65 2108 0.06159 38.12146 0.00384 3.25668 −0.98626 0.63093 −0.12056 0.23056 0.82485 

ASA D 1.32 4.64 2515 0.01541 2.44759 0.05235 1.27624 −0.96370 91.39088 −0.00216 0.01003 0.53431 

ASA E 0.83 5.00 2433 0.02922 2.06203 0.06318 2.41231 −0.61083 4.48047 −0.01685 0.02019 0.59395 

GA+LSQ A 0.38 4.48 315 0.02129 0.03810 0.81284 1.79257 −0.68287 0.97132 −0.03874 0.07766 0.69122 

GA+LSQ B 0.50 2.82 291 0.02745 1.35446 0.06262 1.57285 −0.66422 9.60768 −0.00369 0.00307 0.63601 

GA+LSQ C 0.40 3.59 295 0.02139 0.03398 0.88442 2.07893 −0.6 84 95 0.86469 −0.04684 0.07617 0.72068 

GA+LSQ D 0.41 4.30 282 0.02115 0.06007 0.53217 3.09903 −0.69327 1.06276 −0.03421 0.07811 0.76501 

GA+LSQ E 0.43 2.54 309 0.02274 0.05443 0.54405 3.36746 −0.65814 0.19942 −0.15725 0.0 0 0 01 0.80476 

SA+LSQ A 0.38 4.48 144 0.02130 0.03839 0.80688 2.83447 −0.68285 0.97116 −0.03875 0.07765 0.75754 

SA+LSQ B 0.39 5.65 127 0.02168 0.04738 0.66651 3.50401 −0.64226 0.84248 −0.04908 0.07711 0.78297 

SA+LSQ C 0.40 3.59 250 0.02140 0.03544 0.84959 1.05783 −0.68476 0.86333 −0.04691 0.07611 0.62280 

SA+LSQ D 0.49 2.46 356 0.02213 0.02830 0.96763 1.84331 −0.69190 0.18476 −0.16373 0.0 0 0 01 0.73523 

SA+LSQ E 0.43 2.53 179 0.02278 0.06496 0.46199 0.49208 −0.65853 0.19864 −0.15681 0.0 0 0 01 0.52580 

ASA+LSQ A 0.56 6.35 2071 0.02479 7.45043 0.01882 3.01923 −0.99999 0.04307 −1.43493 1.30931 0.80627 

ASA+LSQ B 0.56 8.44 1122 0.02433 5.52366 0.02039 1.00157 −0.95866 0.02326 −8.61302 3.93487 0.64411 

ASA+LSQ C 0.60 5.38 2120 0.02467 7.98466 0.01902 2.96471 −1.0 0 0 0 0 0.04575 −1.28603 1.18172 0.80209 

ASA+LSQ D 0.68 5.10 2586 0.02577 0.61171 0.08384 0.63047 −0.70591 29.43525 −0.0 0 022 0.00295 0.56424 

ASA+LSQ E 0.46 2.52 2468 0.02158 0.03345 0.86750 1.70842 −0.68363 0.62598 −0.07292 0.06 86 8 0.70317 

a Due to implementation issues, computational times for ASA are significantly greater than times of other approaches. 
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Unifying pricing formula for several stochastic
volatility models with jumps

Falko Baustiana, Milan Mrázekb, Jan Pospíšilb*† and Tomáš Sobotkab

In this paper, we introduce a unifying approach to option pricing under continuous-time stochastic volatility models with jumps.
For European style options, a new semi-closed pricing formula is derived using the generalized complex Fourier transform of the
corresponding partial integro-differential equation. This approach is successfully applied to models with different volatility diffusion
and jump processes. We also discuss how to price options with different payoff functions in a similar way.
In particular, we focus on a log-normal and a log-uniform jump diffusion stochastic volatility model, originally introduced by Bates
and Yan and Hanson, respectively. The comparison of existing and newly proposed option pricing formulas with respect to time
efficiency and precision is discussed. We also derive a representation of an option price under a new approximative fractional jump
diffusion model that differs from the aforementioned models, especially for the out-of-the money contracts. Copyright © 2017 John
Wiley & Sons, Ltd.
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1. Introduction

Financial market models play a crucial part in many financial engineering tasks. Since the Nobel-prize‡ winning Black and
Scholes [1] model, both practitioners and academics try to come up with models of the same type that ideally would

– include much more realistic assumptions about the modelled market compared with the Black–Scholes model and
– remain tractable and time efficient for all practical tasks.

Improving one of the aforementioned criteria usually leads to worsening of the other. In this paper, we focus on a class
of stochastic volatility jump-diffusion (SVJD) models that can be considered as a modern and more realistic ancestor of
the Black–Scholes approach, and we provide a more efficient solution to the option pricing task. Moreover, the proposed
approach is not restricted to just one particular model – it can be successfully applied to a wide range of SVJD models.
This is demonstrated on several models in the latter part of the paper.

The main criticism of the Black–Scholes model involved the constant volatility assumption. Stochastic volatility (SV)
models relax this assumption by adding a diffusion process thereof. From the derivative pricing point of view, a good model
should also mimic the observed volatility surfaces. To provide better fit to the real volatility surfaces, especially for the
short-term maturities, adding jumps to the stock price process was considered among the possible modifications of the SV
models later on. This led to a whole new class of models with jumps in the stock price (SVJD models). Besides providing
a good fit to market data, an analytical formula for the price of the European option is a desired feature of the models.
Computational efficiency is critical when using the models in practice, particularly in the model calibration process.

Among the first SV models were the ones by Hull and White [2], Stein and Stein [3] and Heston [4]. The latter arti-
cle introduces a well-known Heston model alongside a semi-closed formula for pricing European options. This approach
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allows to have correlated increments of the asset price and the volatility process (as opposed to Stein and Stein [3]),
which can mimic a volatility leverage effect observed on many financial markets. However, the model lacks the abil-
ity to fit reasonably well-complex option price surfaces [5, 6], especially the ones that involve both short-dated and
long-dated contracts.

To deal with the drawbacks of the first SV models, many modifications have been introduced since, including a dynamic
Heston model that involves time-dependent parameters. The case of piece-wise constant parameters in time is studied in
Mikhailov and Ng̈el [7], a linear time dependence in Elices [8] and a more general case is analysed in Benhamou et al. [9].
The latter result introduces only an approximation of the option price. However, Bayer et al. [5] suggest that the general
overall shape of the volatility surface does not change in time, at least to a first approximation given by stochastic volatility
inspired (SVI) models. Hence, it is desirable to model volatility as a time-homogeneous process. Other generalizations of
the Heston model with time-constant parameters include jump processes in asset price, in volatility or in both (e.g. Duffie
et al. [10]). As Gatheral [11] notes (and supports by empirical analyses of several authors), a model with jumps in both
underlying and volatility, although having more parameter and degrees of freedom, might not provide significantly better
market fit than its counterpart with jumps in underlying only. The first SVJD model introduced in [12] adds a log-normally
distributed jumps to the diffusion dynamics of the Heston model. Several different jump-diffusion settings were proposed,
for example, models postulated by Scott [13] and Yan and Hanson [14] among others.

Another possibility to modify standard diffusion SV models is to use a Lévy subordinator as a driving noise of the
volatility process. This idea was firstly developed by Barndorff–Nielsen and Shephard [15] where both volatility and asset
price processes exhibit simultaneous jumps. There exists an empirical evidence that jumps might not be simultaneous
[16], and to improve this aspect of the original model, several modifications have lately appeared, for example, results by
Nicolato and Venardos [17], Deelstra and Petkovic [18], Bannör and Scherer [19], Mai et al. [20] and Sengupta [21] to
name few.

Models inspired by Barndorff-Nielsen and Shephard [15] usually assume short-range dependence in the volatility pro-
cess. Long-range dependence, however, has been observed on several financial markets. For instance, Breidt et al. [22]
have shown an evidence of long memory using both semi-parametric and non-parametric detection tests. Gatheral et al.
[23] and Bayer et al. [5] argue about the presence of long memory, but the authors agree with Breidt et al. [22] that volatil-
ity should be driven by a process similar to a fractional Brownian motion – a process originally studied by Mandelbrot
and Van Ness [24]. Comte et al. [25] introduce an affine fractional SV model, sometimes dubbed as a fractional Heston
model. This model alongside the ones considered by Gatheral et al. [23] can explain many observed properties of financial
markets; however, only inefficient numerical schemes are available for option pricing tasks at the current time [5]. This
motivates results of Pospíšil and Sobotka [26] who introduce a long-memory SVJD model. The volatility process is driven
by a fractional noise that can be viewed as an semimartingale approximation of a fractional Brownian motion. The authors
have also deduced a semi-closed form representation for vanilla option prices under this model.

Not only myriads of SV models have been proposed, but also several different approaches to price financial derivatives
under a specific model were introduced. Starting with the Heston model, many formulas for pricing vanilla options were
studied over the more than 20-year history of the model. The semi-closed formula given by Heston [4] in the original
paper involves two numerical integrals on the half-open integration domain [0,∞). Moreover, it also requires evaluation
of logarithms with complex arguments, which leads to numerical instabilities for some parameters. To avoid this so-called
Heston trap, an alternative formula as described, for example, in Albrecher et al. [27] has soon been adopted by practi-
tioners. A different approach to address the very same numerical instabilities was taken by Kahl and Jäckel [28], who also
made use of a transformation to the integration domain [0, 1]. However, both of these approaches still involve evaluation
of two numerical integrals. Reducing these integrals into one can lead to faster computation and possibly greater accuracy,
which is of great help in calibration of the model and empirical studies.

Lewis [29] shows how the call price for the Heston model can be written in terms of the fundamental transform. Similar
to Lewis [29], several alternate formulas for the Heston call price are presented, for example, by Lipton [30] or Attari
[31]. All of these formulas involve single numerical integration, but Attari’s representation also quickens the rate at which
the integrand decays. To reach a similar effect of a faster decaying single integral, Carr and Madan [32] use fast Fourier
transform of a call price modified by a damping factor.

Of all the aforementioned approaches, we favour the one by Lewis, which also has become an industrial standard to
option pricing under Heston model§. In this paper, we extend this approach to the class of SVJD models. Starting with
Bates [12] model, a semi-closed formula for price of European option was already available in the original paper. However,
alike the original formula for its older SV companion – Heston model – it involves two numerical integrals and possible
numerical instabilities. This would be not an issue anymore when using fundamental transform techniques, while also

§See, for instance, NAG Numerical Library, http://www.nag.co.uk/numeric/cl/nagdoc_cl25/pdf/s/s30nac.pdf.
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significantly reducing the computational time. Furthermore, we present a framework under which any type of jumps can
be incorporated into SVJD model provided that we know the characteristic function of the jump process. We demonstrate
that by presenting a new formula for SVJD model with log-uniform jumps introduced by Yan and Hanson [14], which
compared with the original formula reduces the integrals to a single one and thus speeds up the computation, while the
numerical stability is preserved.

Even though studied models belong to the class of affine jump-diffusion models, we do not strictly rely on the techniques
of Duffie et al. [10], but rather generalize the approach of Lewis [29,33] and intuitively apply the results not only to existing
SVJD models [12, 14] but also to a newly proposed approximative fractional SV model [26]. Lately, both academics and
practitioners have been interested in fractional SV models that utilize a fractional driving noise in the volatility process.
We show that prices of various contracts can be expressed under the approximative fractional model by the fundamental
transform techniques, which underscores the versatility of the approach.

The structure of the paper is as follows. In Section 2, we compare two pricing formulas for Heston model, the original
formula by Heston [4] and a formula by Lewis [29]. Both formulas are derived by a different approach to solve the pric-
ing partial differential equation using two different Fourier transform methods, and so far, it has not been clear, how both
formulas relate to each other. This section is included especially for methodological purposes. Heston derived his formula
using the assumption that the call option price can be found in the form (4) similar to the Black–Scholes formula that led to
the formula with two inverse Fourier transform integrals. On the other hand, Lewis solved the same pricing partial differ-
ential equation directly with complex Fourier transform that led to a formula (5) with only one inverse Fourier transform
integral. One of the advantages of the Lewis formula is therefore evident.

In Section 3, we extend the previous comparison by adding jumps to the model; in particular, we add jumps with log-
normal distributed sizes to the stock price process following Bates [12]. Because the original Bates pricing formula extends
the formula by Heston, our next step is to follow the steps from Section 2 and derive a Lewis-like formula (18) for the Bates
model. We also comment on the important relation to the Lévy–Khintchine representation of the characteristic function
for a Lévy process.

The main results of this paper are covered in Section 4. At first, we introduce a general unifying SVJD model that covers
different SV models with possibly different jumps. A special attention is paid to jumps with log-normal or log-uniform
distribution of the jumps sizes. The unifying pricing formulas (31) and (33) are stated for the European call options, but
we also discuss how the solutions for different payoffs can be obtained. Apart from the new formulas for the Bates model
derived in Section 3, we provide here two additional examples. Namely, in Section 4.1, we show how the unifying approach
applies to the Yan and Hanson [14] model with log-uniform jumps, and in Section 4.2, we apply the results to the new
approximative fractional SV model with log-normal jumps.

In Section 5, we numerically compare the efficiency of newly proposed formulas, in particular the new representation
for Bates and Yan Hanson model. We also compare the European call option prices under all studied models including the
new fractional SVJD model. We conclude all obtained results in Section 6.

2. Comparing two pricing formulas for Heston model

Before we consider SV models with jumps, we want to take a closer look at the classical Heston model established by
Heston [4]. The risk-neutral stock price St price is modelled by

dSt = rStdt +
√

vtStdW̃S
t , (1)

dvt = 𝜅(𝜃 − vt)dt + 𝜎
√

vtdW̃v
t , (2)

dW̃S
t dW̃v

t = 𝜌 dt, (3)

with initial conditions S0 ⩾ 0 and v0 ⩾ 0, where r is the risk-free rate and the instantaneous volatility vt at time t is driven
by a mean reverting process. The stochastic process (2) (called variance process or volatility process) reverts with rate 𝜅 to
the long-run average price variance 𝜃, and 𝜎 is the volatility of the volatility. If the Feller condition 2𝜅𝜃 > 𝜎2 is satisfied
[34], this square-root mean reverting process, CIR process [35], is strictly positive and cannot reach zero. (W̃S, W̃v) is a
two-dimensional Wiener process under the risk-neutral measure P̃ with instantaneous correlation 𝜌. The popularity of the
Heston SV model results from its semi-closed form solution for vanilla options, which involves numerical computation of
two integrals. There exist several different formulations and modifications of the original formula [4] to handle numerical
problems that are connected with the integral term. We use the formulation by Albrecher et al. [27], which is only a slightly
modification of the original one and eliminates the possible discontinuities of the integrand. Let K be the strike price and
𝜏 = T − t be the time to maturity. Then, the price of a European call option at time t on a non-dividend paying stock with
a spot price St is
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V(S, v, 𝜏) = SP1 − e−r𝜏KP2, (4)

Pj(x, v, 𝜏) =
1
2
+ 1
𝜋 ∫

+∞

0
Re

[e−i𝜙 ln(K)fj(x, v, 𝜏, u)
iu

]
du,

where x = ln S and

fj(x, v, 𝜏, u) = exp{Cj(𝜏, u) + Dj(𝜏, u)v + iux},

with

Cj(𝜏, u) = rui𝜏 + a
𝜎2

{
(bj − 𝜌𝜎ui − d)𝜏 − 2 ln

[
1 − ge−d𝜏

1 − g

]}
,

Dj(𝜏, u) =
bj − 𝜌𝜎ui − d

𝜎2

[
1 − e−d𝜏

1 − ge−d𝜏

]
,

g =
bj − 𝜌𝜎ui − d

bj − 𝜌𝜎ui + d
,

d =
√

(𝜌𝜎ui − bj)2 − 𝜎2(2ujui − u2),

for both j = 1, 2, where the parameters uj, a and bj are defined as follows:

u1 = 1
2
, u2 = −1

2
, a = 𝜅𝜃, b1 = 𝜅 − 𝜌𝜎, b2 = 𝜅.

As mentioned before, there exist many different formulas, for example, by Kahl and Jäckel [28], Lewis[29] or Zhylyevskyy
[36]. We will use the approach by Lewis [29] because it is well suited for more complex models with jumps. It is also well
behaved compared with the formula by Albrecher et al. [27] but has the numerical advantage that we only have to calculate
one integral for each call option price.

V(S, v, 𝜏) = S − Ke−r𝜏 1
2𝜋 ∫

+∞+i∕2

−∞+i∕2
e−ikX Ĥ(k, v, 𝜏)

k2 − ik
dk, (5)

where X = ln(S∕K) + r𝜏 and

Ĥ(k, v, 𝜏) = exp

(
2𝜅𝜃
𝜎2

[
q g − ln

(
1 − he−𝜉q

1 − h

)]
+

+ vg

(
1 − e−𝜉q

1 − he−𝜉q

))
,

where

g = b − 𝜉
2

, h = b − 𝜉
b + 𝜉

, q = 𝜎2𝜏
2
,

𝜉 =
√

b2 + 4(k2 − ik)
𝜎2

,

b = 2
𝜎2

(
ik𝜌𝜎 + 𝜅

)
.

The Lewis formula (5) is derived by applying the complex Fourier transform on the partial differential equation corre-
sponding with the pricing process. The solution is the inverse complex Fourier transform of the so-called fundamental
transform Ĥ(k, v, 𝜏), where k is complex valued. Knowing Ĥ(k, v, 𝜏), it is possible to obtain the option price for different
particular payoff functions, not only the European call. We want to show that the Lewis and Heston (and hence Albrecher)
formulas are equivalent representations of the same solution. We begin by splitting the integral in the Lewis formula (5).
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V(S, v, 𝜏) = S − Ke−r𝜏 1
2𝜋 ∫

+∞+i∕2

−∞+i∕2
e−ikX Ĥ(k, v, 𝜏)

k2 − ik
dk

= S − Ke−r𝜏 1
2𝜋 ∫

+∞+i∕2

−∞+i∕2
e−ikX

(
Ĥ(k, v, 𝜏)

ik + 1
− Ĥ(k, v, 𝜏)

ik

)
dk

= S − Ke−r𝜏 1
2𝜋 ∫

+∞+i∕2

−∞+i∕2
e−ikX Ĥ(k, v, 𝜏)

ik + 1
dk

+ Ke−r𝜏 1
2𝜋 ∫

+∞+i∕2

−∞+i∕2
e−ikX Ĥ(k, v, 𝜏)

ik
dk.

We reformulate the first integral by a substitution and then apply the residue theorem.

∫
+∞+i∕2

−∞+i∕2
e−ikX Ĥ(k, v, 𝜏)

ik + 1
dk = eX ∫

+∞−i∕2

−∞−i∕2
e−ikX Ĥ(k + i, v, 𝜏)

ik
dk

= eX

(
∫

+∞+i∕2

−∞+i∕2
e−ikX Ĥ(k + i, v, 𝜏)

ik
dk + 2𝜋

)
;

here the second integral results from the residue at the singularity k = 0 where Ĥ(i, v, 𝜏) = 1. We define

I1 = ∫
+∞+i∕2

−∞+i∕2
e−ikX Ĥ(k + i, v, 𝜏)

ik
dk, (6)

I2 = ∫
+∞+i∕2

−∞+i∕2
e−ikX Ĥ(k, v, 𝜏)

ik
dk (7)

and obtain

V(S, v, 𝜏) = S − Ke−r𝜏+X 1
2𝜋

(I1 + 2𝜋) + Ke−r𝜏 1
2𝜋

I2 = − S
2𝜋

I1 + e−r𝜏 K
2𝜋

I2. (8)

If Pj = − 1
2𝜋

Ij for j = 1, 2 holds, the identity of (4) and (5) follows directly from (8). Both models have a big set of
parameters, namely, g, d, u1, u2, a, b1, b2 for the Albrecher formula (4), and for the Lewis formula (5), we have h, q, 𝜉, b and
again g. In the following comparisons, we will mark the parameters of (4) with a tilde like g̃ for g to avoid any confusions.
We restart with Lewis formulation of the solution (5). For a question of notation, we use ‘≅’ to express that two terms from
the two models are in bona fide equal but use different parameters.

b(k) = 2
𝜎2

(
ik𝜌𝜎 + 𝜅

)
,

𝜉(k) =
√

b(k)2 + 4
𝜎2

(
k2 − ik

)
,

𝜉(k)𝜎
2

2
=

√
(ik𝜌𝜎 + 𝜅)2 + 𝜎2k(k − i),

𝜉(−k)𝜎
2

2
=

√
(−ik𝜌𝜎 + 𝜅)2 + 𝜎2(−k)(−k − i) =

√
(ik𝜌𝜎 − 𝜅)2 + 𝜎2k(k + i)

≅
√

(𝜌𝜎ui − b̃2)2 + 𝜎2u(u + i) = d̃2(u).
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We can show by similar calculations that 𝜉(−k + i) 𝜎
2

2
= d̃1(u). We continue with the parameters h and g.

h(k) = b(k) − 𝜉(k)
b(k) + 𝜉(k)

⋅
𝜎2

2

𝜎2

2

=

(
ik𝜌𝜎 + 𝜅

)
− 𝜉(k) 𝜎

2

2(
ik𝜌𝜎 + 𝜅

)
+ 𝜉(k) 𝜎2

2

,

h(−k) =

(
𝜅 − ik𝜌𝜎

)
− 𝜉(−k) 𝜎

2

2(
𝜅 − ik𝜌𝜎

)
+ 𝜉(−k) 𝜎2

2

≅

(
b̃2 − 𝜌𝜎ui

)
− d̃2(u)(

b̃2 − 𝜌𝜎ui
)
+ d̃2(u)

= g̃2(u),

g(k) = b(k) − 𝜉(k)
2

= 1
𝜎2

(
ik𝜌𝜎 + 𝜅

)
− 𝜉(k)

2
,

g(−k) = 1
𝜎2

(
𝜅 − ik𝜌𝜎

)
− 𝜉(−k)

2

≅
b̃2 − 𝜌𝜎ui − d̃2(u)

𝜎2
,

which appears in C2 and D2 in the Heston formula. Similarly, for h(−k + i) and g(−k + i), we obtain

h(−k + i) = g̃1(u),

g(−k + i) =
b̃1 − 𝜌𝜎ui − d̃1(u)

𝜎2
.

As a next step, we prove Ĥ(−k, v, 𝜏) ≅ f2(x, v, 𝜏, u)e−iu(x+r𝜏).

Ĥ(−k, v, 𝜏) = exp

(
2𝜅𝜃
𝜎2

[
q g(−k) − ln

(
1 − h(−k)e−𝜉(−k)q

1 − h(−k)

)]
+ vg(−k)

(
1 − e−𝜉(−k)q

1 − h(−k)e−𝜉(−k)q

))

= exp

(
2𝜅𝜃
𝜎2

[
𝜎2𝜏
2

g(−k) − ln

(
1 − h(−k)e−𝜉(−k) 𝜎

2𝜏
2

1 − h(−k)

)]
+ vg(−k)

(
1 − e−𝜉(−k) 𝜎

2𝜏
2

1 − h(−k)e−𝜉(−k) 𝜎
2𝜏
2

))

≅ exp

(
2ã
𝜎2

[
𝜏

b̃2 − 𝜌𝜎ui − d̃2(u)
2

− ln

(
1 − g̃2(u)e

−d̃2(u)
𝜎2𝜏

2

1 − g̃2(u)

)]
⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟

=C2(𝜏,u)−rui𝜏

+ v
b̃2 − 𝜌𝜎ui − d̃2(u)

𝜎2

(
1 − e−d̃2(u)

𝜎2𝜏
2

1 − g̃2(u)e
−d̃2(u)

𝜎2𝜏
2

)
⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟

=D2(𝜏,u)

)

= exp{C2(𝜏, u) − rui𝜏 + D2(𝜏, u)v + iux − iux} = f2(x, v, 𝜏, u)e−iu(x+r𝜏).

The proof for Ĥ(−k + i, v, 𝜏) ≅ f1(x, v, 𝜏, u)e−iu(x+r𝜏) works analogously. We now reconsider the integral (6).

I1 = ∫
+∞+i∕2

−∞+i∕2
e−ikX Ĥ(k + i, v, 𝜏)

ik
dk = −∫

+∞−i∕2

−∞−i∕2
eikX Ĥ(−k + i, v, 𝜏)

ik
dk

≅ −∫
+∞−i∕2

−∞−i∕2
e−iu ln K f1(x, v, 𝜏, u)

iu
du,
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where we used exp(i𝜙X − i𝜙x− i𝜙r𝜏) = exp(i𝜙 ln S
K
+ i𝜙r𝜏 − i𝜙 ln S− i𝜙r𝜏) = exp(−i𝜙 ln K). With the help of the residue

theorem (for example, Ahlfors [37], section 4.5), we translate the integral to the real axis. We must pay attention to the fact
that there is a singularity on the real line. The integral becomes a principal value integral, and we calculate with one-half
of the residue as mentioned in Ahlfors [37], section 4.5.3.

−I1 = ∫
+∞−i∕2

−∞−i∕2
e−iu ln K f1(x, v, 𝜏, u)

iu
du = ∫

+∞

−∞
e−iu ln K f1(x, v, 𝜏, u)

iu
du + 𝜋

= 2∫
+∞

0
e−iu ln K f1(x, v, 𝜏, u)

iu
du + 𝜋,

which leads us to P1 = − 1
2𝜋

I1 and we obtain P2 = − 1
2𝜋

I2 by a similar calculation from (7). Hence, we have shown that the
Lewis and Heston formulas are equivalent.

We conclude this section by mentioning some of the aforementioned results for later use:

Ĥ(−k) ≅ f2(u)e−iu(x+r𝜏), (9)

f1(u) =
f2(u − i)
f2(−i)

, (10)

f2(−i) = ex+r𝜏 = Ser𝜏 . (11)

3. Adding jumps: Bates SVJD model

In his article, Bates [12] considers a model similar to Heston [4] but adds a compound Poisson process Qt with log normal
distributed jump sizes to the stock price process St

dSt = (r − 𝜆𝛽)Stdt +
√

vtStdW̃S
t + St−dQt, (12)

dvt = 𝜅(𝜃 − vt)dt + 𝜎
√

vtdW̃v
t , (13)

dW̃S
t dW̃v

t = 𝜌 dt, (14)

with initial conditions S0 ⩾ 0 and v0 ⩾ 0, where Qt =
Nt∑

i=1
Yi is a compound Poisson process and St− denotes the left limit

of S at t. Y1,Y2,… are pairwise independent random variables with identically distributed jump sizes, that is, 𝛽 = E[Yi]
for all i ∈ N. Nt is a standard Poisson process with intensity 𝜆 also independent from the Yi. The changed drift of the stock
price process (12) guarantees that the model remains risk neutral.

In this model, jump sizes Yi have log normal distribution, in particular ln(1 + Yi) ∼  (𝜇J , 𝜎
2
J ), that is,

𝛽 = E[Yi] = exp{𝜇J +
1
2
𝜎2

J} − 1.

In this model, the pricing formula for European call option prices follows (4), where P1 and P2 are defined by:

Pj(x, v, 𝜏) =
1
2
+ 1
𝜋 ∫

+∞

0
Re

[
e−iu ln(K)

iu
fj(u)𝜙J

j (u)
]

du, j = 1, 2, (15)

where fj(u) = fj(x, v, 𝜏, u) is the same fj as in the original Heston/Albrecher model satisfying (10) and the integrands are
multiplied (jumps are additive in the model) by the jump characteristic functions

𝜙J(u) = 𝜙J
2(u) = exp

{
−i𝜆𝛽u𝜏 + 𝜆𝜏

[
(1 + 𝛽)iu exp

{
−1

2
𝜎2

J u(i + u))
}
− 1

]}
, (16)
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𝜙J
1(u) =

𝜙J
2(u − i)
𝜙J

2(−i)
= 𝜙J

2(u − i). (17)

We can derive the Lewis-like formula from (15) by reversing the calculation steps used in Section 2.

V(S, v, 𝜏) = SP1 − e−r𝜏KP2,

= S

{
1
2
+ 1
𝜋 ∫

+∞

0
Re

[
e−iu ln(K)

iu
f1(u)𝜙J

1(u)
]

du

}
− e−r𝜏K

{
1
2
+ 1
𝜋 ∫

+∞

0
Re

[
e−iu ln(K)

iu
f2(u)𝜙J

2(u)
]

du

}
omitting Re, using formula (10) for f1 and (17) for 𝜙1

= 1
2
(S − e−r𝜏K)

+ S
1
𝜋 ∫

+∞

0

e−iu ln(K)

iu

f2(u − i)
f2(−i)

𝜙J
2(u − i)du

− e−r𝜏K
1
𝜋 ∫

+∞

0

e−iu ln(K)

iu
f2(u)𝜙J

2(u)du

by formula (11) for f2(−i), substituting in the first integral k = u − i and k = u in the second integral, we obtain

= 1
2
(S − e−r𝜏K)

+ eln(K)e−r𝜏 1
𝜋 ∫

+∞−i

0−i

e−ik ln(K)

ik − 1
f2(k)𝜙J

2(k)dk

− e−r𝜏K
1
𝜋 ∫

+∞

0

e−ik ln(K)

ik
f2(k)𝜙J

2(k)dk

with the symmetry property of the integrants we change the integration range

= 1
2
(S − e−r𝜏K)

+ e−r𝜏K
1

2𝜋 ∫
+∞−i

−∞−i

e−ik ln(K)

ik − 1
f2(k)𝜙J

2(k)dk

− e−r𝜏K
1

2𝜋 ∫
+∞

−∞

e−ik ln(K)

ik
f2(k)𝜙J

2(k)dk

using the residue theorem, where for practical reasons, we want k = kr + iki to be such that 0 < ki < 1

= 1
2
(S − e−r𝜏K)

+ e−r𝜏K
1

2𝜋

(
∫

+∞−iki

−∞−iki

e−ik ln(K)

ik − 1
f2(k)𝜙J

2(k)dk + 𝜋e− ln(K)f2(−i)
)

− e−r𝜏K
1

2𝜋

(
∫

+∞−iki

−∞−iki

e−ik ln(K)

ik
f2(k)𝜙J

2(k)dk − 𝜋
)

from (9), we have e−ik ln(K)f2(k) = eikXĤ(−k, v, 𝜏), where X = ln S
K
+ r𝜏, and by (11), we obtain

= S + e−r𝜏K
1

2𝜋 ∫
+∞−iki

−∞−iki

eikX

ik − 1
Ĥ(−k, v, 𝜏)𝜙J

2(k)dk

− e−r𝜏K
1

2𝜋 ∫
+∞−iki

−∞−iki

eikX

ik
Ĥ(−k, v, 𝜏)𝜙J

2(k)dk
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we change sign of the integration variable by substitution

= S − e−r𝜏K
1

2𝜋 ∫
+∞+iki

−∞+iki

e−ikX

ik + 1
Ĥ(k, v, 𝜏)𝜙J

2(−k)dk

+ e−r𝜏K
1

2𝜋 ∫
+∞+iki

−∞+iki

e−ikX

ik
Ĥ(k, v, 𝜏)𝜙J

2(−k)dk

= S − e−r𝜏K
1

2𝜋 ∫
+∞+iki

−∞+iki

e−ikX

(
Ĥ(k, v, 𝜏)

ik + 1
− Ĥ(k, v, 𝜏)

ik

)
𝜙J

2(−k)dk

= S − Ke−r𝜏 1
2𝜋 ∫

+∞+iki

−∞+iki

e−ikX Ĥ(k, v, 𝜏)
k2 − ik

𝜙J
2(−k)dk,

(18)

which is the Lewis-like formula for the Bates model. We can also rewrite (18) in terms of 𝜑̂ as

V(S, v, 𝜏) = S − Ke−r𝜏 1
2𝜋 ∫

+∞+iki

−∞+iki

e−ikX̃ Ĥ(k, v, 𝜏)
k2 − ik

exp{𝜆(𝜑̂(−k) − 1)𝜏}dk,

where X̃ = ln S
K
+ (r − 𝜆𝛽)𝜏 with 𝛽 = exp

{
𝜇J +

1
2
𝜎2

J

}
− 1 and 𝜑̂(u) = exp

{
i𝜇Ju − 1

2
𝜎2

J u2
}

.

Remark 1
The jump characteristic function as it is presented in (16) is not in the form of the Lévy–Khintchine formula, because

𝜙J(k) = exp

{
−i𝜆𝛽k𝜏 + 𝜆𝜏

[
(1 + 𝛽)ik exp

{
−1

2
𝜎2

J k(i + k))
}
− 1

]}
.

= exp

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
−i𝜆𝛽k𝜏 + 𝜆𝜏

[
exp

⎧⎪⎪⎨⎪⎪⎩
(

𝜇J

⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞

ln(1 + 𝛽) − 1
2
𝜎2

J )ik −
1
2
𝜎2

J k2

⎫⎪⎪⎬⎪⎪⎭
⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟

𝜑̂(k)

−1

]
⎫⎪⎪⎪⎪⎬⎪⎪⎪⎪⎭
,

where 𝜑̂(k) is the characteristic function of a normal random variable  (𝜇J , 𝜎
2
J ) with

𝜇J = ln(1 + 𝛽) − 1
2
𝜎2

J

or in other words if

𝛽 = exp
{
𝜇J +

1
2
𝜎2

J

}
− 1.

This corresponds to Lévy–Khintchine formula where we obtain (for Lévy process with drift −𝜆𝛽)

𝜙J(k) = exp

{
−i𝜆𝛽k𝜏 + 𝜆𝜏

[
𝜑̂(k) − 1]

]}
,

where the term in square brackets comes from the integration in the Lévy–Khintchine formula:

+∞

∫
−∞

[eiky − 1]𝜑(y)dy = 𝜑̂(k) − 1,

where we used the fact that 𝜑 is the density and it integrates to one.
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4. Main result: a general unifying SVJD model

In this section, we introduce a general model that allows several kinds of SV processes and also different types of jumps.
Let Nt be a standard Poisson process with intensity 𝜆. Let Y1,Y2,… be random variables representing the jump sizes

that are identically distributed with common mean 𝛽 = E[Yi] for all i ∈ N. Also, assume that all Yi are independent of one
another and independent of the Poisson process N(t). Let

Qt =
Nt∑

i=1

Yi

be a compound Poisson process. Then, E[Qt] = 𝜆𝛽t, and it can be shown that Qt is not a martingale. Hence, we define

Jt = Qt − 𝜆𝛽t, (19)

which is a compensated compound Poisson process. Then,E[Jt] = 0 and Jt is a martingale. We now consider the risk-neutral
general jump-diffusion model

dSt = rStdt +
√

vtStdW̃S
t + St−dJt, (20)

dvt = p(vt)dt + q(vt)dW̃v
t , (21)

dW̃S
t dW̃v

t = 𝜌 dt, (22)

where p, q ∈ C+∞(0,∞) are general coefficient functions for the volatility process and 𝜌 is the correlation between standard
Wiener processes W̃S

t and W̃v
t . Models (20)–(22) cover several different models, in particular the Heston and the 3∕2

model (cf. Lewis [29]). Table I gives typical examples of the volatility drift p and the volatility of volatility q for some of
these models.

The FSVJD model that we will introduce in Section 4.2 uses a stochastic process 𝜓t in the drift term. Additionally, we
assume the presence of jumps in the stock price process. From definition (19), we deduce that

dJt = −𝜆𝛽dt + dQt,

and (20) then becomes

dSt = (r − 𝜆𝛽)Stdt +
√

vtStdW̃S
t + St−dQt.

We will give two examples for possible types of jumps.

Example 1
For a normally distributed random variable X, that is, for density

𝜑(y) = 1

𝜎J

√
2𝜋

exp

{
−
(y − 𝜇J)2

2𝜎2
J

}
,

we have that

E[eikX] = 𝜑̂(k) = ∫
+∞

−∞
eiky𝜑(y)dy = exp

{
i𝜇Jk − 1

2
𝜎2

J k2
}
,

and in particular, we obtain 𝜑̂(−i) = exp{𝜇J +
1
2
𝜎2

J}.

Table I. Different stochastic volatility models.

Model p(v) q(v) Constants

Heston/Bates 𝜅(𝜃 − v) 𝜎
√

v 𝜅, 𝜃, 𝜎

3/2 model† 𝜔v − 𝜃v2 𝜉v
3
2 𝜔, 𝜃, 𝜉, 𝛾

Geometric BM 𝛼v 𝜉v 𝛼, 𝜉

Fractional SVJD (H − 1∕2)𝜓t𝜎
√

v + 𝜅(𝜃 − v) 𝜀H−1∕2𝜎
√

v H, 𝜎, 𝜅, 𝜃, 𝜀

†𝜃 = − 1

2
𝜉2 + (1 − 𝛾)𝜌𝜉 +

√
(𝜃 + 1

2
𝜉2)2 − 𝛾(1 − 𝛾)𝜉2. SVJD, stochastic volatility

jump-diffusion.
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For Bates model, where jumps Yi are log-normal, ln(1 + Yi) ∼  (𝜇J , 𝜎
2
J ), we have that

𝛽 = E[Yi] = exp{𝜇J +
1
2
𝜎2

J} − 1 = 𝜑̂(−i) − 1.

Example 2
For a uniformly distributed random variable X, that is, for density

𝜑(y) =

{
1

b−a
a ⩽ y ⩽ b,

0 otherwise,

we have that

E[eikX] = 𝜑̂(k) = 1
b − a∫

b

a
eikydy = eikb − eika

(b − a)ik
, (23)

and in particular 𝜑̂(−i) = eb−ea

b−a
. For Yan and Hanson [14] model, see also section 4.1 below, jumps Yi are log-uniform

ln(1 + Yi) ∼  (a, b) and we have that

𝛽 = E[Yi] =
eb − ea

b − a
− 1 = 𝜑̂(−i) − 1.

The problem of pricing an option in a model with jumps corresponds to a partial integro-differential equation (PIDE)
(Hanson [38], Theorem 7.7). After substituting x = ln S, we obtain the PIDE for f (x, v, t) = V(ex, v, t)

−ft = −rf + (r − 𝜆𝛽 − 1
2

v)fx +
1
2

vfxx + pfv +
1
2

q2fvv + 𝜌q
√

vfxv

+ 𝜆∫
+∞

−∞

[
f (x + y, v, t) − f (x, v, t)

]
𝜑(y)dy.

(24)

We want to apply the complex Fourier transform like in Lewis [29], chapter 2,

 [
f
]
= f̂ (k, v, t) = ∫

+∞

−∞
eikxf (x, v, t)dx

with the inverse transform

f (x, v, t) = 1
2𝜋 ∫

+∞+iki

−∞+iki

e−ikxf̂ (k, v, t)dk,

where ki is some real number such that the line (−∞+iki,∞+iki) is in some strip of regularity depending on the restrictions
given by the payoff (Table II). Under the Fourier transform, PIDE (24) becomes

Table II. Different payoff functions.

Payoff function Payoff transform
Financial claim w(x) ŵ(k) k-plane restrictions

Call option max (ex − K, 0) −Kik+1

k2−ik
Im k > 1

Put option max (K − ex, 0) −Kik+1

k2−ik
Im k < 0

Bull spread option
0 . . . . . . for 0 ⩽ ex ⩽ K1

Kik+1
2

−Kik+1
1

k2−ik
Im k > 0ex − K1 for K1 < ex ⩽ K2

K2 − K1 . . . . for K2 < ex

Bear spread option
K2 − K1 for 0 ⩽ ex ⩽ K1

Kik+1
1

−Kik+1
2

k2−ik
Im k < 0K2 − ex for K1 < ex ⩽ K2

0 . . . . . . . . . . for K2 < ex

Butterfly spread
0 . . . . . . for 0 < ex ⩽ K1

2Kik+1
2

−Kik+1
1

−Kik+1
3

k2−ik
Noneoption† ex − K1 for K1 < ex ⩽ K2

K3 − ex for K2 < ex ⩽ K3

0 . . . . . . . . . . for K3 < ex

†where K2 =
K1+K3

2
.
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−f̂t = [−r − ik(r − 𝜆𝛽)] f̂ − 1
2

v(k2 − ik)f̂ + (p − ik𝜌q
√

v)f̂v +
1
2

q2 f̂vv

+ 𝜆
[
∫

+∞

−∞

[
f (x + y, v, t) − f (x, v, t)

]
𝜑(y)dy

]
.

(25)

It remains to derive the Fourier transform of the integral.


[
∫

+∞

−∞

[
f (x + y, v, t) − f (x, v, t)

]
𝜑(y)dy

]
= ∫

+∞

−∞
eikx

(
∫

+∞

−∞

[
f (x + y, v, t) − f (x, v, t)

]
𝜑(y)dy

)
dx

= ∫
+∞

−∞
𝜑(y)

(
∫

+∞

−∞
eikx

[
f (x + y, v, t) − f (x, v, t)

]
dx

)
dy

= f̂ (k, v, t)∫
+∞

−∞
(e−iky − 1)𝜑(y)dy = f̂ (k, v, t)(𝜑̂(−k) − 1),

where we used the Fubini’s theorem (the integrand is measurable and integrable) and the fact that ∫
R
𝜑(y)dy = 1. We

substitute 𝜏 = T − t and define ĥ(k, v, t) by

ĥ(k, v, t) = exp (− [−r − ik(r − 𝜆𝛽) + 𝜆(𝜑̂(−k) − 1)] 𝜏) f̂ (k, v, 𝜏)

to obtain from (25) the following equation for ĥ:

ĥ𝜏 =
1
2

q2(v)ĥvv +
[
p(v) − ik𝜌(v)q(v)

√
v
]

ĥv −
k2 − ik

2
vĥ, (26)

which is equal to equation (2.7) on p. 38 in Lewis [29] and has a fundamental solution F̂ with initial value F̂(k, v, 0) = 1
(in Lewis [29], it is called fundamental transform). It is regular as a function of k = kr + iki within a strip k1 < ki < k2.
From this fundamental solution, we can derive the explicit formula for the option price

f (x, v, t) = 1
2𝜋 ∫

+∞+iki

−∞+iki

e−ikxf̂ (k, v, t)dk,

= 1
2𝜋 ∫

+∞+iki

−∞+iki

e−ikx exp ([−r − ik(r − 𝜆𝛽) + 𝜆(𝜑̂(−k) − 1)] 𝜏) ŵ(k)F̂(k, v, 𝜏)dk,

(27)

where for call option, we have ŵ(k) = −Kik+1

k2−ik
(Table II) and 1 < ki < k2,

= −e−r𝜏

2𝜋 ∫
+∞+iki

−∞+iki

e−ikx exp ([−ik(r − 𝜆𝛽) + 𝜆(𝜑̂(−k) − 1)] 𝜏) Kik+1

k2 − ik
F̂(k, v, 𝜏)dk,

= −K
e−r𝜏

2𝜋 ∫
+∞+iki

−∞+iki

e−ikX̃ exp {𝜆(𝜑̂(−k) − 1)𝜏} F̂(k, v, 𝜏)
k2 − ik

dk, 1 < ki < k2,

where X̃ = x − ln K + (r − 𝜆𝛽)𝜏 = ln(S∕K) + (r − 𝜆𝛽)𝜏. We want to integrate over some line with 0 < ki < 1 where F̂ is
often free of singularities (Lewis [29]). For max(k1, 0) < ki < min(1, k2) by using the residue theorem, we obtain

V(s, v, 𝜏) = −K
e−r𝜏

2𝜋

{
−2𝜋i

eX̃

i
exp{𝜆(𝜑̂(−i) − 1)𝜏}

+∫
+∞+iki

−∞+iki

e−ikX̃ exp{𝜆(𝜑̂(−k) − 1)𝜏} F̂(k, v, 𝜏)
k2 − ik

dk

}
,

(28)
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= K exp{X̃ − r𝜏 + 𝜆(𝜑̂(−i) − 1)𝜏

− K
e−r𝜏

2𝜋 ∫
+∞+iki

−∞+iki

e−ikX̃ exp{𝜆(𝜑̂(−k) − 1)𝜏} F̂(k, v, 𝜏)
k2 − ik

dk,
(29)

= Se𝜆(𝜑̂(−i)−1−𝛽)𝜏 − K
e−r𝜏

2𝜋 ∫
+∞+iki

−∞+iki

e−ikX̃ exp{𝜆(𝜑̂(−k) − 1)𝜏} F̂(k, v, 𝜏)
k2 − ik

dk, (30)

where 𝜑̂(−i) − 1 − 𝛽 = 0 (provided that jumps are log-normally or log-uniformly distributed as seen in the previous
examples) and therefore

V(S, v, 𝜏) = S − Ke−r𝜏 1
2𝜋 ∫

+∞+iki

−∞+iki

e−ikX̃ exp {𝜆(𝜑̂(−k) − 1)𝜏} F̂(k, v, 𝜏)
k2 − ik

dk,

max(k1, 0) < ki < min(1, k2).
(31)

We can also rewrite (31) in terms of

𝜙(k) = exp

{
−i𝜆𝛽k𝜏 + 𝜆𝜏

[
𝜑̂(k) − 1]

]}
(32)

as

V(S, v, 𝜏) = S − Ke−r𝜏 1
2𝜋 ∫

+∞+iki

−∞+iki

e−ikX F̂(k, v, 𝜏)
k2 − ik

𝜙(−k)dk, (33)

where again X = ln S
K
+ r𝜏.

To price other option types, we need to replace ŵ in (27) by the Fourier transform of the payoff function (see Table II
for some common examples). When calculating the final formula, one has to consider the k-plane restriction of the payoff
and use the residue theorem accordingly.

4.1. Example: Yan Hanson SVJD model

In the model by Yan and Hanson [14], the drift p and the diffusion q of the volatility process are the same as in the Heston
and Bates model, namely,

p(v) = 𝜅(𝜃 − v), q(v) = 𝜎
√

v,

where 𝜅, 𝜃 and 𝜎 are real constants. The jump sizes are log-uniform (Example 2).
The original pricing formula from Yan and Hanson [14] is the following

V = S0P1 − Ke−r𝜏P2;

for j = 1, 2:

Pj(log[S0], v, 𝜏; ln[K]) = 1
2
+ 1
𝜋 ∫

+∞

0
Re

[e−iy log[K]fj(log[S0], v; y, 𝜏)
iy

]
dy,

where

fj(log[S0], v; y, 𝜏) = exp{gj + hjv + iy log[S0] + 𝛽j},
𝛽j = r𝜏𝛿j,2

hj =
(𝜂2

j − Δ2
j )(e

Δj𝜏 − 1)

𝜎2(𝜂j + Δj − (𝜂j − Δ)eΔj𝜏)
gj =

(
(r − 𝜆𝛽)iy − 𝜆J𝛿j,1 − r𝛿j,2

)
𝜏+

+ 𝜆𝜏 ∫
+∞

−∞
(e(iy+𝛿j,1)q − 1)𝜙Q(q)dq−
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− 𝜅𝜃
𝜎2

[
2 log

(
1 −

(Δj + 𝜂j)(1 − e−Δj𝜏)
2Δj

)
+ (Δj + 𝜂j)𝜏

]
,

𝛽 = eb − ea

b − a
− 1

𝜂j = 𝜌𝜎(iy + 𝛿j,1) − 𝜅

∫
+∞

−∞
(e(iy+𝛿j,1)q − 1)𝜙Q(q)dql = e(iy+𝛿j,1)b − e(iy+𝛿j,1)a

(b − a)(iy + 𝛿j,1)
− 1.

For j = 1, we have

𝛿1,1 = 1, 𝛿1,2 = 0 and Δ1 =
√
𝜂2

j − 𝜎2iy(iy + 1);

for j = 2, we have

𝛿2,1 = 0, 𝛿2,2 = 1 and Δ2 =
√
𝜂2

j − 𝜎2iy(iy − 1).

New pricing formula for the Yan Hanson model is (31) with 𝜙̂(k) defined in (23), or (33) in terms of 𝜙(k).

4.2. Example: a new fractional SVJD model

We want to modify the Bates model from Section 3 by using an approximate fractional Brownian motion in the volatility
process. This process has a long memory for Hurst parameter H > 0.5, and for H = 0.5, it turns into a standard Wiener
process. Thao [39] defined approximative fractional process as an Itô integral,

B̃𝜀t =

t

∫
0

(t − s + 𝜀)H−1∕2dWs,

where 𝜀 represents an approximative factor that should take values close to 0. However, for any 𝜀 > 0, B̃𝜀t is a semimartin-
gale. The market dynamics under the square root approximative fractional SVJD model, that will be of our main interest
further on, would be the following:

dSt = (r − 𝜆𝛽)Stdt +
√

vtStdW̃S
t + St−dQt, (34)

dvt = 𝜅(𝜃 − vt)dt + 𝜎
√

vtdB̃𝜀t , (35)

where the jumps are log-normal as in the Example 1. According to Thao [39] (Lemma 2.1), we can write the approximate
fractional Brownian motion B̃𝜀t as

dB̃𝜀 = (H − 1∕2)𝜓tdt + 𝜀H−1∕2dW̃v
t , (36)

where H > 1∕2 and 𝜓t is a stochastic process defined by the Itô integral

𝜓t = ∫
t

0
(t − s + 𝜀)H−3∕2dW𝜓

s .

We substitute (36) into (35) to obtain the market dynamics in the form,

dSt = (r − 𝜆𝛽)Stdt +
√

vtStdW̃S
t + St−dQt, (37)

dvt =
[
(H − 1∕2)𝜓t𝜎

√
vt + 𝜅(𝜃 − vt)

]
dt + 𝜀H−1∕2𝜎

√
vtdW̃v

t , (38)

which gives us

p(v) =
[
(H − 1∕2)𝜓t𝜎

√
v + 𝜅(𝜃 − vt)

]
, q(v) = 𝜀H−1∕2𝜎

√
v.
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We can also assume that the both Wiener processes W̃S
t and W̃v

t are instantaneously correlated, that is,

dW̃S
t dW̃v

t = 𝜌 dt. (39)

To obtain option pricing formula, we need to derive the fundamental solution F̂F(k, v, 𝜏) of Equation (26), in particular

𝜕F̂F

𝜕𝜏
= 1

2
𝜀2(H−1∕2)𝜎2v

𝜕2F̂F

𝜕v2
+

[
(H − 1∕2)𝜓t𝜎

√
v + 𝜅(𝜃 − v) − ik𝜌𝜀H−1∕2𝜎v

] 𝜕F̂F

𝜕v
+ c(k)vF̂F,

with c(k) = (k2 − ik)∕2 and initial value F̂F(k, v, 0) = 1. We are looking for a solution of the form

F̂F(k, v, 𝜏) = exp(CF(k, 𝜏) + DF(k, 𝜏)v),

where CF and DF do not depend on v. After cancelling F̂F ≠ 0, we obtain

𝜕CF

𝜕𝜏
+
𝜕DF

𝜕𝜏
v = 1

2
𝜀2(H−1∕2)𝜎2vD2

F +
[
(H − 1∕2)𝜓t𝜎

√
v + 𝜅(𝜃 − v) − ik𝜌𝜀H−1∕2𝜎v

]
DF + c(k)v

with initial values CF(k, 0) = DF(k, 0) = 0. We recall that 𝜓t is a martingale and 𝜓0 = E
[
𝜓t

]
= 0.

v

[
−
𝜕DF

𝜕𝜏
+ 1

2
𝜀2(H−1∕2)𝜎2D2

F −
(
𝜅 + ik𝜌𝜀H−1∕2𝜎

)
DF − c(k)

]
−
𝜕CF

𝜕𝜏
+ 𝜅𝜃DF = 0. (40)

Because (40) must hold for all v, we can split it into a system of two equations

𝜕DF

𝜕𝜏
= 1

2
𝜀2(H−1∕2)𝜎2D2

F −
(
𝜅 + ik𝜌𝜀H−1∕2𝜎

)
DF − c(k), (41)

𝜕CF

𝜕𝜏
= 𝜅𝜃DF. (42)

Equation (41) is a Ricatti equation and can be solved explicitly (for example, Pospíšil and Sobotka [26], Proposition 2.1),
and then we obtain CF by integrating (42). The formula (33) for this model with approximate fractional Brownian motion is

V(S, v, 𝜏) = S − Ke−r𝜏 1
2𝜋 ∫

+∞+i∕2

−∞+i∕2
e−ikX F̂F(k, v, 𝜏)

k2 − ik
𝜙(−k)dk, (43)

with
F̂F(k, v, 𝜏) = exp(CF(k, 𝜏) + DF(k, 𝜏)v)

CF(k, 𝜏) = 𝜅𝜃Y𝜏 − 2𝜅𝜃
B2

ln

(
1 − ge−d𝜏

1 − g

)
DF(k, 𝜏) = Y

1 − e−d𝜏

1 − ge−d𝜏

Y = −k2 − ik
b + d

g = b − d
b + d

d =
√

b2 + B2(k2 − ik)
b = 𝜅 + ik𝜌B

B = 𝜀H− 1
2 𝜎,

and 𝜙(k) is defined in (32) with 𝜑̂(k) as in Example 1. Similarly, we could use the formula (31).
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Table III. Efficiency of the Bates SVJD pricing formulas.

Pricing approach Task Time† (s) Speed-up factor

Original
#1 38.01 —
#2 407.16 —
#3 3396.74 —

Newly proposed
#1 9.37 4.06×
#2 80.98 5.03×
#3 926.10 3.67×

†The results were obtained on a PC with 2× Intel Xeon E5-
2630 CPU and 12-GB RAM. SVJD, stochastic volatility jump-
diffusion.

5. Numerical comparison of formulas

In this section, we present a comparison of pricing formulas with respect to the previously introduced jump diffusion
models.

First and foremost, the computational efficiency of our solution for Bates [12] and Yan and Hanson [14] model is
assessed. We compare computational times needed to perform a selected pricing task with respect to the original and newly
proposed formulas. Three pricing tasks are considered for this purpose, all of which include 100 European call options with
different times to maturity and strike prices¶. To judge performance of the formulas with respect to a wide range of financial
markets, parameter sets used in the computation are randomly (uniformly) generated among the parameter bounds. The
first pricing task consists of 100 parameter sets. It mimics a market calibration trial with a very good initial guess. For the
second task, the pricing formulas are applied for 1000 generated parameter sets. The computation time, in this case, should
be similar to an average calibration from 100 market contracts using local search methods (e.g. Pospíšil and Sobotka [26]).
As was shown, for instance, by Mrázek et al. [40], a calibration of SV models might attain more local minima, and thus, a
more complex global optimization procedure can prove useful. Therefore, the last pricing task includes 10 000 randomly
generated parameter sets and should be more time consuming than a calibration with local search methods.

To numerically evaluate the inverse Fourier transform integral, different numerical quadratures can be considered,
typically Gauss–Laguerre or Gauss–Hermitte for infinite domain integration, or Gauss–Legendre, Gauss–Lobatto or
Gauss–Kronrod for suitable finite upper integration bound. Although Newton–Cotes quadratures (trapezoidal or Simpson’s
rules) are simple to implement, their error usually cannot compete with the aforementioned quadratures. Nevertheless,
some authors [41,42] favour the simplified trapezoidal rule for its speed. Because a proper comparison of numerical quadra-
tures (cf. with Rouah [43], Chapter 5) is ongoing research and it goes beyond the scope of this paper, in our numerical
experiments in the succeeding discussion, we used only the Gauss–Kronrod (7,15) quadrature that is implemented in the
MATLAB’s function integral.

5.1. Bates SVJD model

As the reference formula for Bates [12] model we take the one suggested by Gatheral [11]. Unlike the original one by
Bates [12], it does not suffer from the well-known Heston trap issue.

Using the fundamental transform formula, we are able to obtain call prices in a significantly shorter time. In fact, the
newly proposed formula can be evaluated three to five times faster than the reference formula with two integrals. The
results can be found in Table III. The precision of the computation can however differ depending on parameters, contract
setting and also on the numerical procedure used to evaluate integrals. In our setting, an absolute difference between the
formulas remains typically well beyond 1e-8 (Figure 1).

5.2. Yan Hanson SVJD model

We also compare the computation efficiency of the fundamental transform solution with respect to the Yan Hanson SVJD
model. As in the previous case, we are able to achieve better results compared with the original formula. The performance
improvement, however, is not as remarkable as for the Bates model. Computations using the proposed formula consume
13.7–25.7% less time. The speed-up factors alongside computational times are displayed in Table IV.

¶All combination of short, medium, longer terms (2 years) and OTM, ATM and ITM contracts are considered.
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Figure 1. Comparison of the pricing formulas for the Bates SVJD model. Absolute differences between the formulas are depicted in the
right part of the figure. Parameters used are as follows: v0 = 0.025; 𝜅 = 0.98; 𝜃 = 0.07; 𝜎 = 0.25; 𝜌 = −0.65; 𝜆 = 0.5; 𝜇J = −0.05;

𝜎J = 0.1; and for S0 = 100, 𝜏 = 0.5, r = 0.03. SVJD, stochastic volatility jump-diffusion.

Table IV. Efficiency of the Yan Hanson SVJD pricing formulas.

Pricing approach Task Time (s) Speed-up factor

Original
#1 25.33 —
#2 300.83 —
#3 3011.77 —

Newly proposed
#1 21.86 1.16×
#2 223.54 1.35×
#3 2530.45 1.19×

†The results were obtained on a PC with 2× Intel Xeon E5-2630 CPU
and 12-GB RAM. SVJD, stochastic volatility jump-diffusion.

Figure 2. Comparison of the pricing formulas for the Yan Hanson SVJD model. Absolute differences between the formulas are depicted
in the right part of the figure. Parameters used are as follows: v0 = 0.025; 𝜅 = 0.98; 𝜃 = 0.07; 𝜎 = 0.25; 𝜌 = −0.65; 𝜆 = 64;

a = −0.028; b = 0.026; and for S0 = 100, 𝜏 = 0.5, r = 0.03. SVJD, stochastic volatility jump-diffusion.

The prices obtained by the formulas are very much alike – the absolute differences in prices are typically of the order
1e-13 to 1e-14 (Figure 2). Again, the result depends on the numerical procedure used. The contract prices, however,
are usually quoted within two or three decimal digits, and hence, the numerical differences in both formulas are negligible.
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Figure 3. Option price as a function of the strike price for a call option with maturity 0.5 years and S0 = 100, r = 0.03. SVJD, stochastic
volatility jump-diffusion.

5.3. Fractional SVJD model

To judge the model performance with respect to the market calibration (for that, see [6]) or hedging is out of scope of this
paper. Nonetheless, we provide a visual comparison for all the aforementioned models. In Figure 3, we depict option price
smiles for SVJD models with log-normal and log-uniform jumps alongside the approximative fractional SVJD model with
log-normal jumps. A significant difference in the call option prices is typically observed for out-of-the-money contracts.
Counter-intuitively, the smile generated by fractional model with H = 0.7 is closer to the one created by Yan Hanson
model with log-uniform jumps. For H = 0.5, we obtain the same results as for the Bates SVJD model.

6. Conclusion

The aim of this paper was to introduce a unifying approach to option pricing under continuous-time SV models with jumps.
We generalized the approach by Lewis [29] to the class of SV models with jumps in the underlying stock process. We
derived a new unifying formula using the complex Fourier transform of the corresponding PIDE. The unifying pricing
formulas (31) and (33) are stated for the European call options, but we have also discussed how the solutions for different
payoffs can be obtained. We provided also several illustrative examples. Namely, we have shown how the unifying approach
applies to the Bates [12] and Yan and Hanson [14] models with log-normal and log-uniform jumps, respectively. Moreover,
we applied the results to the new approximative fractional SV model.

Although the unifying approach covers various interesting SVJD models, there are other models that do not fit into the
general structure described in Section 4. For these models, such as Barndorff–Nielsen and Shephard [15] model, we still
might be able to derive a one integral option pricing formula, see Appendix A.

Numerical comparison of the efficiency of the new proposed formulas shows that for the Bates model, our solution
is up to five times faster than the original one. As for the Yan Hanson model, the computational time also improves by
approximately 14–26%. Last but not least, we compared the call prices under these models with the fractional SVJD model.
The main difference was observed, especially for the out-of-the money contracts. The newly derived formulas are ready to
be used out of the box for any practical task that involves option pricing. The obtained improvement in the efficiency may
become crucial in model calibration to complex option surfaces.

Appendix A. The unifying formula for BNS model

Although the Barndorff–Nielsen and Shephard [15] (BNS) model with dynamics (A1) and (A2) does not fit into the general
model structure described in Section 4, we are able to deduce an option pricing formula that involves only one numerical
integration. This is performed by following the steps introduced in Section 3.

We will consider the ‘classical’ version of the model ([19] Table I) with a leverage effect originally proposed by Nicolato
and Venardos [17]. Under the model, evolution of the logarithmic stock price Xt = ln(St) is described by risk-neutral
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dynamics:

dXt = (𝜇 + 𝜆𝜌 − vt∕2)dt +
√

vtdWt + 𝜌dZt, (A1)

dvt = −𝜆vtdt + dZt, (A2)

where (Wt)t⩾0 is a standard Wiener process, 𝜌 < 0, 𝜆, v0 ⩾ 0 and (Zt)t⩾0 is a Lévy subordinator (independent on Wt)
||. The

model price of a call option with strike K can be retrieved using a standard Fourier transform [17].

V(S, v, 𝜏) = SP1 − e−r𝜏KP2; (A3)

P1(S, v, 𝜏 =
1
2
+ 1

2𝜋 ∫
+∞

−∞
Re

[
e−i𝜙 ln(K)f (S, v, 𝜏, u − i)

iuf (S, v, 𝜏,−i)

]
du, (A4)

P2(S, v, 𝜏) =
1
2
+ 1

2𝜋 ∫
+∞

−∞
Re

[
e−i𝜙 ln(K)f (S, v, 𝜏, u)

iu

]
du, (A5)

f (S, v, 𝜏, u) = eA(u,𝜏)+B(u,𝜏)eiu ln S+iur𝜏 ,

A(u, 𝜏) = − v
2𝜆

(u2 + iu)(1 − e−𝜆𝜏) − iua𝜆𝜌
b − 𝜌

𝜏,

B(u, 𝜏) = a
b − h2

(
b ln

(
b − h1

b − iu𝜌

)
+ h2𝜆𝜏

)
,

h1(u) = iu𝜌 − 1
2𝜆

(u2 + iu)(1 − e−𝜆𝜏), h2(u) = iu𝜌 − 1
2𝜆

(u2 + iu).

Option price (A3) can be rewritten using the notation C(u) = C(u, 𝜏) = exp{A(u, 𝜏) + B(u, 𝜏)}. Also, note that C(−i) = 1
for any positive 𝜏.

V(S, v, 𝜏) =1
2
(S − e−r𝜏K) + S

1
2𝜋 ∫

+∞

−∞

eiuX

iu
C(u − i)
C(−i)

du

− e−r𝜏K
1

2𝜋 ∫
+∞

−∞

eiuX

iu
C(u)du.

(A6)

By substituting k = u − i and k = u, respectively, we obtain

= 1
2
(S − e−r𝜏K) + e−r𝜏K

1
2𝜋

(
∫

+∞−i

−∞−i

eikX

ik − 1
C(k)dk − ∫

+∞

−∞

eikX

ik
C(k)dk

)
. (A7)

In order to retrieve a one integral formula that would correspond to the complex Fourier transform with ki = i∕2, we use
the residue theorem.

= S + e−r𝜏K
1

2𝜋

(
∫

+∞−i∕2

−∞−i∕2

eikX

ik − 1
C(k)dk − ∫

+∞−i∕2

−∞−i∕2

eikX

ik
C(k)dk

)
= S − e−r𝜏K

1
2𝜋

(
∫

+∞+i∕2

−∞+i∕2

e−ikX

ik + 1
C(−k)dk − ∫

+∞+i∕2

−∞+i∕2

e−ikX

ik
C(−k)dk

)
= S − e−r𝜏K

1
2𝜋 ∫

+∞+i∕2

−∞+i∕2
e−ikX C(−k)

k2 − ik
dk

. (A8)

Remark 2
The formula given by (A8) takes the same form as (33), where C(k) represents a fundamental transform with respect to the
BNS model.

||Lévy subordinator is a positive Lévy process which is almost surely increasing.
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Table AI. Efficiency of the BNS pricing formulas.

Pricing approach Task Time† (s) Speed-up factor

Original
#1 4.14 —
#2 46.84 —
#3 445.98 —

Newly proposed
#1 3.37 1.23×
#2 33.22 1.41×
#3 332.34 1.34×

†The results were obtained on a PC with 2× Intel Xeon E5-
2630 CPU and 12-GB RAM. BNS, Barndorff–Nielsen and
Shephard.

As for other models, the formula (A8) is more time efficient than the original one (A3). This is illustrated in Table AI,
the speed-up factor in case of the BNS model ranged between 1.23 and 1.41.
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In this paper, we derive a generic decomposition of the option pricing formula for
models with finite activity jumps in the underlying asset price process (SVJ models).
This is an extension of the well-known result by Alòs [(2012) A decomposition for-
mula for option prices in the Heston model and applications to option pricing approx-
imation, Finance and Stochastics 16 (3), 403–422, doi:10.1007/s00780-012-0177-0] for
Heston [(1993) A closed-form solution for options with stochastic volatility with appli-
cations to bond and currency options, The Review of Financial Studies 6 (2), 327–343,
doi:10.1093/rfs/6.2.327] SV model. Moreover, explicit approximation formulas for option
prices are introduced for a popular class of SVJ models — models utilizing a variance
process postulated by Heston [(1993) A closed-form solution for options with stochas-
tic volatility with applications to bond and currency options, The Review of Financial
Studies 6 (2), 327–343, doi:10.1093/rfs/6.2.327]. In particular, we inspect in detail the
approximation formula for the Bates [(1996), Jumps and stochastic volatility: Exchange
rate processes implicit in Deutsche mark options, The Review of Financial Studies 9
(1), 69–107, doi:10.1093/rfs/9.1.69] model with log-normal jump sizes and we provide a
numerical comparison with the industry standard — Fourier transform pricing method-
ology. For this model, we also reformulate the approximation formula in terms of implied
volatilities. The main advantages of the introduced pricing approximations are twofold.

Firstly, we are able to significantly improve computation efficiency (while preserving rea-
sonable approximation errors) and secondly, the formula can provide an intuition on the
volatility smile behavior under a specific SVJ model.

Keywords: Option pricing; stochastic volatility models; jump diffusion models; implied
volatility.
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1. Introduction

The main problem of the Black–Scholes option pricing model is a constant volatility
assumption for underlying stock price process. In practice, this model is used as a
marking model to quote implied volatilities instead of traded option prices. Contrary
to the model assumptions, the implied volatilities observed in the vanilla option
markets are not flat — they typically exhibit a nonzero skew and a convex smile-
like shape in the moneyness dimension. To correctly capture the shape of implied
volatility surfaces, various stochastic volatility (SV) models were developed. These
models assume that not only the spot prices are stochastic, but also their volatility
is driven by a suitable stochastic process. Another way how to deal with drawbacks
of the Black–Scholes model is to add a jump term to the stock price process. This
leads into jump diffusion settings originally studied by Merton (1976). In this paper,
we build an option price approximation framework for a popular class of financial
models that utilize both of the aforementioned ideas. Hence, the main objects of
our study are stochastic volatility jump (SVJ) diffusion models.

The first SVJ model is credited to Bates (1996) who incorporated a stochastic
variance process postulated by Heston (1993) alongside Merton (1976) — style
jumps. The variance of stock prices follows a CIR process (Cox et al. 1985) and
the stock prices themselves are assumed to be of a jump diffusion type with log-
normal jump sizes. In particular, this model should improve the market fit for
short-term maturity options, while the original Heston (1993) approach would often
need unrealistically high volatility of variance parameter to fit reasonably well the
short-term smile (Bayer et al. 2016, Mrázek et al. 2016). An SVJ model with a
non-constant interest rate was introduced by Scott (1997). Several other authors
studied SVJ models that have a different distribution for jump sizes, e.g. Yan &
Hanson (2006) utilized log-uniform jump amplitudes.

Naturally, one can extend SVJ models by adding jumps into the variance pro-
cess (e.g. a model introduced by Duffie et al. (2000)). However, based on several
empirical studies, these models tend to overfit market prices and despite having
more parameters than the original Bates (1996) model they might not provide bet-
ter calibration quality measures (see e.g. Gatheral (2006)). Another way to improve
standard SV models might be to introduce time-dependent model parameters. The
Heston (1993) model with time-dependent parameters was studied by Mikhailov &
Nögel (2003) for piece-wise constant parameters, by Elices (2008) for a linear depen-
dence and a more general modification was introduced by Benhamou et al. (2010).
These approaches involve several additional parameters and might also suffer from
overfitting. Moreover, Bayer et al. (2016) mentioned that these models do not fully
comply with properties of observable market data — a general overall shape of
the volatility surface typically does not change in time and hence the option prices
should be modelled by a time-homogeneous stochastic process.

The valuation of derivatives under these more complex models is, of course, a
more elaborate task compared to the standard Black–Scholes model. Many authors
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have introduced semi-closed form formulas using various transformation techniques
of the pricing partial (integro) differential equations, to name a few: Heston (1993),
Bates (1996), Scott (1997), Lewis (2000), Albrecher et al. (2007), Baustian et al.
(2017) and many others. Although transform pricing methods are typically efficient
tools to evaluate non-path dependent derivatives, they do not provide any intuition
on the smile behavior. Moreover, calibration routines utilizing these methods lead
typically to nonconvex optimization problems (see e.g. Mrázek et al. (2016)).

Other authors considered approximation techniques that were pioneered by Hull
& White (1987). In the last years, the Hull & White (1987) pricing formula was
reinvented using techniques of the Malliavin calculus, because a future average
volatility that is used in the formula is a nonadapted stochastic process. In Alòs
(2006), Alòs et al. (2007), Alòs et al. (2008), a general jump diffusion model with no
prescribed volatility process is analyzed. There have been several extensions thereof,
e.g. by assuming Lévy processes in Jafari & Vives (2013), see also the survey in Vives
(2016).

In Alòs (2012), a new approach of dealing with the Hull and White formula
and the Heston model has been proposed. The main idea of this approach is to
use an adapted projection for the future volatility. The formula provides a valuable
intuition on the behavior of smiles and term structures under the Heston model.
This is not a purely theoretical result — it can significantly fasten/improve the
calibration process by providing a good initial guess by analytical calibration or by
specifying a region where calibrated parameters should lie in as it is done in Alòs
et al. (2015). In Merino & Vives (2015), the idea of Alòs (2012) has been used to
find a general decomposition formula for any stochastic volatility process satisfying
basic integrability conditions.

In the present paper, we apply the same set of ideas and we extend them to
the domain of SVJ models with finite activity jumps. This should serve not only
to find a more efficient way to price vanilla options compared to transform pricing
methods (see Sec. 5), but as a side product we come up with an intuition of the smile
behavior for the studied SVJ model. In contrast to Alòs et al. (2007), Alòs et al.
(2008) where a Hull–White formula is obtained to study the short-time behavior of
the implied volatility, this paper focuses on obtaining a Hull–White formula that
can be numerically efficient and that can infer a parametric approximation of the
implied volatility surface.

In particular, we start by finding a generic decomposition formula for a vanilla
call option price and an approximation for both the price and implied volatility
under a specific SVJ model. Explicit pricing formulas are provided for one of the
most popular SVJ models — Heston (1993) type models with compound Poisson
process in the stock price evolution. To assess the accuracy and efficiency of the
newly derived solution, we perform a numerical comparison for the Bates (1996)
model (i.e. log-normal jump sizes) alongside its Fourier transform pricing formula
introduced by Baustian et al. (2017).
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The structure of the paper is as follows. In Sec. 2, we give basic preliminaries
and our notation related to SVJ models. This notation will be used throughout
the paper without being repeated in particular theorems, unless we find useful
to do so in order to guide the reader through the results. In Secs. 3 and 4, we
derive decomposition formulas for SV and SVJ models, respectively, generalizing
the decomposition formula obtained by Alòs (2012). Newly obtained decomposi-
tion is rather versatile since it does not need to specify the underlying volatility
process. Particular approximation formulas for several SVJ models are presented in
Sec. 5 alongside the numerical comparison for the Bates (1996) model. The decom-
position result in terms of implied volatilities is introduced in Sec. 6. A discussion
of the results is provided in Sec. 7 and technical error estimates are presented in
Appendix A.

2. Preliminaries and Notation

Let S = {St, t ∈ [0, T ]} be a strictly positive price process under a market chosen
risk neutral probability that follows the model:

dSt = rStdt + σtSt(ρdWt +
√

1 − ρ2dW̃t) + St−dZt, (2.1)

where S0 is the current price, W and W̃ are independent Brownian motions, r is
the interest rate including dividends and borrow rates, ρ ∈ (−1, 1) is the correlation
between the two Brownian motions and

Zt =
∫ t

0

∫
R

(ey − 1)Ñ(ds, dy), (2.2)

where N and Ñ denote the Poisson measure and the compensated Poisson measure,
respectively. We can associate to measure N a compound Poisson process J , inde-
pendent of W and W̃ , with intensity λ ≥ 0 and jump amplitudes given by random
variables Yi — independent copies of a random variable Y with law given by Q.
Recall that this compound Poisson process can be written as

Jt :=
∫ t

0

∫
R

yN(ds, dy) =
nt∑

i=1

Yi, (2.3)

where nt is a λ-Poisson process. We will denote k := EQ(eY − 1).
Without any loss of generality, it will be convenient in the following sections, to

use as the underlying asset price process, the log-price process Xt = log St, t ∈ [0, T ],
that satisfies

dXt =
(

r − λk − 1
2
σ2

t

)
dt + σt(ρdWt +

√
1 − ρ2dW̃t) + dJt. (2.4)

We introduce also the corresponding continuous process,

dX̃t =
(

r − λk − 1
2
σ2

t

)
dt + σt(ρdWt +

√
1 − ρ2dW̃t). (2.5)
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The volatility process σ is a square-integrable process assumed to be adapted
to the filtration generated by W and J and its trajectories are assumed to be a.s.
square integrable, càdlàg and strictly positive a.e.

Remark 2.1. Observe that this is a very general stochastic volatility model. We
can consider the following particular cases:

(i) If σ is constant and we have finite activity jumps, we have a generic jump-
diffusion model as for example the Merton model. In the particular case of
σ = 0 we have an exponential Lévy model.

(ii) If we assume no jumps, that is λ = 0, we have a generic stochastic volatility
diffusion model. This is the case treated in Merino & Vives (2015).

(iii) If in addition ρ = 0 we have a generalization of different non correlated stochas-
tic volatility diffusion models as Hull & White (1987), Scott (1987), Stein &
Stein (1991) or Ball & Roma (1994).

(iv) If we assume no correlation but presence of jumps we cover for example the
Heston–Kou model (e.g. see Gulisashvili & Vives (2012)), or any uncorrelated
model with the addition of finite activity Lévy jumps on the price process.

(v) Finally, if we have no jumps and σ is constant, we have the classical Osborne–
Samuelson–Black–Scholes model.

The following notation will be used throughout the paper:

(i) We denote by FW , FW̃ and FN the filtrations generated by the independent
processes W , W̃ and J , respectively. Moreover, we define F := FW ∨FW̃ ∨FN .

(ii) We will denote by BS(t, x, y) the price of a plain vanilla European call option
under the classical Black–Scholes model with constant volatility y, current log
stock price x, time to maturity τ = T − t, strike price K and interest rate r.
In this case,

BS(t, x, y) = exΦ(d+) − Ke−rτΦ(d−), (2.6)

where Φ(·) denotes the cumulative distribution function of the standard normal
law and

d± =
x − ln K +

(
r ± y2

2

)
τ

y
√

τ
. (2.7)

(iii) In our setting, the call option price is given by

Vt = e−rτ
Et[(eXT − K)+]. (2.8)

(iv) Recall that from the Feynman–Kac formula for the model (2.5), the operator

Lσ := ∂t +
1
2
σ2

t ∂2
x +

(
r − λk − 1

2
σ2

t

)
∂x − r (2.9)

satisfies LσBS(t, X̃t, σt) = 0.
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(v) We define the operators Λ := ∂x, Γ := (∂2
x − ∂x) and Γ2 = Γ ◦Γ. In particular,

for the Black–Scholes formula we obtain:

ΓBS(t, x, y) :=
ex

y
√

2πτ
exp
(
−d2

+(y)
2

)
, (2.10)

ΛΓBS(t, x, y) :=
ex

y
√

2πτ
exp
(
−d2

+(y)
2

)(
1 − d+(y)

y
√

τ

)
, (2.11)

Γ2BS(t, x, y) :=
ex

y
√

2πτ
exp
(
−d2

+(y)
2

)
d2
+(y) − yd+(y)

√
τ − 1

y2τ
. (2.12)

(vi) We define pn(λT ) as the Poisson probability mass function with intensity λT ,
i.e. pn takes the following form:

pn(λT ) :=
e−λT (λT )n

n!
. (2.13)

3. A Generic SV Decomposition Formula

In this section, following the ideas of Alòs (2012), see also Merino & Vives (2015),
we extend the decomposition formula to a generic stochastic volatility model. We
recall that the formula is valid without having to specify the underlying volatility
process explicitly, which enables us to obtain a very flexible decomposition formula.
The formula proved in Alòs (2012) is the particular case for the Heston model.

It is well known that if the stochastic volatility process is independent of the
price process, then the pricing formula of a plain vanilla European call is given by

Vt = Et[BS(t, St, σ̄t)], (3.1)

where σ̄2
t is the so-called average future variance and it is defined by

σ̄2
t :=

1
T − t

∫ T

t

σ2
sds. (3.2)

Naturally, σ̄t is called the average future volatility, see Fouque et al. (2000, p. 51).
The idea used in Alòs (2012) consists of using an adapted projection of the

average future variance

v2
t := Et(σ̄2

t ) =
1

T − t

∫ T

t

Et[σ2
s ]ds (3.3)

to obtain a decomposition of Vt in terms of vt. This idea switches an anticipative
problem related with the anticipative process σ̄t into a nonanticipative one related
to the adapted process vt.

We define

Mt =
∫ T

0

Et[σ2
s ]ds, (3.4)
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and hence

dv2
t =

1
T − t

[dMt + (v2
t − σ2

t )dt]. (3.5)

Recall that M is a martingale with respect the filtration generated by W and J . The
following processes will play an important role in a generic decomposition formula
that will be introduced in this section. Let

Rt =
1
8

Et

[∫ T

t

d[M, M ]u

]
(3.6)

and

Ut =
ρ

2
Et

[∫ T

t

σud[W, M ]u

]
, (3.7)

where [·, ·] denotes the quadratic covariation process. Now we prove a generic version
of Theorem 2.2 in Alòs (2012) which will be useful for our problem.

Theorem 3.1 (Generic decomposition formula). Let Bt be a continuous semi-
martingale with respect to the filtration Ft, let A(t, x, y) be a C1,2,2

b ([0, T ]× [0,∞)×
[0,∞)) function and let v2

t , Mt be defined as above. Then we are able to formulate
the expectation of e−rT A(T, X̃T , v2

T )BT in the following way:

E[e−rT A(T, X̃T , v2
T )BT ]

= A(0, X̃0, v
2
0)B0 + E

[∫ T

0

e−ru∂yA(u, X̃u, v2
u)Bu

1
T − u

(v2
u − σ2

u)du

]

+ E

[∫ T

0

e−ruA(u, X̃u, v2
u)dBu

]

+
1
2

E

[∫ T

0

e−ru(∂2
x − ∂x)A(u, X̃u, v2

u)Bu(σ2
u − v2

u)du

]

+
1
2

E

[∫ T

0

e−ru∂2
yA(u, X̃u, v2

u)Bu
1

(T − u)2
d[M, M ]u

]

+ ρE

[∫ T

0

e−ru∂2
x,yA(u, X̃u, v2

u)Bu
σu

T − u
d[W, M ]u

]

+
√

1 − ρ2E

[∫ T

0

e−ru∂2
x,yA(u, X̃u, v2

u)Bu
σu

T − u
d[W̃ , M ]u

]

+ ρE

[∫ T

0

e−ru∂xA(u, X̃u, v2
u)σud[W, B]u

]
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+
√

1 − ρ2E

[∫ T

0

e−ru∂xA(u, X̃u, v2
u)σud[W̃ , B]u

]

+ E

[∫ T

0

e−ru∂yA(u, X̃u, v2
u)

1
T − u

d[M, B]u

]
.

(3.8)

Proof. Applying the Itô formula to the process e−rtA(t, X̃t, v
2
t )Bt, we obtain:

e−rT A(T, X̃T , v2
T )BT

= A(0, X̃0, v
2
0)B0 − r

∫ T

0

e−ruA(u, X̃u, v2
u)Budu

+
∫ T

0

e−ru∂tA(u, X̃u, v2
u)Budu +

∫ T

0

e−ru∂xA(u, X̃u, v2
u)BudX̃u

+
∫ T

0

e−ru∂yA(u, X̃u, v2
u)Budv2

u +
∫ T

0

e−ruA(u, X̃u, v2
u)dBu

+
1
2

∫ T

0

e−ru∂2
xA(u, X̃u, v2

u)Bud[X̃, X̃ ]u

+
1
2

∫ T

0

e−ru∂2
yA(u, X̃u, v2

u)Bud[v2, v2]u

+
∫ T

0

e−ru∂2
x,yA(u, X̃u, v2

u)Bud[X̃, v2]u

+
∫ T

0

e−ru∂xA(u, X̃u, v2
u)d[X̃, B]u

+
∫ T

0

e−ru∂yA(u, X̃u, v2
u)d[v2, B]u. (3.9)

In the next step, we apply the Feynman–Kac operator with volatility vt, alongside
the definition of Mt. After algebraic operations, we retrieve

e−rT A(T, X̃t, v
2
T )BT

= A(0, X̃0, v
2
0)B0 +

1
2

∫ T

0

e−ru∂xA(u, X̃u, v2
u)Bu(v2

u − σ2
u)du

+
∫ T

0

e−ru∂xA(u, X̃u, v2
u)Buσu(ρdWu +

√
1 − ρ2dW̃u)

+
∫ T

0

e−ru∂yA(u, X̃u, v2
u)Bu

1
T − u

dMu
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+
∫ T

0

e−ru∂yA(u, X̃u, v2
u)Bu

1
T − u

(v2
u − σ2

u)du

+
∫ T

0

e−ruA(u, X̃u, v2
u)dBu +

1
2

∫ T

0

e−ru∂2
xA(u, X̃u, v2

u)Bu(σ2
u − v2

u)du

+
1
2

∫ T

0

e−ru∂2
yA(u, X̃u, v2

u)Bu
1

(T − u)2
d[M, M ]u

+ρ

∫ T

0

e−ru∂2
x,yA(u, X̃u, v2

u)Bu
σu

T − u
d[W, M ]u

+
√

1 − ρ2

∫ T

0

e−ru∂2
x,yA(u, X̃u, v2

u)Bu
σu

T − u
d[W̃ , M ]u

+ ρ

∫ T

0

e−ru∂xA(u, X̃u, v2
u)σud[W, B]u

+
√

1 − ρ2

∫ T

0

e−ru∂xA(u, X̃u, v2
u)σud[W̃ , B]u

+
∫ T

0

e−ru∂yA(u, X̃u, v2
u)

1
T − u

d[M, B]u. (3.10)

After applying expectations on both sides of the equation, we end up with the
statement of the theorem.

4. A Decomposition Formula for SVJ Models

In the previous section, we have given a general decomposition formula that can be
used for stochastic volatility models with continuous sample paths. In this section,
we are going to extend the previous decomposition to the case of a general jump
diffusion model with finite activity jumps.

The main idea, like the one used in Merino & Vives (2017), is to adapt the
pricing process in a way to be able to apply the decomposition technique effectively.
In our case, this would translate into conditioning on the finite number of jumps
nT . If we denote Jn =

∑n
i=0 Yi, using the integrability of Black–Scholes function,

we can obtain the following conditioning formula for European options with payoff
at maturity T : BS(T, XT , vT ).

V0 = e−rT
E[BS(T, XT , vT )]

= e−rT
+∞∑
n=0

pn(λT )E

[
BS

(
T, X̃T +

nT∑
i=0

Yi, vT

) ∣∣∣∣∣ nT = n

]

= e−rT
+∞∑
n=0

pn(λT )E[BS(T, X̃T + Jn, vT )]
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= e−rT
∞∑

n=0

pn(λT )E[EJn [BS(T, X̃T + Jn, vT )]]

= e−rT
∞∑

n=0

pn(λT )E[Gn(T, X̃T , vT )],

(4.1)

where

Gn(T, X̃T , vT ) := EJn [BS(T, X̃T + Jn, vT )]. (4.2)

We have switched our problem from a jump diffusion model with stochastic volatility
to another one with no jumps.

Combining the generic SV decomposition formula (from Theorem 3.1) and con-
ditioning on the number of jumps we obtain a corner-stone for our approximation.

Corollary 4.1 (SVJ decomposition formula). Let Xt be a log-price pro-
cess (2.4), Gn be the previously defined function. Then we can express the call
option fair value V0 using the Poisson mass function pn and a martingale process
Mt (defined by (3.4)). In particular,

V0 =
∞∑

n=0

pn(λT )Gn(0, X̃0, v0)

+
1
8

∞∑
n=0

pn(λT )E

[∫ T

0

e−ruΓ2Gn(u, X̃u, vu)d[M, M ]u

]

+
ρ

2

∞∑
n=0

pn(λT )E

[∫ T

0

e−ruΛΓGn(u, X̃u, vu)σud[W, M ]u

]
. (4.3)

Proof. We apply Theorem 3.1 to A(t, X̃t, v
2
t ) := Gn(t, X̃t, vt) and Bt ≡ 1. Note

that

∂σ2BS(t, x, σ) =
(T − t)

2
(∂2

x − ∂x)BS(t, x, σ) (4.4)

and

∂2
σ2BS(t, x, σ) =

(T − t)2

4
(∂2

x − ∂x)2BS(t, x, σ). (4.5)

Then, the corollary follows immediately. Note that in order to apply the Itô formula
to function Gn we need to use a mollifier argument as it is done in Merino & Vives
(2015).

Remark 4.1. For clarity, in the following we will refer to terms of the previous
decomposition as

V0 =
∞∑

n=0

pn(λT )Gn(0, X̃0, v0) +
∞∑

n=0

pn(λT )[(In) + (II n)]. (4.6)
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Note that if ρ = 0, we have

V0 =
∞∑

n=0

pn(λT )Gn(0, X̃0, v0) +
∞∑

n=0

pn(λT )(In). (4.7)

The term (II n) is the correction due to the dependence between the stock and
volatility processes meanwhile (In) is the correction of the vol–vol of the volatility
model.

To compute the above expression can be cumbersome. The main idea is to find
an alternative formula such that the main terms are easier to be computed while
paying the price by having more terms in the formula. Fortunately, in many cases
these new terms can be neglected as an approximation error. The size of the error
depends on the model and whether we are focusing on short or long-time dynamics.

The following lemma is proved in Alòs (2012, p. 406); and will help us to derive
bounds on the error terms that appear in the main result of this paper — a com-
putationally suitable decomposition formula for generic finite activity SVJ models.

Lemma 4.1. Let 0 ≤ t ≤ s ≤ T and Gt := Ft ∨ FW
T . For every n ≥ 0, there exists

C = C(n) such that

|E(ΛnΓBS(s, X̃s, vs)|Gt)| ≤ C

(∫ T

s

Es(σ2
θ)dθ

)− 1
2 (n+1)

. (4.8)

Theorem 4.1 (Computationally suitable SVJ decomposition). Let Xt be
a log-price process (2.4) and Gn be the previously defined function. Then we can
express the call option fair value V0 using the Poisson probability mass function pn

and processes Rt, Ut defined by (3.6) and (3.7), respectively. In particular,

V0 =
∞∑

n=0

pn(λT )Gn(0, X̃0, v0) +
∞∑

n=0

pn(λT )Γ2Gn(0, X̃0, v0)R0

+
∞∑

n=0

pn(λT )ΛΓGn(0, X̃0, v0)U0 +
∞∑

n=0

pn(λT )Ωn, (4.9)

where Ωn are error terms fully derived in Appendix A.1.

Proof. We use Theorem 3.1 iteratively for the following choices of A(t, Xt, v
2
t ):

(I)

A(t, Xt, v
2
t ) := Γ2Gn(t, X̃t, vt) (4.10)

and

Bt := Rt =
1
8

Et

[∫ T

t

d[M, M ]u

]
. (4.11)
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(II)

A(t, Xt, v
2
t ) := ΛΓGn(t, X̃t, vt) (4.12)

and

Bt := Ut =
ρ

2
Et

[∫ T

t

σud[W, M ]u

]
, (4.13)

and then the statement follows immediately. See also the terms in Appendix A.1.

As we will illustrate in the upcoming sections for Heston-type SVJ models -
this formula can be efficiently evaluated, while the neglected error terms do not
significantly limit a practical use of the formula. The main ingredients, to get SVJ
approximate pricing formula, are expressions for R0, U0 and Gn(0, X̃0, v0). Now we
provide some insight how the latter term can be expressed under various jump-
diffusion settings.

Remark 4.2. In particular, we have a closed formula for a log-normal jump diffu-
sion model (e.g. Bates (1996) SVJ model):

Gn(0, X̃0, v0) = BS

(
0, X̃0,

√
v2
0 + n

σ2
J

T

)
, (4.14)

where we modified the risk-free rate used in the Black–Scholes formula to

r∗ = r − λ(eµJ+ 1
2σ2

J − 1) + n
µJ +

1
2
σ2

J

T
. (4.15)

A very similar formula for the Merton case is deduced by Hanson (2007). More
details will follow in the next sections. Under general (finite-activity) jump diffusion
settings, we will need to solve∫

R

BS(0, X̃0 + y, v0)fJn(y)dy, (4.16)

where fJn = (f∗n
Y )(y) is the convolution of the law of n jumps.

Here, we provide a list of known results for various popular models.

(i) Kou (2002) double exponential model:

f∗(n)(u) = e−η1u
n∑

k=1

Pn,kηk
1

1
(k − 1)!

uk−11{u≥0}

+ e−η2u
n∑

k=1

Qn,kηk
2

1
(k − 1)!

(−u)k−11{u<0}, (4.17)

where

Pn,k =
n−1∑
i=k

(
n − k − 1

i − k

)(
n

i

)(
η1

η1 + η2

)i−k (
η2

η1 + η2

)n−i

piqn−i, (4.18)
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for all 1 ≤ k ≤ n − 1, and

Qn,k =
n−1∑
i=k

(
n − k − 1

i − k

)(
n

i

)(
η1

η1 + η2

)n−i(
η2

η1 + η2

)i−k

pn−iqi, (4.19)

for all 1 ≤ k ≤ n − 1. In addition, Pn,n = pn and Qn,n = qn.
(ii) Yan & Hanson (2006) model uses log-uniform jump sizes and hence the density

is of the form (Killmann & von Collani 2001)

f∗(n)(u) =




ñ(n,u)∑
i=0

(−1)i

(
n

i

)
(u − na − i(b − a))n−1

(n − 1)!(b − a)n
, if na ≤ u ≤ nb,

0, otherwise,

(4.20)

where ñ(n, u) := [u−na
b−a ] is the largest integer less than u−na

b−a .

5. SVJ Models of the Heston Type

In this section, we apply the previous generic results to derive a pricing formula for
SVJ models with the Heston variance process. The aim is not to provide pric-
ing solution for all known/studied models, but rather to detail the derivation
for a selected model and comment on possible extension to different models, i.e.
we focus on models with dynamics satisfying the following stochastic differential
equations:

dXt =
(

r − λk − 1
2
σ2

t

)
dt + σt(ρdWt +

√
1 − ρ2dW̃t) + dJt, (5.1)

dσ2
t = κ(θ − σ2

t )dt + ν
√

σ2
t dWt, (5.2)

where σ0, κ, θ, ν are positive constants satisfying the Feller condition 2κθ ≥ ν2. The
process σ2

t represents an instantaneous variance of the price at time t, θ is a long run
average level of the variance, κ is a rate at which σt reverts to θ and, last but not
least, ν is a volatility of volatility parameter. We will distinguish between the two
cases: either jump amplitudes follow a Gaussian process (Bates (1996) model) or
they are driven by other models, e.g. a log-uniform process (Yan & Hanson (2006)
model).

5.1. Approximation of the SVJ models of the Heston type

For a standard Heston model, we recall some results from Alòs et al. (2015). Define

ϕ(t) :=
∫ T

t

e−κ(z−t)dz. (5.3)
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Lemma 5.1. We have the following results :

(i) For s ≥ t, we have

Et(σ2
s) = θ + (σ2

t − θ)e−κ(s−t) = σ2
t e−κ(s−t) + θ(1 − e−κ(s−t)),

so, in particular, this quantity is bounded below by σ2
t ∧ θ and above by

σ2
t ∨ θ.

(ii) Et

(∫ T

t

σ2
sds

)
= θ(T − t) +

σ2
t − θ

κ
(1 − e−κ(T−t)).

(iii) dMt = νσt

(∫ T

t

e−κ(u−t)du

)
dWt =

ν

κ
σt(1 − e−κ(T−t))dWt.

(iv) Ut :=
ρ

2
Et

(∫ T

t

σsd〈M, W 〉s
)

=
ρ

2
ν

∫ T

t

Et(σ2
s)

(∫ T

s

e−κ(u−s)du

)
ds

=
ρν

2κ2
{θκ(T − t)−2θ+σ2

t +e−κ(T−t)(2θ−σ2
t )−κ(T − t)e−κ(T−t)(σ2

t −θ)}.

(v) Rt :=
1
8
Et

(∫ T

t

d〈M, M〉s
)

=
1
8
ν2

∫ T

t

Et(σ2
s)

(∫ T

s

e−κ(u−s)du

)2

ds

=
ν2

8κ2

{
θ(T − t) +

(σ2
t − θ)
κ

(1 − e−κ(T−t)) − 2θ

κ
(1 − e−κ(T−t))

− 2(σ2
t − θ)(T − t)e−κ(T−t) +

θ

2κ
(1 − e−2κ(T−t))

+
(σ2

t − θ)
κ

(e−κ(T−t) − e−2κ(T−t))
}

.

(vi) dUt =
ρν2

2

(∫ T

t

e−κ(z−t)ϕ(z)dz

)
σtdWt − ρν

2
ϕ(t)σ2

t dt.

(vii) dRt =
ν3

8

(∫ T

t

e−κ(z−t)ϕ(z)2dz

)
σtdWt − ν2

8
ϕ(t)2σ2

t dt.

Furthermore, the following lemma is proved in Alòs et al. (2015).

Lemma 5.2. Let all the objects be well defined as above, then for a standard Heston
model we have that

(i)
∫ T

s
Es(σ2

u)du ≥ θκ
2 (
∫ T

s
e−κ(u−s)du)2.

(ii)
∫ T

s
Es(σ2

u)du ≥ σ2
s(
∫ T

s
e−κ(u−s)du).

Remark 5.1. We can utilize these equalities to get analogue results for Theo-
rem 4.1. The Ωn terms can be founded in Appendix A.2.
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Now we have all the tools needed to introduce the main practical result — the
pricing formula.

Corollary 5.1 (Heston-type SVJ pricing formula). Let Gn(0, X̃0, v0) takes
the expression as in Remark 4.2 for a particular jump-type setting, let

R0 =
ν2

8κ2

{
θT +

(σ2
0 − θ)
κ

(1 − e−κT ) − 2θ

κ
(1 − e−κT ) − 2(σ2

0 − θ)Te−κT

+
θ

2κ
(1 − e−2κT ) +

(σ2
0 − θ)
κ

(e−κT − e−2κT )
}

(5.4)

and let

U0 =
ρν

2κ2
{θκT − 2θ + σ2

0 + e−κT (2θ − σ2
0) − κTe−κT (σ2

0 − θ)}. (5.5)

Then the European option fair value is expressed as

V0 =
∞∑

n=0

pn(λT )Gn(0, X̃0, v0) +
∞∑

n=0

pn(λT )Γ2Gn(0, X̃0, v0)R0

+
∞∑

n=0

pn(λT )ΛΓGn(0, X̃0, v0)U0 +
∞∑

n=0

pn(λT )Ωn, (5.6)

where Ωn are error terms detailed in Appendix A.2. The upper bound for any Ωn is
given by

Ωn ≤ ν2(|ρ| + ν)2
(

1
r
∧ (T − t)

)
Π(κ, θ), (5.7)

where Π(κ, θ) is a positive function. Therefore, the total error

Ω =
∞∑

n=0

pn(λT )Ωn (5.8)

is bounded by the same constant.

Proof. We plug-in the Heston volatility model dynamics into Theorem 4.1. Using
the integrability of the Black–Scholes function, Fubini Theorem and the fact that
the upper bound of Lemma 4.1 does not depend on the log spot price, the upper
bound can be used for every Gn function. Using Lemmas 5.1 and 5.2, we prove the
corollary. The whole proof is in Appendix A.3.

Remark 5.2 (Approximate fractional SVJ model). For the model introduced
by Posṕı̌sil & Sobotka (2016), one can derive a very similar decomposition as in
Corollary 5.1. In fact, only the terms R0 and U0 have to be changed while the other
terms remain the same.

5.2. Numerical analysis of the SVJ models of the Heston type

In this section, we compare the newly obtained approximation formula for option
prices under Bates (1996) model (i.e. log-normal jump sizes alongside Heston
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model’s instantaneous variance) with the market standard approach for pricing
European options under SVJ models — the Fourier-transform based pricing for-
mula. The comparison is performed with two important aspects in mind: the prac-
tical precision of the pricing formula when neglecting the total error term Ω and
the efficiency of the formula expressed in terms of the computational time needed
for particular pricing tasks.

In particular, we utilize a semi-closed form solution with one numerical integra-
tion as a reference price (Baustian et al. 2017) alongside a classical solution derived
by Bates (1996).a The numerical integration errors according to Baustian et al.
(2017) should be typically well beyond 10−10, hence we can take the numerically
computed prices as the reference prices for the comparison.

Due to the theoretical properties of the total error term Ω, we illustrate the
approximation quality for several values of ρ and ν while keeping other parameters
fixed.b

In Fig. 1, we inspect a mode of low volatility of the spot variance ν and low abso-
lute value of the instantaneous correlation ρ between the two Brownian motions. The
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Fig. 1. On the left plot, there is a comparison of approximation and reference prices. The x- and
y-axes represent the option prices and the option strikes, respectively. On the right plot, there
is the relative error of the model. The x- and y-axes represent the relative error and the option
strikes, respectively. The parameters are ρ = −0.2, ν = 5%, τ = 0.3, S0 = 100; r = 0.001; τ = 0.3;
v0 = 0.25; κ = 1.5; θ = 0.2; λ = 0.05; µJ = −0.05; and σJ = 0.5.

aWith a slight modification mentioned in Gatheral (2006) to not suffer from “Heston trap” issues.
bThe considered model and market parameters take the following values: S0 = 100; r = 0.001;
τ = 0.3; v0 = 0.25; κ = 1.5; θ = 0.2; λ = 0.05; µJ = −0.05; and σJ = 0.5.

1850052-16



December 13, 2018 9:43 WSPC/S0219-0249 104-IJTAF SPI-J071
1850052

Decomposition Formula for Jump Diffusion Models

Strike price
50 100 150

O
pt

io
n

pr
ic

e

0

10

20

30

40

50

60

Call option prices under Bates (1996) model

Baustian et al (2017) formula
Approximation formula

Strike price
50 100 150

R
el

at
iv

e
er

ro
rs

10-6

10-5

10-4

10-3

Relative errors in log10 scale

Fig. 2. On the left plot, there is a comparison of approximation and reference prices. The x- and
y-axes represent the option prices and the option strikes, respectively. On the right plot, there
is the relative error of the model. The x- and y-axes represent the relative error and the option
strikes, respectively. The parameters are ρ = −0.8, ν = 5%, τ = 0.3, S0 = 100; r = 0.001; τ = 0.3;
v0 = 0.25; κ = 1.5; θ = 0.2; λ = 0.05; µJ = −0.05; and σJ = 0.5.

errors for an option price smile that corresponds to τ = 0.3 are within 10−4–10−6

range, while slightly better absolute errors were obtained at-the-money. Increasing
either the absolute value of ρ or volatility ν should, in theory, worsen the computed
error measures. However, if only one of the values is increased we are still able to
keep the errors below 10−3 in most of the cases, see Fig. 2.

Last but not least, we illustrate the approximation quality for parameters that
are not well suited for the approximation. This is done by setting ν = 50%, cor-
relation ρ = −0.8 and a smile with respect to τ = 3. The obtained errors are
depicted by Fig. 3. Despite the values of parameters, the shape of the option price
curve remains fairly similar to the one obtained by a more precise semi-closed
formula.

Main advantage of the proposed pricing approximation lies in its computational
efficiency — which might be advantageous for many tasks in quantitative finance
that need fast evaluation of derivative prices. To inspect the time consumption we
set up three pricing tasks. We use a batch of 100 call options with different strikes
and times to maturities that involves all types of options.c In the first task, we
evaluate prices for the batch with respect to 100 (uniformly) randomly sampled
parameter sets. This should encompass a similar number of price evaluations as

cIt includes OTM, ATM, ITM options with short-, mid- and long-term times to maturities.
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Fig. 3. On the left plot, there is a comparison of approximation and reference prices. The x- and
y-axes represent the option prices and the option strikes, respectively. On the right plot, there
is the relative error of the model. The x- and y-axes represent the relative error and the option
strikes, respectively. The parameters are ρ = −0.8, ν = 50%, τ = 3, S0 = 100; r = 0.001; τ = 0.3;
v0 = 0.25; κ = 1.5; θ = 0.2; λ = 0.05; µJ = −0.05; and σJ = 0.5.

a market calibration task with a very good initial guess. Further on, we repeat
the same trials only for 1000 and 10000 parameter sets, to mimic the number of
evaluations for a typical local-search calibration and a global-search calibration
respectively, for more information about calibration tasks see e.g. Mikhailov & Nögel
(2003) and Mrázek et al. (2016).

The obtained computational times are listed in Table 1. Unlike the formulas with
numerical integration, the proposed approximation has almost linear dependency of

Table 1. Efficiency of the Bates SVJ pricing formulas.

Pricing approach Task Timea [sec] Speed-up factor

Approximation formula #1 0.97 3.23×
#2 10.03 2.94×
#3 99.67 2.83×

Baustian et al. (2017) #1 2.09 1.52×
#2 17.28 1.71×
#3 135.95 2.01×

Gatheral (2006) #1 3.18 —
#2 29.48 —
#3 281.72 —

aThe results were obtained on a PC with Intel Core i7-6500U CPU
and 8GB RAM.
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computational time on the number of evaluated prices. Also the results vary based
on the randomly generated parameter values for numerical schemes much more than
for the approximation — this is caused by adaptivity of numerical quadratures that
were used.d The newly proposed approximation is typically 3× faster compared to
the classical two integral pricing formula and the computational time consumption
does not depend on the model- nor market-parameters.

6. The Approximated Implied Volatility Surface for SVJ Models
of the Heston Type

In the above section, we have computed a bound for the error between the exact
price and the approximated pricing formula for the SVJ models of the Heston type.
Now, we are going to derive an approximation of the implied volatility surface
alongside the corresponding ATM implied volatility profiles. These approximations
can help us to understand the volatility dynamics of studied models in a better
way.

6.1. Derivation of implied volatility approximations for models of

the Heston type

The price of an European call option with strike K and maturity T is an observable
quantity which will be referred to as P obs

0 = P obs(K, T ). Recall that the implied
volatility is defined as the value I(T, K) that satisfies

BS(0, S0, I(T, K)) = P obs
0 . (6.1)

Define v̂0 such that

BS(0, S0, v̂0) :=
∞∑

n=0

pn(λT )EJn [BS(0, x + Jn, v0)]. (6.2)

Using the results from the previous section, we are going to derive an approxima-
tion to the implied volatility as in Fouque et al. (2003), using the idea to expand the
implied volatility function I(T, K) with respect to two scales {δk}∞k=0 and {εk}∞k=0

converging to 0. See also Alòs et al. (2015).
Let ε = ρν and δ = ν2. Then, we expand I(T, K) with respect to these two

scales and v̂0 as

I(T, K) = v̂0 + ρνI1(T, K) + ν2I2(T, K) + O((ρν + ν2)). (6.3)

We will denote by Î(T, K) = v̂0 + ρνI1(T, K) + ν2I2(T, K) the approximation
to the implied volatility and by V̂ (0, x, v0) the approximation to the option price

dFor both Baustian et al. (2017) and Gatheral (2006) formulas we use an adaptive Gauss-Kronrod
(7, 15) quadrature.
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obtained in Corollary 5.1. We know that according to Corollary 5.1:

V̂ (0, x, v0) =
∞∑

n=0

pn(λT )EJn [BS(0, x + Jn, v0)]

+
∞∑

n=0

pn(λT )EJn [Γ2BS(0, x + Jn, v0)]R0

+
∞∑

n=0

pn(λT )EJn [ΛΓBS(0, x + Jn, v0)]U0. (6.4)

To simplify the notation, we define

γn :=
d2
+(x, r, σ) − d2

+(x + Jn, r, σ)
2

(6.5)

and

D1(x, Jn, σ, T ) := EJn

[
eJn+γn

σT

(
1 − d+(x + Jn, r, σ)

σ
√

T

)]
, (6.6)

D2(x, Jn, σ, T ) := EJn

[
eJn+γn

σ3T 2
(d2

+(x + Jn, r, σ) − σd+(x + Jn, r, σ)
√

T − 1)
]
.

(6.7)

Using the fact that

∂σBS(t, x, σ) =
exe−d2

+(σ)/2
√

T − t√
2π

, (6.8)

we can re-write the approximated price as

V̂ (0, x, v0) =
∞∑

n=0

pn(λT )EJn [BS(0, x + Jn, v0)]

+ ∂σBS(v0)
∞∑

n=0

pn(λT )D1(x, Jn, σ, T )U0

+ ∂σBS(v0)
∞∑

n=0

pn(λT )D2(x, Jn, v0, T )R0. (6.9)

We write BS(v0) as a shorthand for BS(0, x, v0). Note that the pricing formula
approximation, V̂ (0, x, v0), has volatility v0, meanwhile I(T, K) depends on v̂0.
In order to conciliate one with the other, we consider the Taylor expansion of
BS(0, x, I(T, K)) around v0:

BS(0, x, I(T, K)) = BS(v0) + ∂σB(v0)(v̂0 − v0 + ρνI1(T, K) + ν2I2(T, K) + · · ·)

+
1
2
∂2

σBS(v0)(v̂0 − v0 + ρνI1(T, K) + ν2I2(T, K) + · · ·)2 + · · ·
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= BS(v0) + ρν∂σBS(v0)I1(T, K) + ν2∂σBS(v0)I2(T, K)

+
∞∑

n=1

1
n!

∂σBS(v0)(v̂0 − v0)n + · · · . (6.10)

Noticing that

BS(v̂0) = BS(v0) +
∞∑

n=1

1
n!

∂σBS(v0)(v̂0 − v0)n (6.11)

and equating

V̂ (0, x, v0) = BS(0, x, Î(T, K)), (6.12)

we obtain

Î1(T, K) := ρνI1(T, K) = U0

∞∑
n=0

pn(λT )D1(x, Jn, v0, T ), (6.13)

Î2(T, K) := ν2I2(T, K) = R0

∞∑
n=0

pn(λT )D2(x, Jn, v0, T ). (6.14)

Hence, we have the following approximation of implied volatility:

Î(T, K) = v̂0 + U0

∞∑
n=0

pn(λT )D1(x, Jn, v0, T )

+ R0

∞∑
n=0

pn(λT )D2(x, Jn, v0, T ). (6.15)

In particular, when we look at the ATM curve, we have that

ÎATM(T ) = v̂0 + U0

∞∑
n=0

pn(λT )EJn

[
eJn+γn

v0T

(
1
2
− Jn

Tv2
0

)]

−R0

∞∑
n=0

pn(λT )EJn

[
eJn+γn

v0T

(
1
4

+
1

v2T
− J2

n

v4
0T

2

)]
. (6.16)

Remark 6.1. When T converges to 0, dynamics of the model are the same as for
the Heston model. This is due to the behavior of Poisson processes when T ↓ 0.

6.2. Derivation of implied volatility approximation for the Bates

model

The Bates model is a particular example of SVJ model of the Heston type. The fact
that jumps are log-normal makes the model more tractable. In this section, we will
adapt the generic formulas to this particular case. In this model, after each jump,
the drift- and volatility-like parameters will change. We define

ṽ
(n)
0 =

√
v2
0 + n

σ2
J

T
(6.17)
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as the new volatility and

r̃n = r − λ(eµJ+ 1
2σ2

J − 1) + n
µJ +

1
2
σ2

J

T
(6.18)

as the new drift. The parameter n is the number of realized jumps, µJ and σJ are
the jump-size parameters and λ is the jump intensity. For simplicity, we denote:

cn := −λ(eµJ+ 1
2σ2

J − 1) + n
µJ +

1
2
σ2

J

T
. (6.19)

As a consequence, we have that

d±(x, r̃n, ṽ
(n)
0 ) =

x − ln K + r̃nT

ṽ
(n)
0

√
T

± ṽ
(n)
0

√
T

2
. (6.20)

Following the steps done in the generic formula, we can define the variables

DB,1(x, r̃n, ṽ
(n)
0 , T ) =

eγn

ṽ
(n)
0 T

(
1 − d+(x, r̃n, ṽ

(n)
0 )

ṽ
(n)
0

√
T

)
, (6.21)

DB,2(x, r̃n, ṽ
(n)
0 , T ) =

eγn

(ṽ(n)
0 )3T 2

(d2
+(x, r̃n, ṽ

(n)
0 ) − ṽ

(n)
0 d+(x, r̃n, ṽ

(n)
0 )

√
T − 1).

(6.22)

It follows that

ÎB,1(T, K) = ρνIB,1(T, K) = U0

∞∑
n=0

pn(λT )DB,1(x, r̃n, ṽ
(n)
0 , T ), (6.23)

ÎB,2(T, K) = ν2IB,2(T, K) = R0

∞∑
n=0

pn(λT )DB,2(x, r̃n, ṽ
(n)
0 , T ). (6.24)

The approximation of the implied volatility surface has the following shape:

ÎB(T, K) = v̂0 + U0

∞∑
n=0

pn(λT )
eγn

ṽ
(n)
0 T

(
1 − d+(x, r̃n, ṽ

(n)
0 )

ṽ
(n)
0

√
T

)

+ R0

∞∑
n=0

pn(λT )
eγn

ṽ
(n)
0 T

(
d2
+(x, r̃n, ṽ

(n)
0 ) − ṽ

(n)
0 d+(x, r̃n, ṽ

(n)
0 )

√
T − 1

(ṽ(n)
0 )2T

)
.

(6.25)

In particular, the ATM implied volatility curve under the studied model takes the
form:

ÎATM
B (T ) = v̂0 + U0

∞∑
n=0

pn(λT )
eγATMBates

n

ṽ
(n)
0 T

(
1
2
− cn

(ṽ(n)
0 )2

)

−R0

∞∑
n=0

pn(λT )
eγATMBates

n

ṽ
(n)
0 T

(
1
4

+
1

(ṽ(n)
0 )2T

− c2
n

(ṽ(n)
0 )4

)
, (6.26)
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where

γATM Bates
n = −1

2

(
cnT +

c2
nT

(ṽ(n)
0 )2

)
. (6.27)

6.3. Numerical analysis of the implied volatility approximation for

the Bates model

In the previous section, we have compared the approximation and semi-closed form
formulas for option prices under Bates (1996) model. For this model, we also illus-
trate the approximation quality in terms of implied volatilities.

Because there is no exact closed formula for implied volatilities under the studied
model, we take as a reference price the one obtained by means of the complex
Fourier transform (Baustian et al. 2017). Once we have computed the prices we use
a numerical inversion to obtain the desired implied volatilities.

As previously, we start by comparing implied volatilities for well-suited parame-
ter sets. The illustration in Fig. 4 is obtained by setting ρ = −0.1, ν = 5% and other
parameters as in Sec. 5.2. Typically, for a well-suited parameter set, the absolute
approximation errors stay within the range 10−5–10−7.

Even for not entirely well-suited parameters we are able to obtain reasonable
errors especially for ATM options, see Figs. 5 and 6. In the mode of high volatility
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Fig. 4. On the left plot, there is a comparison of approximation and reference implied volatilities.
The x- and y-axes represent the implied options volatilities and the options strikes, respectively.
On the right plot, there is the relative error of the model. The x- and y-axes represent the relative
error and the options strikes, respectively. The parameters are ρ = −0.2, ν = 5%, τ = 0.3,
S0 = 100; r = 0.001; τ = 0.3; v0 = 0.25; κ = 1.5; θ = 0.2; λ = 0.05; µJ = −0.05; and σJ = 0.5.
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Fig. 5. On the left plot, there is a comparison of approximation and reference implied volatilities.
The x- and y-axes represent the implied options volatilities and the options strikes, respectively.
On the right plot, there is the relative error of the model. The x- and y-axes represent the relative
error and the options strikes, respectively. The parameters are ρ = −0.8, ν = 5%, τ = 0.3,
S0 = 100; r = 0.001; τ = 0.3; v0 = 0.25; κ = 1.5; θ = 0.2; λ = 0.05; µJ = −0.05; and σJ = 0.5.
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Fig. 6. On the left plot, there is a comparison of approximation and reference implied volatilities.
The x- and y-axes represent the implied options volatilities and the options strikes, respectively.
On the right plot, there is the relative error of the model. The x- and y-axes represent the relative
error and the options strikes, respectively. The parameters are ρ = −0.8, ν = 50%, τ = 3, S0 = 100;
r = 0.001; τ = 0.3; v0 = 0.25; κ = 1.5; θ = 0.2; λ = 0.05; µJ = −0.05; and σJ = 0.5.
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ν of the variance process and high absolute value of the instantaneous correlation
ρ, the curvature of the smile is not fully captured. However, the errors are typically
well below 10−2 even in this adverse setting.

7. Conclusion

The aim of the paper has been to derive a generic decomposition formula for SVJ
option pricing models with finite activity jumps. In Sec. 4, we had derived this
decomposition by extending the results obtained by Alòs (2012) for Heston (1993)
SV model. Newly obtained decomposition is rather versatile since it does not need to
specify the underlying volatility process and only common integrability and specific
sample path properties are required.

Particular approximation formulas for several SVJ models had been presented
in Sec. 5 together with the numerical comparison for the Bates (1996) model for
which we had showed that the newly proposed approximation is typically three times
faster compared to the classical two integral semi-closed pricing formula. Moreover,
its computational time does not depend on the model parameters nor on market
data. The biggest advantage of the proposed pricing approximation therefore lies in
its computational efficiency, which is advantageous for many tasks in quantitative
finance such as calibration to real market data that can lead to an extensive number
of formula evaluations for SVJ models. On the other hand, general decomposition
formula have allowed us to understand the key terms contributing to the option fair
value under specific models and hence this theoretical result has also its practical
impact.

In Sec. 6, we have obtained an approximative representation for volatility sur-
faces with respect to the class of SVJ models and we provided its boundary case
simplification for ATM options. In particular, we have studied the approximation
in the Bates (1996) model case. A numerical comparison of this approximation have
been also presented.

Although the generic approach covers various interesting SVJ models, there
are other models that do not fit into the general structure described in Sec. 2.
For these models, such as Barndorff-Nielsen & Shephard (2001) model or infinite
activity jumps models, we still might be able to derive a similar decomposition that
was beyond the scope of the present paper. Newly obtained results therefore give
suggestions on how to derive approximation formulas for other models.
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Appendix A

In the following appendices, we obtain the error terms of the decomposition in
Theorem 4.1 (Appendix A.1), the same formulas for the SVJ model of the Hes-
ton type (Appendix A.2) and upper bounds for those terms using Corollary 5.1
(Appendix A.3).

A.1. Decomposition formulas in the general model

In this section, we obtain the error terms for a general model.

A.1.1. Decomposition of the term (In)

The term I can be decomposed by

1
8

E

[∫ T

0

e−ruΓ2Gn(u, X̃u, vu)d[M, M ]u

]
− Γ2Gn(0, X̃0, v0)R0

=
1
8

E

[∫ T

0

e−ruΓ4Gn(u, X̃u, vu)Rud[M, M ]u

]

+
ρ

2
E

[∫ T

0

e−ruΛΓ3Gn(u, X̃u, vu)Ruσud[W, M ]u

]

+ ρE

[∫ T

0

e−ruΛΓ2Gn(u, X̃u, vu)σud[W, R]u

]

+
1
2

E

[∫ T

0

e−ruΓ3Gn(u, X̃u, vu)d[M, R]u

]
. (A.1)

A.1.2. Decomposition of the term (II n)

The term II can be decomposed by

ρ

2
E

[∫ T

0

e−ruΛΓGn(u, X̃u, vu)σud[W, M ]u

]
− ΛΓGn(0, X̃0, v0)U0

=
1
8

E

[∫ T

0

e−ruΛΓ3Gn(u, X̃u, vu)Uud[M, M ]u

]

+
ρ

2
E

[∫ T

0

e−ruΛ2Γ2Gn(u, X̃u, vu)Uuσud[W, M ]u

]
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+ ρE

[∫ T

0

e−ruΛ2ΓGn(u, X̃u, vu)σud[W, U ]u

]

+
1
2

E

[∫ T

0

e−ruΛΓ2Gn(u, X̃u, vu)d[M, U ]u

]
. (A.2)

A.2. Decomposition formulas in the general model for the SVJ

models of the Heston type

In this section, we obtain the error terms for the SVJ models of the Heston type.

A.2.1. Decomposition of the term (In) in the SVJ models of the Heston type

The term I can be decomposed by

1
8

E

[∫ T

0

e−ruΓ2Gn(u, X̃u, vu)d[M, M ]u

]

− ν2

8
Γ2Gn(0, X̃0, v0)

(∫ T

0

E(σ2
s)ϕ(s)2ds

)

=
ν4

64
E

[∫ T

0

e−ruΓ4Gn(u, X̃u, vu)

(∫ T

u

Eu(σ2
s)ϕ(s)2ds

)
σ2

uϕ2(u)du

]

+
ρν3

16
E

[∫ T

0

e−ruΛΓ3Gn(u, X̃u, vu)

(∫ T

u

Eu(σ2
s)ϕ(s)2ds

)
σ2

uϕ(u)du

]

+
ρν3

8
E

[∫ T

0

e−ruΛΓ2Gn(u, X̃u, vu)

(∫ T

u

e−κ(z−u)ϕ(z)2dz

)
σ2

udu

]

+
ν4

16
E

[∫ T

0

e−ruΓ3Gn(u, X̃u, vu)

(∫ T

u

e−κ(z−u)ϕ(z)2dz

)
ϕ(u)σ2

udu

]
.

(A.3)

A.2.2. Decomposition of the term (II n) in the SVJ models of the Heston type

The term II can be decomposed by

ρ

2
E

[∫ T

0

e−ruΛΓGn(u, X̃u, vu)σud[W, M ]u

]

− ρν

2
ΛΓGn(0, X̃0, v0)

(∫ T

0

E(σ2
s)ϕ(s)ds

)
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=
ρν3

16
E

[∫ T

0

e−ruΛΓ3Gn(u, X̃u, vu)

(∫ T

u

Eu(σ2
s)ϕ(s)ds

)
σ2

uϕ(u)2du

]

+
ρ2ν2

4
E

[∫ T

0

e−ruΛ2Γ2Gn(u, X̃u, vu)

(∫ T

u

Eu(σ2
s)ϕ(s)ds

)
σ2

uϕ(u)du

]

+
ρ2ν2

2
E

[∫ T

0

e−ruΛ2ΓGn(u, X̃u, vu)

(∫ T

u

e−κ(z−u)ϕ(z)dz

)
σ2

udu

]

+
ρν3

4
E

[∫ T

0

e−ruΛΓ2Gn(u, X̃u, vu)

(∫ T

u

e−κ(z−u)ϕ(z)dz

)
σ2

uϕ(u)du

]
.

(A.4)

A.3. Upper-Bound of decomposition formulas in the SVJ models

of the Heston type

In this section, we obtain the upper-bounds for the SVJ models of the Heston type.

A.3.1. Upper-Bound of the term (In) in the SVJ models of the Heston type

We can re-write the decomposition formula as

1
8

E

[∫ T

0

e−r(u−t)Γ2Gn(u, X̃u, vu)d[M, M ]u

]

− ν2

8
Γ2Gn(0, X̃0, v0)

(∫ T

0

E(σ2
s)ϕ(s)2ds

)

=
ν4

64
E

[∫ T

0

e−ru(∂6
x − 3∂5

x + 3∂4
x − ∂3

x)ΓGn(u, X̃u, vu)

×
(∫ T

u

Eu(σ2
s)ϕ(s)2ds

)
σ2

uϕ2(u)du

]

+
ρν3

16
E

[∫ T

0

e−ru
(
∂5

x − 2∂4
x + ∂3

x

)
ΓGn(u, X̃u, vu)

×
(∫ T

u

Eu(σ2
s)ϕ2(s)ds

)
σ2

uϕ(u)du

]

+
ρν3

8
E

[∫ T

0

e−ru(∂3
x − ∂2

x)ΓGn(u, X̃u, vu)
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×
(∫ T

u

e−κ(z−u)ϕ(z)2dz

)
σ2

udu

]

+
ν4

16
E

[∫ T

0

e−ru(∂4
x − 2∂3

x + ∂2
x)ΓGn(u, X̃u, vu)

×
(∫ T

u

e−κ(z−u)ϕ(z)2dz

)
ϕ(u)σ2

udu

]
. (A.5)

Applying Lemma 4.1 and defining au := vu

√
T − u, we obtain

∣∣∣∣∣18E

[∫ T

0

e−ruΓ2Gn(u, X̃u, vu)d[M, M ]u

]

− ν2

8
Γ2Gn(0, X̃0, v0)

(∫ T

0

E(σ2
s)ϕ(s)2ds

)∣∣∣∣∣
≤ C

ν4

64
E

[∫ T

0

e−ru

(
1
a7

u

+
3
a6

u

+
3
a5

u

+
1
a4

u

)
v2

u(T − u)ϕ(u)4σ2
udu

]

+ C
|ρ|ν3

16
E

[∫ T

0

e−ru

(
1
a6

u

+
2
a5

u

+
1
a4

u

)
v2

u(T − u)ϕ(u)3σ2
udu

]

+ C
|ρ|ν3

8
E

[∫ T

0

e−ru

(
1
a4

u

+
1
a3

u

)
σ2

uϕ(u)3du

]

+ C
ν4

16
E

[∫ T

0

e−ru

(
1
a5

u

+
2
a4

u

+
1
a3

u

)
ϕ(u)4σ2

udu

]
. (A.6)

Now, using Lemma 5.2(ii), we have

∣∣∣∣∣18E

[∫ T

0

e−ruΓ2Gn(u, X̃u, vu)d[M, M ]u

]

− ν2

8
Γ2Gn(0, X̃0, v0)

(∫ T

0

E(σ2
s)ϕ2(s)ds

)∣∣∣∣∣
≤ C

ν4

64
E

[∫ T

0

e−ru

(
1
a7

u

+
3
a6

u

+
3
a5

u

+
1
a4

u

)
v4

u(T − u)2ϕ(u)3du

]

+ C
|ρ|ν3

16
E

[∫ T

0

e−ru

(
1
a6

u

+
2
a5

u

+
1
a4

u

)
v4

u(T − u)2ϕ(u)2du

]
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+ C
|ρ|ν3

8
E

[∫ T

0

e−ru

(
1
a4

u

+
1
a3

u

)
v2

u(T − u)ϕ(u)2du

]

+ C
ν4

16
E

[∫ T

0

e−ru

(
1
a5

u

+
2
a4

u

+
1
a3

u

)
ϕ(u)3v2

u(T − u)du

]
. (A.7)

Finally, applying Lemma 5.2(i), we find that∣∣∣∣∣18E

[∫ T

0

e−ruΓ2Gn(u, X̃u, vu)d[M, M ]u

]

− ν2

8
Γ2Gn(0, X̃0, v0)

(∫ T

0

E(σ2
s)ϕ(s)2ds

)∣∣∣∣∣
≤ C

ν4

64
E

[∫ T

0

e−ru

(
2
√

2
θκ

√
θκ

+
6

θκ2
+

3
√

2
κ2

√
θκ

+
1
κ3

)
du

]

+ C
|ρ|ν3

16
E

[∫ T

0

e−ru

(
2
θκ

+
2
√

2
κ
√

θκ
+

1
κ2

)
du

]

+ C
|ρ|ν3

8
E

[∫ T

0

e−ru

(
2
θκ

+
√

2
κ
√

θκ

)
du

]

+ C
ν4

16
E

[∫ T

0

e−ru

(
2
√

2
θκ

√
θκ

+
4

θκ2
+

√
2

κ2
√

θκ

)
du

]
. (A.8)

Then we have that∣∣∣∣∣18E

[∫ T

0

e−ruΓ2Gn(u, X̃u, vu)d[M, M ]u

]

− ν2

8
Γ2Gn(0, X̃0, v0)

(∫ T

0

E(σ2
s)ϕ(s)2ds

)∣∣∣∣∣
≤ C

ν4

64

(
2
√

2
θκ

√
θκ

+
6

θκ2
+

3
√

2
κ2

√
θκ

+
1
κ3

)(∫ T

0

e−rudu

)

+ C
|ρ|ν3

16

(
2
θκ

+
2
√

2
κ
√

θκ
+

1
κ2

)(∫ T

0

e−rudu

)

+ C
|ρ|ν3

8

(
2
θκ

+
√

2
κ
√

θκ

)(∫ T

0

e−rudu

)

+ C
ν4

16

(
2
√

2
θκ

√
θκ

+
4

θκ2
+

√
2

κ2
√

θκ

)(∫ T

0

e−rudu

)
. (A.9)
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Using the fact that
∫ T

t
e−ruds ≤ 1

r ∧ T , we conclude that∣∣∣∣∣18E

[∫ T

0

e−ruΓ2Gn(u, X̃u, vu)d[M, M ]u

]

− ν2

8
Γ2Gn(0, X̃0, v0)

(∫ T

0

E(σ2
s)ϕ(s)2ds

)∣∣∣∣∣
≤ ν3(|ρ| + ν)

(
1
r
∧ T

)
Π1(κ, θ), (A.10)

where Π1 is a positive function.

A.3.2. Upper-Bound of the term (II n) in the SVJ models of the Heston type

We can re-write the decomposition formula as

ρ

2
E

[∫ T

0

e−ruΛΓGn(u, X̃u, vu)σud[W, M ]u

]

− ρν

2
ΛΓGn(0, X̃0, v0)

(∫ T
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Applying Lemma 4.1 and defining au := vu

√
T − u, we obtain∣∣∣∣∣ρ2E
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Using Lemma 5.2(ii), then∣∣∣∣∣ρ2E
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Finally, applying Lemma 5.2(i), we find that∣∣∣∣∣ρ2E
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Then we have that∣∣∣∣∣ρ2E
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Using the fact that
∫ T

t e−ruds ≤ 1
r ∧ T , we conclude that∣∣∣∣∣ρ2E
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where Π2 is a positive function.
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A.3.3. Upper-Bound for the terms (In) and (II n) in the SVJ models
of the Heston type

We have that

∣∣∣∣∣18E
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where function Π is the maximum of functions Π1 and Π2.
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E. Alòs, J. A. León, M. Pontier & J. Vives (2008) A Hull and White formula for a gen-
eral stochastic volatility jump-diffusion model with applications to the study of the
short-time behavior of the implied volatility, Journal of Applied Mathematics and
Stochastic Analysis, 17, 359142, doi:10.1155/2008/359142.

E. Alòs, J. A. León & J. Vives (2007) On the short-time behavior of the implied volatility
for jump-diffusion models with stochastic volatility, Finance and Stochastics 11 (4),
571–589, doi:10.1007/s00780-007-0049-1.

C. A. Ball & A. Roma (1994) Stochastic volatility option pricing, Journal of Financial
and Quantitative Analysis 29 (4), 589–607, doi:10.2307/2331111.

1850052-34



December 13, 2018 9:43 WSPC/S0219-0249 104-IJTAF SPI-J071
1850052

Decomposition Formula for Jump Diffusion Models

O. E. Barndorff-Nielsen & N. Shephard (2001), Non-Gaussian Ornstein–Uhlenbeck-based
models and some of their uses in financial economics, Journal of the Royal Statis-
tical Society Series B. Statistical Methodology 63 (2), 167–241, doi:10.1111/1467-
9868.00282.

D. S. Bates (1996), Jumps and stochastic volatility: Exchange rate processes implicit
in Deutsche mark options, The Review of Financial Studies 9 (1), 69–107,
doi:10.1093/rfs/9.1.69.

F. Baustian, M. Mrázek, J. Posṕı̌sil & T. Sobotka (2017) Unifying pricing formula for sev-
eral stochastic volatility models with jumps, Applied Stoccastic Models in Business
and Industry 33 (4), 422–442, doi:10.1002/asmb.2248.

C. Bayer, P. Friz & J. Gatheral (2016) Pricing under rough volatility, Quantitative Finance
16 (6), 887–904, doi:10.1080/14697688.2015.1099717.

E. Benhamou, E. Gobet & M. Miri (2010) Time dependent Heston model, SIAM Journal
on Financial Mathematics 1 (1), 289–325, doi:10.1137/090753814.

J. C. Cox, J. E. Ingersoll & S. A. Ross (1985) A theory of the term structure of interest
rates, Econometrica 53 (2), 385–407, doi:10.2307/1911242.

D. Duffie, J. Pan & K. Singleton (2000) Transform analysis and asset pricing for affine
jump-diffusions, Econometrica 68 (6), 1343–1376, doi:10.1111/1468-0262.00164.

A. Elices (2008) Models with time-dependent parameters using transform methods: Appli-
cation to Heston’s model, available at arXiv: https://arxiv.org/abs/0708.2020.

J.-P. Fouque, G. Papanicolaou & K. R. Sircar (2000) Derivatives in Financial Markets
with Stochastic Volatility. Cambridge, U.K.: Cambridge University Press.

J.-P. Fouque, G. Papanicolaou, R. Sircar & K. Solna (2003) Multiscale stochas-
tic volatility asymptotics, Multiscale Modeling and Simulation 2 (1), 22–42,
doi:10.1137/030600291.

J. Gatheral (2006) The Volatility Surface: A Practitioner ’s Guide, Wiley Finance. Hobo-
ken, New Jersey: John Wiley & Sons.

A. Gulisashvili & J. Vives (2012) Two-sided estimates for distribution densities in models
with jumps, In: Stochastic Differential Equations and Processes, eds. M. Zili and
D. V. Filatova, 239–254. Berlin, Heidelberg: Springer, https://www.springer.com/
la/book/9783642223679.

F. B. Hanson (2007) Applied Stochastic Processes and Control for Jump-Diffusions,
Advances in Design and Control, Vol. 13. Philadelphia, PA: SIAM.

S. L. Heston (1993) A closed-form solution for options with stochastic volatility with
applications to bond and currency options, The Review of Financial Studies 6 (2),
327–343, doi:10.1093/rfs/6.2.327.

J. C. Hull & A. D. White (1987) The pricing of options on assets with stochastic volatilities,
The Journal of Finance 42 (2), 281–300, doi:10.1111/j.1540-6261.1987.tb02568.x.

H. Jafari & J. Vives (2013) A Hull and White formula for a stochastic volatility Lévy
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Abstract
In this paper,we perform robustness and sensitivity analysis of several continuous-time
stochastic volatility (SV)models with respect to the process of market calibration. The
analyses should validate the hypothesis on importance of the jump part in the under-
lying model dynamics. Also an impact of the long memory parameter is measured
for the approximative fractional SV model (FSV). For the first time, the robustness of
calibratedmodels is measured using bootstrappingmethods onmarket data andMonte
Carlo filtering techniques. In contrast to several other sensitivity analysis approaches
for SV models, the newly proposed methodology does not require independence of
calibrated parameters—an assumption that is typically not satisfied in practice. Empir-
ical study is performed on a data set ofApple Inc. equity options traded in four different
days in April and May 2015. In particular, the results for Heston, Bates and approxi-
mative FSV models are provided.

Keywords Robustness analysis · Sensitivity analysis · Stochastic volatility models ·
Bootstrapping · Monte Carlo filtering
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1 Introduction

Stochastic volatility (SV) models are common tools for retrieving fair values of finan-
cial derivatives and are of the interest of both academics and practitioners. For practical
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applicability, one needs to estimate model parameters first. This is typically done by
means of calibration or by using filtering estimation techniques, e.g., as in Creel and
Kristensen (2015). We consider a classical calibration routine—we focus on calibra-
tion to vanilla European options, as they are widely traded and sufficiently liquid.
From a variety of introduced SV models, one has to choose an appropriate candidate
for pricing tasks. The main assumption of any option pricing model is the structure
of modelled dynamics of the underlying. Several empirical studies of various price
processes have been analysed in the literature.

Authors Carr and Wu (2003) found the presence of both continuous and jump
components of modelled market dynamics for the S&P 500 index data. This was
done by analysing out-of-the-money and at-the-money options’ decays in the price
for time to maturity reaching zero. As in our case, the authors did not examine prices
of the underlying directly which would require extremely high-frequency data that
could be affected by market microstucture [for time-series tests see, e.g., Barndorff-
Nielsen and Shephard (2006), Hwang and Shin (2014)]. In Campolongo et al. (2006)
the use of stochastic volatility models with jumps was recommended because the
uncertainty in the estimated option prices mostly came from jump parameters of the
considered model. This statement was derived from a study with fictional data and
model parameters. We test the hypotheses of Carr and Wu (2003), Campolongo et al.
(2006) in the case of real market data, and we also show that Campolongo et al. (2006)
method is not suitable for practice (at least for our data sets). A different approach,
where a model robustness to varying data structures plays a crucial role, is proposed
and applied to real market data sets including Apple Inc. equity options traded in April
and May 2015. The data set choice is justified in Sect. 3.

In this paper, three subclasses of SV models are considered—they are represented
by a standard diffusion Heston (1993) model, jump-diffusion Bates (1996) model and
so-called approximative fractional jump-diffusion (FSV) model. The latter approach
outperformed the Heston (1993) model in terms of in-sample calibration errors in the
study by (Pospíšil and Sobotka 2016). Unlike the case of Bayer et al. (2016) and many
other very recent manuscripts, the FSV model is considered only in the long-memory
regime (H > 0.5). This is due to restrictions on the pricing solution and also in this
casewe can use the same unifying pricing approach for all threemodels (Baustian et al.
2017); hence, our comparison is not affected by a noise coming from differences in
various numerical implementations of pricing routines. Some comments on the rough
volatility regime are to be found in the conclusion.

The considered approaches are tested under uncertainty in the option price structure
and are compared with sensitivity and uncertainty analysis tools. Saltelli et al. (2004)
defined sensitivity analysis as “the study of how uncertainty in the output of a model
(numerical or otherwise) can be apportioned to different sources of uncertainty in
the model input”. We want to know how sensitive calibration errors are with respect
to the changing data structure and also how the calibrated parameters are affected.
This is done by performing an uncertainty analysis. According to Saltelli et al. (2008),
“uncertainty and sensitivity analyses should be run in tandem,with uncertainty analysis
preceding in current practice”. The method of Sobol indices is the most common
approach for global sensitivity analysis. An application of Sobol indices in option
pricing can be found in the paper of Bianchetti et al. (2015), where the impact of
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uncertainty in prices and greeks is measured. However, for real market data one cannot
assume independence of the input parameter values for calculating Sobol indices. In
this paper, we use different global sensitivity analysis methods which are discussed,
e.g., in Saltelli et al. (2008): I. First of all, on bootstrapped data structures we visualize
a dependence of calibrated parameter values by scatterplots; II. Secondly, hypotheses
of the jump term importance and of a long-memory persistence are assessed byMonte
Carlo filtering techniques.

Considered models are calibrated from markets (or bootstrapped data) comprising
vanilla European call options. A European call is a contract that gives the buyer a right
to buy a share of the underlying asset for a fixed (strike) price K at some future time T .
If the buyer observes a stock price at maturity lower than K , he or she doesn’t utilize
her right to buy the asset for K . Vice versa, the buyer is exercising the right as long as
ST ≥ K . This translates into the following pay-off function,

P(x) = max(x − K , 0), where x = ST .

To answer the question—what is the fair value of this contract—one has to build
up a set of assumptions on the market that drives (St )0<t≤T . Since the Nobel prize
winning Black and Scholes (1973) model, one usually considers the stock market
to be a stochastic process and the fair value is then obtained using arbitrage-free
arguments.1 Main differences between the considered models are comprised in the
process that drives evolution of the stock prices. All approaches in this paper not only
assume that the stock price process is of random nature, but also it is assumed that the
variance thereof is a stochastic process itself. Hence, a stochastic volatility model can
be viewed as a natural extension to the Black–Scholes paradigm.

Purpose of this article is to help practitioners in the daily calibration process of
option pricing models. For quantitative tasks beyond the Black–Scholes model, one
might face a decision call of choosing a suitable model for particular situation. Dif-
ferent criteria have to be considered, for example, the in-sample/out-of-sample errors,
the ability tomodel the volatility smile. We compare the robustness of different models
with respect to a given option structure. This is important, because the equity options
traded on different days can vary in several aspects, as, e.g., amount of traded instru-
ments, marked strike prices and expiration times, market ask–bid spreads. Hence,
the structure of a daily option market snapshot to which the models are calibrated is
another source of uncertainty for themodel choice—models might perform differently
with respect to different market structures. We show how to analyse this uncertainty,
measure its impact on the predicted option fair values, and we provide a hint on how
to use this as a criterion for choosing a suitable option pricing model. In doing so,
we use bootstrapping of the option data and we also introduce several measures of
robustness.

The structure of the paper is as follows. In Sect. 2we introduce the studied stochastic
volatility models and the process of calibration of these models to real market data. In
Sect. 3 we describe the methodology, in particular the bootstrapping of option prices,
as well as we detail the uncertainty and sensitivity analyses. In Sect. 4 we present

1 For more details on the arbitrage pricing see, for instance, Shreve (2004).
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obtained results by comparing all models in terms of variation in model parameters
and in bootstrapped option prices. We also provide the results of the Monte Carlo
filtering trials, showing us the importance of the jump intensity for the Bates model
and the importance of the long-memory parameter for the approximative fractional
model. We conclude all obtained results in Sect. 5.

2 Stochastic volatility models

In this paper, we focus on a class of stochastic volatility models. These modelling
approaches are not restricted by the constant volatility assumption (unlike the Black–
Scholes model, binomial trees etc.), nor they assume a deterministic structure of
the asset volatility process (unlike local volatility models). The models are usu-
ally tractable for a wide range of applications including the market calibration task
described at the end of this section.

We consider a risk-neutral jump-diffusion setting corresponding to the stochastic
basis denoted by (Ω,F , (Ft )t≥0,Q). The modelled stock price St evolves in time
according to the following Itô stochastic differential equations

dSt = r Stdt + √
vt St d ˜WS

t + St−d Jt , (1)

dvt = p(vt )dt + q(vt )d ˜W v
t , (2)

d ˜WS
t d ˜W v

t = ρ dt, S0, v0 ∈ R+, (3)

where p, q ∈ C∞(0,∞) are general coefficient functions for the volatility process
and ρ is the correlation between Q-Wiener processes ˜WS

t and ˜W v
t .

To get market dynamics postulated by Heston (1993) we specify d Jt ≡ 0, p(vt ) =
κ(θ − vt ) and q(vt ) = σ

√
vt . The set of model parameters ΘH is then defined as

ΘH := {v0, κ, θ, σ, ρ}.
For the Bates (1996) model, functions p, q remain the same as in the previous

case and d Jt corresponds to the compensated compound Poisson process with log-
normal jump sizes—jumps occur with intensity λ and their sizes are log-normal with
parameters μJ and σJ . The set of parameters, in the Bates model case, consists of
ΘB := {v0, κ, θ, σ, ρ, λ, μJ , σJ }. Due to more degrees of freedom, the model
should provide a better market fit and as was shown in Duffie et al. (2000) adding a
second jump process to (2) might not improve the fit any more.

Instead of considering a stochastic volatility model with jumps in both underlying
and variance dynamics, we use an approximative fractional process as described in
Baustian et al. (2017), Pospíšil and Sobotka (2016). Under the approximative frac-
tional model one assumes the same type of jumps as in the Bates model case, but
p(vt ) = [

(H − 1/2)ψtσ
√

v + κ(θ − vt )
]

and q(vt ) = εH−1/2σ
√

v, where ε > 0 is
an approximating factor and ψt is an Itô integral:

ψt =
∫ t

0
(t − s + ε)H−3/2dWψ

s .
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The set of parameters ΘF := {v0, κ, θ, σ, ρ, λ, μJ , σJ , H} also includes
the Hurst exponent H . As was shown by Lewis (2000) and Baustian et al. (2017),
respectively, all three models attain a semi-closed form solution not only for plain
European options, but also for other non-path-dependant payoffs—this is crucial for
our experiments; a single trial will involve 200 calibrations of each model to different
data sets.We also did not perform analyses of models with time-dependent parameters
which were studied by Mikhailov and Nögel (2003), Osajima (2007), Elices (2008),
Benhamou et al. (2010) etc. As mentioned in Bayer et al. (2016), the general overall
shape of the volatility surface, at least in case of equity markets, does not change
in time significantly and hence one should model instantaneous variance as a time-
homogeneous stochastic process.

To use the aforementioned models in practice, one has to calibrate them to a given
market beforehand.2 The calibration process can be viewed as an optimization problem
of finding the best fit to the given option price surface. Let the surface consist of N
options, each with a different strike price (K ) and time to maturity (T ) combination.
A standard market practice is to use a weighted least-square utility function,

̂Θ = arg inf
Θ

G(Θ),

G(Θ) =
N

∑

j=1

w j

(

CΘ
j (Tj , K j ) − C∗

j

)2
, (4)

where CΘ
j (Tj , K j ) is a model price calculated using the parameter set Θ and C∗

j
represents the j th quoted option price. Weights w j are commonly represented as a
function of the ask–bid price spread. Although various weight functions were tested3,
due to similarities in results we focus on the best performing weights from Mrázek
et al. (2016), i.e.,

w j = 1
(

Cask
j − Cbid

j

)2 (5)

for j = 1, 2, . . . , N .

2.1 Test data sets

For the analyses we utilize data sets that include all traded European call options on
Apple Inc. stock on particular testing days. These options are fairly liquid and hence
the data sets from slightly different time periods (1/4/2015, 15/4/2015, 1/5/2015 and
15/5/2015.) are deemed to be representative of the equity vanilla option markets for
stocks. The structure of the newest data set is depicted in Fig. 1. It is worth to mention
that we do not restrict our trials to only specific time-to-maturities nor to a specific
moneyness range.

2 Alternatively one can estimate the parameters from time-series data.
3 The weight functions introduced by Mrázek et al. (2016) were considered.
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(a)

(b)

Fig. 1 Data structure and bounds for calibrated parameters. On the left, we depict weighted call prices
w j C

∗
j by a ball centred in the K − T plane. The diameter of each filled ball relates to the weighted call

price and its centre corresponds to the pair K j , Tj . a Structure of the Apple Inc. call options (15/5/2015).
b Parameter bounds for all considered calibration trials

3 Methodology

In this section we introduce a methodology to analyse a model robustness with respect
to uncertain option price structures. This is done by using bootstrapping techniques to
estimate unobserved samples of the data structure. Alsowe introduce several measures
of robustness that will be later used to compare the models.

In what follows, we detail on the sensitivity analysis techniques used in this paper.
In particular, our goal is to analyse whether calibrated values of the jump-intensity
parameter λ (for the Bates model) and of the Hurst exponent H (for the FSV model)
can significantly affect the quality of the market fit. As for the measures of robustness,
we take advantage of the bootstrapped samples and we use a Monte Carlo filtering
technique to quantify the importance of the mentioned parameters. Both λ and H have
important consequences for a model selection choice—by setting λ = 0 and H = 0.5
we obtain the standard Heston (1993) model.

3.1 Bootstrapping option prices

The daily option prices are given as a set of ask- and bid-prices with different strike
price K and time to maturity T . These data are new for every day, as the behaviour and
the value of the underlying stock, the reference value for the option prices change, and
it is not statistical in the sense that we only have one dataset for every time instance.
Although the option prices usually have some similarities with prices of former days,
the focus of traders can change to different options and therefore not all K × T
combinations have to be the same as well as ask- and bid-prices can differ strongly.
This can significantly impact calibration results. Therefore we focus on uncertainty
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in the options structure K × T . Let X be a random variable representing the pair
(K , T ). Then currently observed strike prices and maturities (K j , Tj ), j = 1, . . . , N ,
as mentioned in (4), are samples of X and to each pair we can attach the quoted market
option price C∗

j .
To measure the impact of the uncertain option structure on the model calibration,

common methods for uncertainty analysis need statistical data which are not available
in practice. In fact, option pricing models are typically recalibrated daily and only
to current available and suitable data sets [see, e.g., Mikhailov and Nögel (2003),
Yekutieli (2004)]. In the following, we will apply the bootstrapping method to our
data set. Since the original paper by Efron (1979) and especially his monograph (Efron
1982), research activities on the bootstrap method grew dramatically and we refer the
reader for example to the book by Chernick (2008) and the comprehensive literature
review therein. In what follows we apply the standard nonparametric i.i.d. bootstrap
method.

We will perform bootstrapping on the set of observed structure (K j , Tj ), j =
1, . . . , N , i.e., we obtain a new set X† by sampling N times with replacement.4 Obvi-
ously, for each element of X† we can assign a market option price that corresponds to
the strike and maturity combination. This provides us with the bootstrap option prices
C† = (C†

j )
N
j=1. This bootstrap procedure is then repeated M times, and hence we get

M bootstrapped samples C†,1,C†,2, . . .C†,M , each of size N .
Let Θ†,i denote the outcome of the calibration procedure (4) applied to the i − th

bootstrapped sample. The bootstrap estimate of the mean of the bootstrap replications
is

Θ̄ = 1

M

M
∑

i=1

Θ†,i . (6)

3.2 Model comparison

With the bootstrap method, we estimate the calibration parameters M times. As we
want to compare different models based on their robustness, we want to analyse

– …variation of the bootstrap replications Θ†,i and the following
– …variation of the predicted option prices CΘ†,i

, based on the bootstrap replica-
tions.

Comparison of the three SVJDmodels is widely supported by diagrams for explor-
ing their inner structure of calibrated parameters and their performance. We analyse
the bootstrapped calibration parameters with two different diagrams: For the variation
in the bootstrapped calibration parameters Θi we use scatterplot matrices. For the
analysis of variation in option prices, we visualize the errors and variations of CΘ†,i

in the K × T -plane.

4 For instance, if N = 6 one might obtain X† = (X2, X1, X4, X4, X3, X2) where X j = (K j , Tj ).
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Variation in †,i

To study the calibration parameters variation, one can use a variety of methods.
First of all, we want to analyse the variation in the bootstrap replications Θ†,i to
derive information about the model—e.g., if one really can state that the volatility is
strongly mean-reverting. Additionally, we want to study connections between individ-
ual calibrated parameters—e.g., if the strength of mean reversion varies for different
correlations between the Wiener processes. To gather the information, we analyse the
variation in Θ†,i with the help of scatterplot matrices, square matrices with size equal
to the number of model parameters. On the diagonal, histograms of the individual
calibration parameters are plotted, while the other entries are occupied by scatterplots.

If one further wants to analyse Θ†,i with statistical methods, normality of the boot-
strapped calibration parameters is an important property—e.g., if we want to calculate
confidence intervals for the bootstrap estimate Θ̄ of the calibration parameters. To
support such analyses, quantile–quantile plots with respect to the normal distribution
are suitable visualization tools.

Variation in C
†,i

The bootstrapped calibration parameters Θ†,i contain the uncertainty of the option
pricing model with respect to the available options in the input data. As the bootstrap-
ping was motived by the option pricing structure, vice versa it is helpful to know how
this uncertainty affects the model price predictions CΘ†,i

(K j , Tj ) for an individual
option C∗

j . For this purpose, two measures are introduced:
Firstly, the bootstrap relative error for the j-th option with market price C∗

j is
calculated by:

BRE j = |C̄ j − C∗
j |

C∗
j

, (7)

for j = 1, . . . , N , where C̄ j is defined as

C̄ j = 1

M

M
∑

i=1

CΘ†,i
(K j , Tj ).

The measure indicates an individual price prediction error of the bootstrap estimation
C̄ normalized with the market option price. Using bootstrap relative errors, we should
be able to detect systematic prediction errors, which can come from the specific option
pricing structure.

We are also interested in the variance of prediction error |CΘ†,i
(K j , Tj ) − C∗

j | for
the bootstrapped parameters Θ†,i with respect to bootstrap trials i = 1, . . . , M . To be
able to compare variances of predictions for options with different prices C∗

j , we use
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relative errors as before to get the variance error measure Vj for the j-th option:

Vj = Var

⎛

⎝

|CΘ†,i
(K j , Tj ) − C∗

j |
C∗

j

⎞

⎠ , (8)

This measure is evaluated for all traded options j = 1, . . . , N .
The error and variance measures are visualized with diagrams in the K × T plane.

Each traded option is marked with a circle which is centred according to (K , T ) of
the contract. For a clear arrangement, the T -axis is in logarithmic scale, because there
are many traded options with short but slightly different time to maturity. Current
asset price, the reference for the option prices, is plotted as a dashed line. Finally, the
average relative error and the variance of the bootstrapped prices are visualized as
balls, where each ball area is scaled with the error or variance measure.

3.3 Sensitivity analysis

According to Saltelli et al. (2008), the scatterplots can be used as a tool for sensitivity
analysis to measure the impact of input parameters on model outputs. Additionally,
in this paper we would like to inspect, if fractionality of stochastic volatility and
jumps are important for the robustness of option market calibration. Fractionality is
represented by the Hurst parameter H > 0.5, while jumps are represented by the
intensity parameter λ (which is linked to the parameters σJ and μJ ). Therefore, the
importance of jumps and fractionality can be translated into the question, if H and λ

have an impact on the quality of the calibration result. This question will be addressed
by the Monte Carlo filtering technique, which analyses if a distribution of values of a
chosen parameter affects significantly some specific quality measure.
In our context, we have chosen the following Monte Carlo filtering technique:5 To
each set of calibrated model parameters, obtained from the bootstrapped data, we
assign average absolute relative error (AARE) with respect to the whole set of traded
options as a quality measure for the parameter set. This enables us to divide the sets of
parameters into a behavioural (well fitting) group and a non-behavioural (poor fitting)
group with respect to the AARE measure. As a behavioural set of parameters, we
consider parameters for which AARE is in the lower 3/8 quantile. Those parameters
lead to market fits that are comparable to the best fits of non-bootstrapped data sets.
A non-behavioural set, on the other hand, consists of parameters that lead to the
worst 37.5% of the AARE values (upper 3/8 quantile). The rest (1/4 of the results) is
consider as a “grey zone” and is not taken into account for the comparison.6 For the
behavioural/non-behavioural sets, we perform a two-sample Kolmogorov–Smirnov
(KS) test to verify the null hypothesis whether both sets are sampled from the same
(continuous) distribution. According to Saltelli et al. (2008), by rejecting the null

5 For more details on Monte Carlo filtering approaches see, for instance Saltelli et al. (2008).
6 In this case, we will not be able to decide whether the parameters lead to a good or bad description of the
modelled market.
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hypothesis at a reasonable level of significance7 we show that the parameters are
important with respect to the calibration procedure. However, if we are not able to
reject the hypothesis then we cannot judge the importance of the selected parameter.

The KS test seems suitable in contrast to other tests, especially the Chi-square
goodness of fit test. According to Senger andCelik (2013) the two-sidedKolmogorov–
Smirnov test has two major advantages:

– It still performs well for small sample sizes, where the Chi-square test could fail.
– For arbitrary sample sizes it is often more powerful than the Chi-square test.

The equal size of behavioural and non-behavioural dataset is chosen due to the fact,
that otherwise the two-sided KS test can perform very poorly, as shown in Kim (1976).
To assess the null hypothesis we use asymptotic p values. As a rule of thumb for using
asymptotic values (as opposed to simulated values) is recommended the following
criterion:8 n1n2

n1 + n2
≥ 4,

where n1, n2 are sizes of the tested samples. In our case (n1 = n2 = 200× 3/8 = 75)
the left-hand side of the criterion takes 35.7; hence we are expecting to get reliable
outcomes from asymptotic p values.Moreover, we also add plots illustrating empirical
cumulative distribution functions of both sets to visually assess differences between
the behavioural and non-behavioural parameter values. Since our samples are of a
finite size, we could use also the non-asymptotic p values as described, for example,
by Hájek et al. (1999). However, they are computationally more demanding than their
asymptotic counterparts. In our case, most of the conclusions drawn are not sensitive
to small perturbations of p values (see Sect. 4), hence we use the standard asymptotic
p values.

For the Bates model we would like to answer whether the jumps are worth imple-
menting to fit the observed market or if one should stay within the Heston model
framework (λ > 0). We also judge the importance of the Hurst parameter in the
fractional stochastic volatility case (H > 0.5).

4 Results

In our trials, the bootstrap calibration was performed M = 200 times. In the following
text we discuss the results based on the four data sets mentioned above.9 For example
the data set from 15 May consists of 197 options and the most weight is typically
assigned to the at-the-money contracts allocated near spot price in Fig. 1. Apart from
that, the weights are almost evenly distributed in the K × T plane.

We start the model comparison by examining the overall calibration errors of all
three models as seen in Table 1.We note that the additional model features of the Bates
model (jumps) and the FSV model (jumps and approximative fractional Brownian

7 For all trials we use “standard” α = 5% level of significance. In most of the trials we could have even
lower α and still we would reject the null hypothesis.
8 See, e.g., www.mathworks.com/help/stats/kstest2.html.
9 All results and data are available in supplementary materials.
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Table 1 Overall calibration errors of the three models for Apple Inc. stock on all four datasets

Trading day 1/4/2015 (%) 15/4/2015 (%) 1/5/2015 (%) 15/5/2015 (%)

Heston model 5.15 3.79 6.58 3.39

Bates model 3.73 3.57 5.77 3.41

FSV model 2.21 2.16 5.89 3.20

motion) usually lead to a better market fit. The best average relative errors were
obtained on the 15/4/2015 data set (FSV model reached 2.16% error) and the worst
market fit in terms of the consider measure was w.r.t. 1/5/2015 data and the Heston
model (6.58%). We conclude that using the Heston model we were able to retrieve
similar errormeasures to theBates andFSVmodel only for the data set from15/5/2015.

Variation in †,i

In Figs. 2 and 3, the scatterplotmatrices of the parametersΘ
†,i
Bates andΘ

†,i
FSV are depicted

(the results for Θ
†,i
Heston are similar to the ones for the Bates model, we discuss them

shortly at the end of the section). First and foremost, we inspect if we reached the lower
and upper bounds for the calibration parameters (the bounds are listed in Fig. 1b). This
can indicate

– …for a zero bound (e.g., κ ≥ 0), that a model parameter (e.g., mean reversion κ)
could be dropped,

– …for nonzero bounds (e.g., κ ≤ 100), that they should be reselected if it is not
in contradiction with the parameter interpretation and if it does not breach model
restrictions.

For correlation ρ, the natural limits at −1 and 1 indicate that only one Brownian
motion can model both, the random movement of the asset price and its volatility.
Additionally, ρ and μJ include zero in the interior of their calibration range, which
should be considered during the exploration of scatterplots. e.g., for the uncorrelated
HestonmodelDeMarco andMartini (2012) showed an explicit formulawhich not even
needs numerical integration and, possibly, even the other models might be simplified.
On the contrary, the valueμJ = 0 has nomodel reducing consequences, e.g., themodel
is not simplified for this particular value. Last but not least, a dependence structure
between the calibration parameters can be obtained from a single scatterplot and we
are able to compare the bootstrap mean Θ̄ (red star) and the parameters Θ from the
overall calibration (black cross).

Starting with the Bates model and the last criteria, one cannot observe a significant
accumulation ofρ andμJ at zero in the histograms at the diagonal of Fig. 2. Further on,
the histograms show that the parameters v0, κ, θ, σ, ρ and μJ have no concentration
at their limits. However, the small values of λ (mostly between 10−3 and 10−4) and
the accumulation of σJ at zero are noticeable. Moreover, if one looks at the scatterplot
between λ and μJ , λ and σJ , one observes that either λ is nearly zero or σJ and μJ

are close to zero. For the model this means, we have two possible cases: either the
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Fig. 2 Scatterplotmatrix for the Batesmodel (15/5/2015, for results on other data sets see the supplementary
materials).Diagonal elements depict histograms of parameter values obtained by bootstrap calibrations (e.g.,
the fist histogram corresponds to the values of v0). Off-diagonal elements illustrate a dependence structure
for each parameter pair. In those figures, a black cross represents the reference value of the specific parameter
(obtained from calibration to the whole data set) and by a red star we depict the bootstrap estimate of the
value—the closer the two are, the better

Bates model imposes very rare jumps, or it produces frequent jumps of small sizes.
If the jump-frequency λ tends to zero, then the average jumps sizes μJ are almost for
all calibrations negative. This statistical connection between λ, μJ and σJ should be
considered at the calibration by a general modelling decision. One option would be to
fix the jump-intensity parameter λ beforehand.

Furthermore, the scatterplots depict that from all parameters κ is the one with the
strongest correlation structure. One can see from the scatterplots that the stronger the
mean reversion is,

– …the higher is the volatility of volatility σ ,
– …the lower is the initial volatility v0 and the long-run volatility θ ,
– …the more negative the correlation ρ between the two Brownian motions is.

The difference between Θ̄Bates and ΘBates for most parameters is not very large,
apart from λ and σJ : the overall calibration resulted in a model with many small jumps
of the same size, while the bootstrap resulted in the mean in a model with rare jumps
of different size.

In Figs. 2 and 3 we can see that the histograms of FSV and Bates model are quite
similar for v0, θ ,ρ,λ,μJ andσJ . The rate ofmean-reversion κ in FSVmodel is slightly
different to Bates model, as in some of the trials we can get a fast mean-reversion rate,
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Fig. 3 Scatterplot matrix for the FSVmodel (15/5/2015, for results on other data sets see the supplementary
materials).Diagonal elements depict histograms of parameter values obtained by bootstrap calibrations (e.g.,
the fist histogram corresponds to the values of v0). Off-diagonal elements illustrate a dependence structure
for each parameter pair. In those figures, a black cross represents the reference value of the specific parameter
(obtained from calibration to the whole data set) and by a red star we depict the bootstrap estimate of the
value—the closer the two are, the better

κ � 50. Furthermore, σ in FSV model is significantly higher than in Bates model.
This can be explained by the scaling with εH−1/2 [see Eq. (2) and the definition of
q(vt )]. The Hurst parameter H is positively correlated with v0, θ and ρ and negatively
with κ and σ . In Tables 2 and 3 we provide pairwise correlation coefficients for both
models. Note that these are all stochastic volatility parameters, a connection of the
Hurst parameter with the jump parameters is not obvious in the scatterplots, see also
Table 3. Finally, in FSV model Θ̄FSV and ΘFSV are very close together which is a
desirable result.

For the Heston model, the scatterplot matrix showed similar results as the upper
left 5 × 5 submatrix of Fig. 2. There were no accumulations of Θ

†,i
Heston at the bounds

and the correlation seemed nearly linear. Independence of the calibration parameters,
necessary for the sensitivity analysis method proposed in Campolongo et al. (2006),
cannot be assumed for any of the models. Thus, this method is not suitable in our
context.

One can notice from the Q–N plots in Fig. 4 that normality of the bootstrapped
parameters and of the resulting calibration error can be assumed for the Heston
model—for Bates and FSV this was not the case. Therefore, statistical techniques
which assume normality of the data could be used to further analyse the Hestonmodel,
but not for comparison of all three models.
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Fig. 4 Q–N plots for Heston model parameters (ν0, κ, θ, σ, ρ) and corresponding values Fval of the cali-
bration utility function (15/5/2015)

Variation in C
†,i

In Fig. 5, the bootstrap relative errors (7) and the bootstrap variances (8) for every call
option are shown. The structure of the errors appears similar for all three models—a
result that fits very good to the overall calibration errors for the considered data set.
The highest errors appear for all three models for the OTM options, especially if the
strike price is grater than 150 USD. For all data sets the lowest values of the bootstrap
relative error were obtained by the FSV model.

The variance error measure Vj shows for all three models the same structure in the
K × T plane, but values differ strongly. In the data set from 1/4/2015, the measured
variances were the lowest for the FSVmodel again, whereas the Bates model provided
us with the worst values. Surprisingly, Bates model was clearly outperformed for all
considered data sets. On the other hand results for Heston and FSV slightly differed
for the other data sets. We refer a reader to the corresponding figures in supplementary
materials.

4.1 Sensitivity analysis

In this section we would like to inspect model reducing possibilities due to specific
values of parameters for the Bates and the FSV model. We check whether the jump-
intensity λ plays a crucial role in obtaining good error measures for the Bates model
calibration. If we fix λ = 0, we would obtain the standard Heston model. Similarly we
proceed with the FSV model, where we inspect if we can profit from setting H > 0.5,
unlike formally fixing H = 0.5 to obtain the Bates model.
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(a)

(b)

(c)

Fig. 5 Calibration errors and variance of the obtained option price surface in K × T plane. On the left, we
depict bootstrap relative errors BRE j for all bootstrap calibrations w.r.t. 1/4/2015 data set by filled circles
with diameter proportionate to the error. On the right, the variance Vj of each option price is illustrated—as
before, a diameter of a specific filled circle is proportionate to the option price variance. For results on other
data sets see the supplementary materials. a Heston model, b Bates model and c FSV model
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Table 4 Importance of λ for calibrations Apple Inc. stock on all four datasets

Data sets 1/4/2015 15/4/2015 1/5/2015 15/5/2015

Hypothesis 1 1 1 1

p value 1.30% 0.43% 8.45e−12% 3.56%

Hypothesis 0 denotes we were unable to reject the null hypothesis and vice versa for 1

Fig. 6 Empirical cumulative distribution functions of behavioural and non-behavioural sets for the Bates
model and jump parameter λ

Importance of jumps

For all available datasets we managed to reject the null hypothesis that both the
behavioural and non-behavioural sets of λ are from the same distribution with 5%
level of significance. In Table 4 we also display the p values obtained from the 2-
sample Kolmogorov–Smirnov test. These are the maximal levels of significance that
would lead to not rejecting the null hypothesis. Hence, we are able to conclude the
similar result as in Campolongo et al. (2006)—the jump term is of significant help
for calibration trials (Fig. 6). In our case the conclusion is drawn from the real market
data and using the Monte Carlo filtering technique introduced in Sect. 3. However,
it is worth mentioning that this technique identifies input parameters which influence
extremes in the output (quality of calibration fit) and hence slightly differs from the
classical variance-based sensitivity analysis.

We observe that the calibrated λ’s can take quite small values, but as was shown
in Campolongo et al. (2006), even in that case, the jumps might effect option prices
significantly, especially for out-of-the-money contracts.

Sensitivity of the calibration with respect to the Hurst parameter

Following the procedure of Monte Carlo filtering for jump intensity λ we are inter-
ested in the importance of the Hurst parameter. Since for H = 0.5 one gets a standard
stochastic volatility model with jumps, if we are able to conclude that calibration of
H is crucial to obtain a good market fit, then we get a justification of the approxima-
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Fig. 7 Empirical cumulative distribution functions of behavioural and non-behavioural sets for the FSV
model and fractionality parameter H

Table 5 Importance of H for calibrations Apple Inc. stock on all four datasets

Data sets 1/4/2015 15/4/2015 1/5/2015 15/5/2015

Hypothesis 1 0 1 1

p value 2.78e−10% 30.00% 5.08e−03% 2.17%

Hypothesis 0 denotes we were unable to reject the null hypothesis and vice versa for 1

tive fractional model which is in-line with the long-memory phenomenon of realized
volatility time series.

We were able to reject the null hypothesis for data sets from 1 April and May and
also from 15 May. p values were quite small (see Table 5) for these data sets, unlike
for the data from 15 April (Fig. 7). In this case, we were not able to reject the null
hypothesis at any reasonable level of significance and hence we cannot make any
conclusion regarding this data set.

Test trials for various weight functions

In this sectionwe focus on a sensitivity of the obtained resultswith respect to changes in
the calibration procedure. In particular, we analyse if we are able to obtain qualitatively
similar results for different weight functions in the utility function (4). The bootstrap
calibration trials are evaluated for the following weight functions (using notation from
Sect. 2):

wA
j = 1

∣

∣

∣Cask
j − Cbid

j

∣

∣

∣

, wB
j = 1

(

Cask
j − Cbid

j

)2 ,

wC
j = 1

√

Cask
j − Cbid

j

, wD
j = 1

NT NK ,Tj

,
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Fig. 8 Data structure for 2015-05-01 (201 traded options) with weights wA
j and wD

j . The diameter of each
filled ball relates to the weight value for each traded option and the centre of the ball corresponds to its pair
K j , Tj

where NT , NK ,Tj is the number of (distinct) maturities of the corresponding traded
options (C j ) and the number of distinct strikes for a specific maturity Tj , respectively.
This weigh function was used for example by Detlefsen and Härdle (2007) and for
the calibration this would mean that we assign equal weights within a single maturity,
but two options across different maturities might be weighted differently (Fig. 8).
Moreover, weights of all traded options for each maturity sum up to 1/NT .

Several other weight functions could be considered, e.g., a function of the number
of traded contracts with the same (K , T ) pair, or a function of the Black–Scholes Vega
greek. We did not consider those choices in this paper. For the first choice, we lack
the number of total traded contracts for particular dates in our data set. On the other
hand, the Black–Scholes Vega weights are typically used as a backbone calibration
weights only—they serve as a first-order approximation of errors in terms of implied
volatilities (Christoffersen et al. 2009). Hence, those weights are not suitable for our
purposes.

We also note that wB
j ≡ w j , i.e., these weights were used for all computations

in the previous trials. In this section, we comment on qualitative differences between
different calibration set-ups only. All obtained results (4 weights, 3 models, 4 dates)
are provided as supplementary materials.

We conclude that for weights which are functions of the ask-bid spread, i.e., wA
j −

wC
j , we retrieved fairly similar results for most of the trials, see for example Fig. 9 or

similar figures in the supplementary materials. However, with respect to the overall
calibration errors we typically retrieved slightly inferior results compared to weights
wB

j , cf. Tables 1 and 6.

The results obtained by wD
j differed significantly from the other results. This is

caused not only by less pronouncedweight distribution formaturities withmore traded
options, but also by an overemphasis on a single option in particular maturities for
short-term contracts, compare left and right hand side of Fig. 8. Overall calibration
error measures are greater than the ones obtained using ask–bid spreads. For wD

j we
also observed more extreme behaviour of the bootstrap calibration—depending if the
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Fig. 9 Scatterplot matrix for the FSV model, weights wA
j , 15/5/2015 (for results on other data sets see the

supplementary materials). Diagonal elements depict histograms of parameter values obtained by bootstrap
calibrations.Off-diagonal elements illustrate a dependence structure for each parameter pair. In thosefigures,
a black cross represents the reference value of the specific parameter (obtained from calibration to the whole
data set) and by a red star we depict the bootstrap estimate of the value—the closer the two are, the better

Table 6 Overall calibration errors of the three models on all four datasets, calibration weights wA
j

2015-04-01 (%) 2015-04-15 (%) 2015-05-01 (%) 2015-05-15 (%)

Heston 5.18 4.44 6.67 3.96

Bates 5.14 4.87 6.62 4.88

FSV 3.48 2.78 5.69 4.13

most weighted option was in the bootstrap sample or not. Overall calibration errors
could reach up to 9.49% in this case, which is significantly worse than for the weights
that were used in previous tests (wB

j ), but also thus obtained errors are inferior to any

other tested weights. Hence, we conclude that weights wD
j are not very suitable for

the calibration of SV models, unless the structure of traded options is similar for each
maturity.
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5 Conclusion

In this paper, we have performed the robustness and sensitivity analysis of several
continuous-time stochastic volatility models (Heston, Bates and FSV model) with
respect to market calibration. Using the bootstrap method we calibrated the model
parameters 200 times and we compared all three models with respect to the variation
in model parameters and in bootstrapped option prices.

The bootstrap relative errors of all three models (Fig. 5, data from 1/4/2015) are
qualitatively similar—the best errors are achieved by FSVmodel and the worst results
by Heston model for all data sets. One can observe higher errors for OTM options
(K > S0). As for the bootstrap variances, the structure remains similar for all three
models, but absolute levels differ significantly. Option prices (and hencemarket errors)
obtained by Bates model have the largest variance with respect to the changing data
structure. Therefore, the Bates model appears to be the least robust. For 1/4/2015 data
set, we retrieved the best bootstrap errors and lowest variances by the FSV model.
The Heston model can achieve lower variances (e.g., 15/5/2015), but bootstrap errors
were greater compared to the FSV approach. From scatterplot matrices depicted in
Figs. 2 and 3 we can observe that the histograms of Bates and FSV model differ
especially for parameters κ and σ . It is worth to mention that considering different
parameter bounds (cf. Fig. 1b) may lead to different calibration results, with values
of some of the calibrated parameters close to the boundary. Since κ is the parameter
with the strongest correlation structure, we performed all the tests with relatively high
upper bound (κ ≤ 100). In the scatterplot matrices one can further see non-statistical
connections of jump parameters, especially for the Bates model. To avoid this, one
could fix one jump parameter for the calibration process (e.g., λ).

In Fig. 4 we can observe that the calibrated parameters for the Heston model are
almost normally distributed unlike for the other models. For the other models, one
should be careful with normality assumptions ofΘ . Additionally the calibrated param-
eters cannot be modelled as independent random variables (see Figs. 2, 3), therefore
standard sensitivity analysis tests are not suitable in this context. For this reason we
used theMonte Carlo filtering technique to show the importance of the jumps intensity
λ in the Bates model and the importance of long-memory parameter H in the FSV
model. As for the jumps, in all four considered data sets we were able to conclude that
considering jumps (nonzero λ) in a model plays a significant role in calibration to real
market data. Even small values of λ can effect the call prices, especially for the out-
of-the-money contracts. We could say that calibration of the fractionality parameter
H is important only in three cases out of four.

Recently, Mrázek et al. (2016) studied the calibration task for FSVmodel and com-
pared it to the Heston case with respect to in- and out-of-sample errors on equity index
data sets. Our study confirms that the approximative fractional model can outperform
other studied SV models (see Table 1). Moreover, we have shown that this approach
is more robust with respect to the uncertainty in the data structure, especially when
compared to the other jump-diffusion model. However, it is surprising that an addi-
tional parameter (Hurst parameter H ) leads to smaller bootstrap variance. Hence, we
are also able to draw the conclusion that jumps can also lead to decreased robustness
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(Bates model), so the importance of jump terms discussed in Campolongo et al. (2006)
can affect model performance in a negative manner as well.

5.1 Further research

As mentioned in the introduction, we have considered only a long-memory regime
(H > 0.5) of the FSV model, due to technical restrictions of the pricing solution.
Bayer et al. (2016) have shown that a simple rough paths volatility model can perform
surprisingly well even for short maturities, unlike the standard diffusion volatility
models without jumps. This observation was also supported by Fukasawa (2011),
who has shown a jump-like behaviour of the rough volatility model. Incorporating
a rough volatility regime (H < 0.5) could also improve robustness of the model in
terms of criteria introduced in this paper. Verification of this hypothesis is still due to
a further research. In fact, the proposed methodology can be successfully applied to a
rough volatility model as soon as one has an efficient pricing solution.
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