ZÁPADOČESKÁ UNIVERZITA V PLZNI FAKULTA STROJNÍ

Studijní program: N 2301 Strojní inženýrství Studijní zaměření: Stavba energetických strojů a zařízení

DIPLOMOVÁ PRÁCE

Retrofit parní turbíny 120 MW

Autor: Bc. Martin Janeček

Vedoucí práce: Dr. Ing. Jaroslav Synáč

Akademický rok 2019/2020

ZÁPADOČESKÁ UNIVERZITA V PLZNI FAKULTA STROJNÍ

Katedra energetických strojů a zařízení

Akad. rok: 2019/2020

ZADÁNÍ DIPLOMOVÉ PRÁCE

Jméno a příjmení: Rodné číslo: Studijní program: Studijní obor: Téma práce: Zadávající katedra: Bc. Martin Janeček 940401/1826 N2301 Strojní inženýrství Stavba energetických strojů a zařízení Retrofit parní turbíny 120 MW Katedra energetických strojů a zařízení

Zásady pro vypracování

Navrhněte retrofit kondenzační parní turbíny o jmenovitém výkonu 120 MW. Turbínu navrhněte jednotělesovou, bez přihřívání, s regenerací a s axiálním výstupem do kondenzátoru. Před nízkotlakým ohřívákem je (proti směru toku kondenzátu) předřazen chladič procesní vody. Pracovní otáčky turbíny jsou 3000 1/min.

- 1. Navrhněte tepelný oběh parní turbíny včetně regenerace pro provozy se jmenovitým výkonem 120 a 90 MW.
- 2. Navrhněte průtočnou část parní turbíny s kolovými stupni.
- 3. Proveď te ověření pevnostního dimenzování průtočné části.
- 4. Zpracujte konstrukční návrh (podélný řez) parní turbíny.

Rozsah diplomové práce: Rozsah grafických prací 50 – 70 stran tepelné schéma oběhu parní turbíny, podélný řez parní turbíny tištěná/elektronická

Forma zpracování diplomové práce:

Seznam doporučené literatury:

[1] ŠČEGLAJEV, A. V Parní turbíny: SNTL – Nakladatelství technické literatury, Praha 1983

[2] ŠKOPEK, Jan. Tepelné turbíny a turbokompresory: Západočeská univerzita v Plzni, 2010, ISBN 978-80-7043-862-6

[3] ŠKOPEK, Jan. Parní turbína- Tepelný a pevnostní výpočet: Západočeská univerzita v Plzni 2003, ISBN 80-7043-256-X

Vedoucí diplomové práce:	Dr. Ing. Jaroslav Synáč Katedra energetických strojů
Konzultant diplomové práce:	Ing. Karel Richtr Doosan Škoda Power

Datum zadání diplomové práce:

Termín odevzdání diplomové práce:

L.S.

děkan

vedoucí katedry

V Plzni dne 31. října 2019

Prohlášení o autorství

Předkládám tímto k posouzení a obhajobě bakalářskou práci, zpracovanou na závěr studia na Fakultě strojní Západočeské univerzity v Plzni.

Prohlašuji, že jsem tuto diplomovou práci vypracoval samostatně, s použitím odborné literatury a pramenů, uvedených v seznamu, který je součástí této diplomové práce.

V Plzni dne:

podpis autora

Poděkování

Rád bych tímto poděkoval Ing. Karlu Richtrovi za vstřícnost při konzultacích a radách při tvorbě bakalářské práce. Dále bych také rád poděkoval vedoucímu práce Dr. Ing. Jaroslavu Synáčovi a firmě Doosan Škoda Power.

ANOTAČNÍ LIST DIPLOMOVÉ PRÁCE

AUTOR	Příjmení Janeček		Jméno Martin		
STUDIJNÍ OBOR	2302T013 Stavba energetických strojů a zařízení"			zařízení"	
VEDOUCÍ PRÁCE	Příjmení (včetně titu Dr. Ing. Syná	lů) Č	Jméno Jaroslav		
PRACOVIŠTĚ	ZČU - FST - KKE				
DRUH PRÁCE	DIPLOMOVÁ	BAKA	LÁŘSKÁ	Nehodící se škrtněte	
NÁZEV PRÁCE	Retrofit parní turbíny 120 MW				

FAKULTA	Strojní		KATEDRA	KKE	ROK ODEVZD.	2020
---------	---------	--	---------	-----	----------------	------

POČET STRAN (A4 a ekvivalentů A4)

Г

Т

CELKEM	80		TEXTOVÁ ČÁST	71			GRAFICKÁ ČÁST	9
--------	----	--	--------------	----	--	--	------------------	---

STRUČNÝ POPIS (MAX 10 ŘÁDEK) ZAMĚŘENÍ, TÉMA, CÍL POZNATKY A PŘÍNOSY	Cílem této diplomové práce je navrhnout retrofit jednotělesové parní turbíny s axiálním výstupem do kondenzátoru. Navrhnout průtočnou část. Provést ověření pevnostního dimenzování průtočné části a rotoru. Zpracovat podélný řez parní turbíny.
KLÍČOVÁ SLOVA ZPRAVIDLA JEDNOSLOVNÉ POJMY, KTERÉ VYSTIHUJÍ PODSTATU PRÁCE	Parní turbína, regenerace, Rankine-Clausiův pevnostní výpočet,

SUMMARY OF DIPLOMA SHEET

AUTHOR	Surname Janeček	Ν	Name Aartin		
FIELD OF STUDY	2302T013 Design of Power Machines and Equipment				
SUPERVISOR	Surname (Inclusive of Degrees) Dr. Ing. Synáč J			Name aroslav	
INSTITUTION	ZČU - FST - KKE				
TYPE OF WORK	DIPLOMA BACHELOR			Delete when not applicable	
TITLE OF THE WORK	Retrofit of a steam turbine 120 MW				

FACULTY	Mechanical Engineering	DEPARTMENT	Power System Engineering	SUBMITTED IN	2020
---------	---------------------------	------------	--------------------------------	-----------------	------

NUMBER OF PAGES (A4 and eq. A4)

TOTALLY 8	80	TEXT PART	71	GRAPHICAL PART	9
-----------	----	-----------	----	-------------------	---

BRIEF DESCRIPTION TOPIC, GOAL, RESULTS AND CONTRIBUTIONS	The goal of this diploma thesis is to design retrofit of a single body steam turbine with axial exit to the condenser. To design flow section and perform strength analysis.
KEY WORDS	Steam turbine, regeneration, Rankine-Clausius cycle, strength analysis

Obsah

Úvod		12
1 Ret	rofit parní turbíny	13
2 Zac	ané parametry	14
3 Tep	elný výpočet turbíny	14
3.1	Určení tepelného spádu turbíny	14
3.2	Vstupní parametry páry do turbíny	15
3.3	Parametry páry na výstupu z turbíny	15
3.4	Výpočet regenerace	17
3.4	1 Ohřátí kondenzátu kondenzátním čerpadlem	
3.4	2 Zvýšení tlaku v napájecím čerpadle	
3.4	3 Nízkotlaký ohřívák NTO	19
3.4	4 Chladič procesní vody	20
3.4	5 Napájecí nádrž a systém odplynění	21
3.4	6 Sestavení bilančních rovnic	22
3.4	7 Výpočet hmotnostního průtoku páry na vstupu do turbíny	23
3.5	Shrnutí výsledků tepelného výpočtu	25
4 Kor	nstrukční návrh průtočné části turbíny	25
4.1	Orientační stanovení počtu stupňů	25
4.2	Výpočet rozměrů průtočné části	26
4.3	Lopatkový plán	
4.4	Výpočet rychlostních trojúhelníků	
4.5	Volba profilů lopatek	
4.5	1 Volba profilů rozváděcích lopatek	
4.5	2 Volba profilů oběžných lopatek	40
5 Pev	nostní výpočet	
5.1	Volba materiálu	42
5.2	Namáhání oběžných lopatek	42
5.3	Namáhání ohybem	43
5.4	Namáhání tahem	45
5.5	Celkové namáhání oběžných lopatek	46
5.6	Závěsy oběžných lopatek	
5.6	1 Závěs typu T	49

	5.6.2	.2 Vidličkový závěs	
4	5.7	Namáhání rozváděcích kol	55
	5.8	Namáhání rozváděcích lopatek	
4	5.9	Dimenzování průměru potrubí	60
6	Náv	vrh základních rozměrů rotoru	61
(5.1	Stanovení kritických otáček	62
7	Loži	źiska parní turbíny	62
-	7.1	Výpočet radiálního (nosného) ložiska	62
	7.1.1	.1 Reakce od hmotnosti	62
	7.1.2	.2 Reakce od parciálního ostřiku	63
	7.1.3	.3 Výsledná reakce v ložiscích	63
	7.1.4	.4 Kontrola rozměrů ložisek	64
-	7.2	Výpočet axiálního (opěrného) ložiska	64
	7.2.1	.1 Stanovení celkové axiální síly	64
	7.2.2	.2 Rozměry axiálního ložiska	66
8	Bila	ance výkonu a stanovení účinnosti	67
8	8.1	Tepelná účinnost při jmenovitém výkonu (120 MW)	67
8	3.2	Tepelná účinnost při sníženém výkonu (90 MW)	68
9	Závě		69
10	S	Seznam použitých zdrojů	70

Přehled použitých zkratek a symbolů

Přehled zkratek

Κ	kotel	NN	napájecí nádrž
KOND	kondenzátor	NTO	nízkotlaký ohřívák
P.O.	procesní odběr	CH	chladič procesní vody
NČ	napájecí čerpadlo	KČ	kondenzátní čerpadlo
G	generátor	VT	vysokotlaký
NT	nízkotlaký	GO	generální oprava
RL	rozváděcí lopatka	OL	oběžná lopatka
RK	rozváděcí kolo		-

Přehled symbolů

Značka	Název	Jednotky
'n	Hmotnostní průtok	[kg/s]
p	Tlak	[bar,MPa]
t,T	Teplota	[°C]
Р	Výkon	[kW]
n	Otáčky	[1/min]
i	Entalpie	[kJ/kg]
ν	Měrný objem	$[m^3/kg]$
S	Entropie	$[kJ/kg \cdot K]$
n	Otáčky	[1/min]
α	Poměrný průtok	[-]
η	Účinnost	[-]
r_{f}	Reheat faktor	[1/min]
ĥ	Entalpický spád	[kJ/kg]
x	Suchost	[%]
Q	Teplo	[kW]
d,D	Průměr	[m]
$R_{s,p}$	Reakce	[—]
C	Absolutní rychlost	[m/s]
w	Relativní rychlost	[m/s]
и	Obvodová rychlost	[m/s]
а	Rychlost zvuku	[m/s]
ω	Úhlová rychlost	[m/s]
ε	Parciálnost	[-]
η	Účinnost	[-]
Ма	Machovo číslo	[-]
φ	Rychlostní ztrátový součinitel RL	[—]
ψ	Rychlostní ztrátový součinitel OL	[—]
L	Délka lopatky	[mm]

b	Délka tětivy	[mm]
<i>b</i> , <i>B</i>	Šířka	[mm]
<i>S</i> , <i>A</i>	Plocha	$[mm^2]$
W_o	Průřezový modul v ohybu	$[mm^3]$
$t_{opt,OL,RL}$	Rozteč	[mm]
Z	Počet lopatek	[—]
Mo	Ohybový moment	[Nm]
σ	Normálové napětí	[MPa]
τ	Smykové napětí	[MPa]
т, G	Hmotnost	[kg]
0	Odstředivá síla	[N]
Ε	Youngův modul pružnosti	[MPa]
R	Poloměr	[m]
L _b	Ložisková vzdálenost	[mm]
F	Síla	[N]
y_{max}	Maximální průhyb	[mm]

Úvod

Cílem této diplomové práce je provést retrofit jednotělesové parní turbíny s axiálním výstupem do kondenzátoru. Pod pojmem retrofit si je možné představit různě rozsáhlou výměnu kritických komponent turbíny s cílem nejen prodloužení životnosti. Tato práce se zabývá návrhem technických a konstrukčních komponent projektu. Skutečný projekt však obsahuje více dalších kategorií, jako například harmonogram prací, ekonomické parametry a jiné.

Práce je rozdělena do několika částí. V té první bude představen plánovaný rozsah modernizace turbíny a očekávaný dopad této modernizace jak do obnovení životnosti, tak do zvýšení účinnosti celého cyklu.

Ve druhé kapitole jsou zadané parametry turbíny a to jak výkon turbíny, vstupní teploty a tlaky, tak i například počet regeneračních ohříváků.

Třetí kapitola se zabývá základním tepelným výpočtem. Výsledky této kapitoly jsou stavebním kamenem pro výpočet průtočné části.

Ve čtvrté kapitole je proveden konstrukční návrh průtočné části. Jsou stanoveny základní rozměry, jako patní průměr a délka lopatky, které jsou vyobrazeny na lopatkovém plánu. Pro každý stupeň jsou vypočteny rychlostní trojúhelníky. Dále jsou zvoleny profily rozváděcích a oběžných lopatek.

Pátá kapitola je zaměřena na pevnostní výpočet průtočné části. Jsou zvoleny vhodné šířky lopatek pro dané namáhání. Dále je proveden pevnostní výpočet pro závěsy lopatek a rozváděcí kola. Je ověřeno, že závěsy i listy lopatek vyhovují pevnostním požadavkům. Rozměry z této kapitoly jsou použity pro tvorbu podélného řezu turbíny.

V šesté kapitole je uskutečněn konstrukční návrh rotoru a tvorba jeho 3D modelu. Je stanovena celková hmotnost rotoru a určeny kritické otáčky.

Další kapitola je zaměřena na výpočet a kontrolu ložisek turbíny. Jsou dimenzována axiální (opěrná) ložiska, stejně tak radiální (nosná) ložiska.

V poslední kapitole je vypočten konečný výkon turbíny a je stanovena tepelná a termodynamická účinnost cyklu. Toto je provedeno pro dva různé provozní stavy (120 MW a 90 MW). Výsledky této kapitoly by měly být použity k bilancování přínosu retrofitu.

1 Retrofit parní turbíny

Parní turbína je konstruována tak, aby její životnost dosahovala až 100 000 hodin. Během této doby jsou naplánovány pravidelné servisní úkony, které zajišťují bezpečný chod stroje. Mezi tyto servisní úkony většího rozsahu je řazena generální oprava (GO) a to buď malá, nebo velká. Harmonogram těchto oprav je stanoven výrobcem turbíny.

Rozsah malé GO je dva až čtyři týdny. Tělesa turbíny jsou otevírána, jen pokud je to nezbytně nutné. Je provedena například vizuální endoskopická prohlídka, kontrola lopatek posledního nízkotlakého stupně, inspekce ventilů, olejového hospodářství a ložisek a mnoho jiných úkonů.

Velká GO zpravidla trvá čtyři až osm týdnů, a zahrnuje veškeré aktivity prováděné během malé GO. Jsou však otevřena všechna tělesa turbíny a je provedena inspekce všech lopatek. Je provedena komplexní kontrola generátoru a spojek.

S ohledem na pokroky ve vývoji parních turbíny je možné nad rámec velké generální opravy uvažovat také o provedení retrofitu. Retrofit je možné provést buď po vyčerpání životnosti stroje, nebo během velké GO, za podmínky, že je možné nabídnout modernější řešení stroje zákazníkovi.

Mezi cíle retrofitu je možné řadit:

- 1. Zvýšení termodynamické účinnosti
- 2. Obnovení životnosti stroje
- 3. Realizace požadavků na vyvedení odběrů páry pro různé technologické, či teplofikační potřeby

Rozsah retrofitu		Cíle Retrofitu	
	1.	2.	3.
Výměna rozváděcích kol	vhodné	nestačí	nestačí
Výměna nadbandážových těsnění	vhodné	nestačí	nestačí
Výměna průtočné části	vhodné	vhodné jen	zpravidla
(rozváděcí kola, lopatky, rotor)		částečně	nestačí
Výměna těles turbíny	vhodné	vhodné	vhodné

Tabulka 1: Možné rozsahv retrofitu

Zadáním této práce je navrhnout novou průtočnou část. Původní těleso turbíny je tak zachováno. Tím je zachována i pozice vyvedení odběrů a dimenze potrubí, s čímž je nutné počítat při konstrukčním návrhu průtočné části.

Poznatky v této kapitole byly převzaty ze zdroje [1]

2 Zadané parametry

Proveď te retrofit jedno tělesové kondenzační parní turbíny o jmenovitém výkonu 120 MW. Navrhněte průtočnou část do stávajících vnějších těles a ložiskových stojanů. Před nízkotlakým ohřívákem je (proti směru toku kondenzátu) předřazen chladič procesní vody. Pracovní otáčky turbíny jsou 3000 ot/min.

Požadovaný elektrický výkon:	Pel	=	120; 90	[MW]
Admisní tlak páry:	pa	=	88	[bar]
Admisní teplota páry:	ta	=	498	[°C]
Teplota napájecí vody na vstupu do kotle:	t_{nv}	=	150,6	[°C]
Tlak na výstupu do kondenzátoru:	p_k	=	0,12	[bar]
Tlak do procesu	p_p	=	30	[bar]
Množství páry do procesu	m _p	=	22	[t/h]
Výkon chladiče procesní vody	P_{chv}	=	7,2	[MWt]
Počet regeneračních ohříváků	i _{reg}	=	2	(včetně odplyňováku)
Pracovní otáčky turbíny	n	=	3000	[1/min]

Ze zadání je patrné že turbína bude mít dva regenerační odběry. Konkrétně se jedná o odběr pro nízkotlaký regenerační ohřívák (NTO) a o odběr pro napájecí nádrž s odplyněním. Dále je zařazen odběr do procesu, který je vyveden při tlaku 30 bar.

Chladič procesní vody o tepelném výkonu 7,2 MWt pak předává teplo kondenzátu a ohřívá jej.

3 Tepelný výpočet turbíny

Cílem této kapitoly je učet průběh expanze v turbíně. Je stanoveno množství admisní páry, tak aby bylo dosaženo požadovaného elektrického výkonu. Z výpočtu je možné získat základní představu o průtocích páry jednotlivými procesními a regeneračními odběry.

Výpočet byl realizován pomocí programu Microsoft Excel 2016 s doplňkem XSteam.tables. Tento doplněk obsahuje tabulky parametrů vody a páry. Metodika výpočtu byla převzata ze zdroje [2] [3]

3.1 Určení tepelného spádu turbíny

Prvním krokem při tepelném výpočtu turbíny je stanovení celkového tepelného spádu turbíny. Určujícími parametry pro tento výpočet je vstupní tlak a teplota páry, ale také tlak na výstupu do kondenzátoru.

Vstupní parametry páry do turbíny 3.2

Pára před samotným vstupem do turbíny prochází přes soustavu rychlozávěrného a regulačního ventilu. Je proto nutné parametry páry ponížit o ztráty v těchto ventilech. Tlakovou ztrátu ve ventilech nelze určit výpočtem, ale je volena dle zkušeností. Ve ventilech dochází ke škrcení páry, což je izentalpický děj. Díky tomu lze určit ostatní parametry páry za soustavou ventilů.

Parametry páry před regulačním a rychlozávěrným ventilem

Tlak admisní páry	$p_a = 88 [bar]$
Teplota admisní páry	$t_a = 498 [^{\circ}C]$

Z těchto parametrů lze určit entalpii a entropii:

$$i_a = f(p_a; t_a) = 3384,7 [kJ/kg]$$
 (3.1)

$$s_a = f(p_a; t_a) = 6,6663 [kJ/kg \cdot K]$$
 (3.2)

Po zvolení tlakové ztráty lze spočítat tlak na výstupu ze soustavy ventilů.

Zvolená tlaková ztráta

$$\Delta p_z = 3 \, [\%]$$

$$p_0 = p_a \cdot \left(1 - \frac{\Delta p_z}{100}\right) = 85,36 \ [bar] \tag{3.3}$$

Parametry páry na vstupu do turbíny jsou pak určeny:

$$i_0 = i_a = 3384,7 [kJ/kg]$$
 (3.4)

$$t_0 = f(p_0; i_0) = 496,72 [°C]$$
(3.5)

$$v_0 = f(p_0; i_0) = 0.0387 [m^3/kg]$$
 (3.6)

$$s_0 = f(p_0; i_0) = 6,679 [kJ/kg \cdot K]$$
 (3.7)

3.3 Parametry páry na výstupu z turbíny

Koncový bod expanze v turbíně je určen tlakem na výstupu do kondenzátoru $p_k = 0,12$ [bar]. Při známosti průběhu expanze v i-s diagramu lze určit následující parametry.

Entalpie páry na výstupu z turbíny při izentropické expanzi

$$i_{2,iz} = f(p_k; s_0) = 2136,89 [kJ/kg]$$
 (3.8)

Izentropický tepelný spád

$$h_{iz} = i_0 - i_{2,iz} = 3384,7 - 2136,89 = 1247,8 [kJ/kg]$$
(3.9)

Pro určení skutečného tepelného spádu je nejprve nutné odhadnout vnitřní termodynamickou účinnost. V tomto případě je účinnost zvolena v souladu s literaturou:

$$\eta_{tdi} = 0,87 [-] \tag{3.10}$$

Skutečný tepelný spád:

$$h = h_{iz} \cdot \eta_{tdi} = 1085,59 \, [kJ/kg] \tag{3.11}$$

Entalpie a entropie na výstupu z turbíny:

$$i_2 = i_0 - h = 2299 \left[\frac{kJ}{kg} \right] \tag{3.12}$$

$$s_2 = f(p_k; i_2) = 7,18 [kJ/kg \cdot K]$$
 (3.13)

Obrázek 1: Expanzní křivka i-s diagram

Dalším krokem pro tepelný výpočet turbíny je sestavení zjednodušeného tepelného schématu. To je tvořeno turbínou a kotlem, ale také regeneračními ohříváky, napájecí nádrží s odplyněním, systémem čerpadel a dalšími.

Obrázek 2: Tepelné schéma cyklu

Κ	Kotel	KOND	Kondenzátor
G	Generátor	KČ	Kondenzátní čerpadlo
NTO	Nízkotlaký ohřívák	СН	Chladič procesní vody
P.O.	Procesní odběr	NN	Napájecí nádrž
NČ	Napájecí čerpadlo		

3.4 Výpočet regenerace

Regenerace neboli regenerační ohřev napájecí vody je jeden ze způsobů zvyšování tepelné účinnosti turbíny. Ohřev hlavního kondenzátu a napájecí vody je uskutečněn částí páry odebírané během expanze z turbíny. Pára je vedena z odběru turbíny do regeneračních ohříváků, kde kondenzuje a předá teplo hlavnímu kondenzátu, nebo napájecí vodě. V této kapitole byly použity vztahy z literatury [4]

3.4.1 Tepelná bilance kondenzátoru

Tlak v kondenzátoru je znám ze zadání $p_k = 0,12 \ [bar]$. V kondenzátoru dochází ke změně skupenství. Pára zde kondenzuje za stálého tlaku a teploty. Proto můžeme uvažovat, že tlak na výstupu z turbíny odpovídá tlaku syté páry.

Teplota kondenzátu odpovídá teplotě sytosti při tlaku p_k

$$t_k = f(p_k) = 49,4 \,[^{\circ}C] \tag{3.14}$$

$$i_k = f(p_k; x = 0) = 206,91 [kJ/kg]$$
 (3.15)

3.4.2 Ohřátí kondenzátu kondenzátním čerpadlem

Úkolem kondenzátního čerpadla je zvýšení tlaku kondenzátu na úroveň tlaku v napájecí nádrži. Prací kondenzátního čerpadla dochází k ohřátí kondenzátu, toto ohřátí lze ze zkušeností odhadnout, jako $\Delta t_{K\check{C}} = 0,1 \ [°C].$

Tlak v napájecí nádrži byl v pozdějších výpočtech stanoven tak, aby odpovídal tlaku odběru.

$$p_{NN} = 4,77 \ [bar]$$
 (3.16)

Teplota a entalpie kondenzátu je poté určena

$$t'_{k} = t_{k} + \Delta t_{K\check{C}} = 49,52[^{\circ}C]$$
(3.17)

$$i_k' = f(p_{NN}; t_k') = 207,71 [kJ/kg]$$
 (3.18)

3.4.3 Zvýšení tlaku v napájecím čerpadle

Teplota napájecí vody na vstupu do kotle je známa ze zadání $t_{NV} = 158,9$ [°C]. Tlak ve výtlaku z napájecího čerpadla tlaku admisní páry navýšenému o tlakovou ztrátu kotle. Tlaková ztráta kotle je v tomto případě odhadnuta na 25%.

$$p_{NV} = 1,25 \cdot p_a = 110 \ [bar] \tag{3.19}$$

Entalpie napájecí vody na vstupu do kotle je pak:

$$i_{NV} = f(p_{NV}; t_{NV}) = 641,38 [kJ/kg]$$
 (3.20)

Nyní je patrné, o kolik regenerační soustava a chladič procesní vody ohřejí hlavní kondenzát nebo napájecí vodu.

$$\Delta t_{reg} = t_{NV} - t_k = 101,18 \,[^{\circ}C] \tag{3.21}$$

3.4.4 Nízkotlaký ohřívák NTO

Nízkotlaký ohřívá NTO je povrchový výměník tepla. Je tvořen vodní komorou, trubkovým svazkem, trubkovnicí a pláštěm. Odebraná pára z turbíny kondenzuje na teplosměnném povrchu trubkového svazku a předá tak teplo hlavnímu kondenzátu, který proudí uvnitř teplosměnných trubek. Zkondenzovaná pára je poté kaskádována do vany kondenzátoru.

Obrázek 3: Konstrukční schéma NTO

Na základě zkušeností bylo rozhodnuto, že v NTO dojde k ohřátí hlavního kondenzátu $\Delta t_{NTO} = 60 \ [^{\circ}C]$. Dojde tak k ohřátí na teplotu

$$t_{vout} = t'_k + \Delta t_{NTO} = 109,52 \,[^{\circ}C] \tag{3.22}$$

K této teplotě je nutné přičíst koncový rozdíl teplot v ohříváku $\delta_{NTO} = 3$ [°C]. Teplota kondenzující páry je pak

$$t_{pin} = t_{vout} + \delta_{NTO} = 112,52 \,[^{\circ}C] \tag{3.23}$$

Tlak páry v ohříváku odpovídá tlaku sytosti, po přičtení tlakové ztráty v odběru, v tomto případě uvažována 3%, získáme skutečný tlak odebírané páry z turbíny.

$$p_{ohr} = f(t_{pin}; x = 1) = 1,56 [bar]$$
 (3.24)

$$p_{odbr} = 1,03 \cdot p_{ohr} = 1,61 \ [bar] \tag{3.25}$$

Po iteraci byl tlak v odběru upraven tak, aby odpovídal skutečnému tlaku za stupněm, následně je nutné přepočítat všechny hodnoty.

	Teploty vody vstup / výstup [°C]	Teplota páry / kondenzátu [°C]	Tlak v odběru [bar]
	t _{vin}	t _{pin}	p _{ohr.}
	t _{vout}	t _{kout}	p _{odbr.}
КČ	49,42		
κC	49,52		
NTO	49 <i>,</i> 52	117,65	1,84
NIO	114,65	117,65	1,90

Tabulka 2: Teplota a tlak odebírané páry pro NTO

Nyní lze určit adiabatickou entalpii odebírané páry

$$i_{odb.ad} = f(p_{odbr}; s_0) = 2521,9 [kJ/kg]$$
 (3.26)

Skutečná entalpie páry v odběru

$$i_{odb.skut} = i_0 - (i_0 - i_{odb.ad}) \cdot \eta_{tdi} = 2634,06 [kJ/kg]$$
(3.27)

Entalpie hlavního kondenzátu na výstupu z NTO

$$i_{vout} = f(p_{NN}; t_{vout}) = 478,40 [kJ/kg]$$
 (3.28)

Entalpie zkondenzované páry

$$i_{pout} = f(p_{ohr}; x = 0) = 490,90 [kJ/kg]$$
 (3.29)

3.4.5 Chladič procesní vody

Chladič procesní vody předá tepelnou energii hlavnímu kondenzátu.

Tepelný výkon je zadán $P_{chv} = 7,2 [MWt]$

Při znalosti hmotnostního toku hlavního kondenzátu, který byl později vypočten v rovnici (3.43) jako $\dot{m} = 123,03$ [kg/s], je možné určit předaný entalpický spád v chladiči.

$$h_{chv} = \frac{P_{chv}}{\dot{m}} = 58,52 \ [kJ/kg] \tag{3.30}$$

Entalpie a teplota hlavního kondenzátu na výstupu z chladiče

$$i_{vout} = i_{vin} + h_{chv} = 536,92 [kJ/kg]$$
 (3.31)

$$t_{vout} = f(p_{NN}; i_{vout}) = 127,76 [°C]$$
(3.32)

3.4.6 Napájecí nádrž a systém odplynění

Napájecí nádrž je velkoobjemová tlaková nádoba, která je vybavena systémem odplynění. Její hlavní funkcí je akumulace napájecí vody pro kotel. Průtok napájecí vody kotlem musí být vždy zaručen. Pokud by teplosměnné trubky kotle nebyly vnitřně chlazeny, došlo by k jejich poškození vlivem teplotního namáhání. Její další funkcí je odplynění přiváděného kondenzátu z nízkotlaké regenerace. Hlavní důvod odplynění je snaha odstranit především rozpuštěný kyslík, který při styku s ocelí působí korozivně. Poslední a neméně důležitou funkcí napájecí nádrže je ohřev napájecí vody. Napájecí nádrž je totiž směšovací výměník a jako taková tvoří jeden ze stupňů regenerace

Jak již bylo zmíněno v rovnici (3.16) tlak v napájecí nádrži je $p_{NN} = 4,92$ [bar]. Přičtením tlakové ztráty v odběru je určen skutečný tlak odebírané páry.

$$p_{odbr} = 1,03 \cdot p_{NN} = 4,77 \ [bar] \tag{3.33}$$

Jelikož je napájecí nádrž směšovací výměník, je koncový rozdíl teplot v ohříváku roven nule. Platí tedy, že teplota páry je teplotou sytosti při daném tlaku:

$$t_{pin} = t_{pout} = t_{vout} = f(p_{NN}; x = 1) = 150, 10 [^{\circ}C]$$
(3.34)

Adiabatická entalpie odebírané páry

$$i_{odb.ad} = f(p_{odbr}; s_0) = 2685,26 [kJ/kg]$$
 (3.35)

Skutečná entalpie odebírané páry

$$i_{odb.skut} = i_0 - (i_0 - i_{odb.ad}) \cdot \eta_{tdi} = 2776,18 [kJ/kg]$$
(3.36)

Entalpie napájecí vody na výstupu z napájecí nádrže je stejná jako entalpie zkondenzované páry

$$i_{vout} = i_{pout} = f(t_{vout}; x = 0) = 632,7 [kJ/kg]$$
 (3.37)

3.4.7 Sestavení bilančních rovnic

Pro určení průtoku páry turbínou je nutné sestavit pro každý výměník bilanční rovnici. Jsou uvažovány poměrné průtoky ∝, kdy na vstupu do turbíny je uvažován 100% průtok páry

Obrázek 4: Bilance v napájecí nádrži

Bilance napájecí nádrže

$$1 \cdot i_{vout2} = \alpha_2 \cdot i_{odb2} + (1 - \alpha_2) \cdot i_{vin2}$$
(3.38)

Po úpravě rovnice je získán poměrný průtok v druhém odběru.

Obrázek 5: Bilance v NTO

Bilance nízkotlakého ohříváku:

 $\alpha_3 \cdot i_{odb3} + (1 - \alpha_2) \cdot i_{vin3} = (1 - \alpha_2) \cdot i_{vout3} + \alpha_3 \cdot i_{pout3}$ (3.40)

Po úpravě rovnice je získán poměrný průtok ve třetím odběru

$$\alpha_3 = \frac{(1 - \alpha_2) \cdot (i_{vout3} - i_{vin3})}{i_{odb3} - i_{pout3}} = 0,12 \ [-]$$
(3.41)

Při tlaku $p_p = 30[bar]$ je odebírán hmotnostní průtok páry $\dot{m}_p = 22 [t/h] = 6,11 [kg/s]$ do procesu. Pro zjednodušení je uvažováno, že stejné hmotové množství vody je doplňováno do kondenzátoru při teplotě kondenzace, tedy $t_k = 49,4$ [°C].

Poměrný průtok prvním odběrem α_1 pak je:

$$\alpha_1 = \frac{\dot{m}_p}{\dot{m}} = 0.05 \ [-] \tag{3.42}$$

3.4.8 Výpočet hmotnostního průtoku páry na vstupu do turbíny

Při výpočtu hmotnostního průtoku na vstupu do turbíny je nutné vyjít ze zadaného elektrického výkonu. Je tedy nutné dosažení vyššího vnitřního výkonu turbíny o ztráty v turbíně (vnitřní zahrnuté v termodynamické účinnosti η_{tdi} , mechanické, uvažované pomocí mechanické účinnosti η_m), a ztráty v elektrickém generátoru (účinnost η_a).

Zvolená účinnost elektrického generátoru a mechanická účinnost

 $\eta_g = 0,99 [-]$ $\eta_m = 0,99 [-]$

Hmotnostní průtok páry na vstupu do turbíny

$$\dot{m} = \frac{P_{el}}{\eta_g \cdot \eta_m \cdot [h - \alpha_1 \cdot (i_{odb1} - i_2) - \alpha_2 \cdot (i_{odb2} - i_2) - \alpha_3 \cdot (i_{odb3} - i_2)]}$$
(3.43)
$$\dot{m} = 124,4 \ [kg/s]$$

Skutečné velikosti odběrů pro regeneraci jsou tak dány hmotnostním průtokem páry na vstupu do turbíny vynásobeném poměrnou velikostí odběrů.

Odběr páry do procesu je znám ze zadání $\dot{m}_p = 22 [t/h] = 6,11 [kg/s]$

Odběr pro napájecí nádrž

$$\dot{m}_{NN} = \alpha_2 \cdot \dot{m} = 5,20 \, [kg/s] \tag{3.44}$$

Odběr pro NTO

$$\dot{m}_{NTO} = \alpha_3 \cdot \dot{m} = 15,24 \, [kg/s]$$
 (3.45)

Iteračním výpočtem byly dosaženy koncové hodnoty regenerace *Tabulka* 3, tak aby odběry odpovídaly průtočné části turbíny. Expanze se zahrnutými odběry páry v turbíně je znázorněna na *Obrázek* 6.

Bc. Martin Janeček

	Teploty vody vstup / výstup [°C]	Teplota páry / kondenzátu [°C]	Tlak v odběru [bar]	Entalpie v odběru [kJ/kg]	Entalpie vody vstup / výstup [kJ/kg]	Entalpie páry / kondenzátu [kJ/kg]		Průtok páry v odběrech [kg/s]	Průtok páry turbínou [kg/s]
	t _{vin}	t pin	p _{ohr} .	h _{odb. ad.}	h _{vin}	h _{odb.}	α	m _p	m _{pt}
	t _{vout}	t _{kout}	p _{odbr} .	h _{odb. skut.}	h _{vout}	h _{pout}			
КČ	49,42				206,91				
KC	49,52				207,73				
	49,52	117,65	1,84	2521,90	207,73	2634,06	0,12	15,24	97,88
NIO	114,65	117,65	1,90	2634,06	481,27	493,78			
Chladič	114,65				481,27				
Chiadic	128,28				539,15				
NINI	128,28	150,10	4,77	2685,26	539,15	2776,18	0,04	5,20	113,11
	150,10	150,10	4,92	2776,18	632,70	632,70			
NČ	150,10				632,70				
NC	150,60				641,38				
Brocos			30,00	3087,83		3126,42	0,05	6,11	118,32
FIOLES		355,70	31,40	3126,42					

Tabulka 3: Vypočtené hodnoty regenerace

Obrázek 6: i-s diagram expanze páry v turbíně

3.5 Shrnutí výsledků tepelného výpočtu

Při výpočtu tepelného schématu byl stanoven hmotnostní průtok admisní páry $\dot{m} = 124,4 \ [kg/s]$, tak aby bylo dosaženo elektrického výkonu $P_{el} = 120 \ [MW]$. Dále byly určeny průtoky páry jednotlivými odběry pro regenerační ohříváky. Z tepelného výpočtu vychází výpočet průtočné části turbíny.

4 Konstrukční návrh průtočné části turbíny

Úkolem konstrukčního návrhu průtočné části je určit základní rozměry turbíny. Konkrétně se jedná o patní průměry, délky rozváděcích lopatek a délky oběžných lopatek. Základním předpokladem pro výpočet je známý hmotnostní průtok páry a její měrný objem.

4.1 Orientační stanovení počtu stupňů

Při stanovení počtu stupňů turbíny je nutné brát v úvahu součinitel zpětného využití tepla, tzv. reheat faktor. U mnohostupňové turbíny totiž ztráty v jednotlivých stupních zvyšují výstupní entalpii (což je vstupní entalpie do dalšího stupně). Tato zvýšená entalpie se dá částečně využít v dalších stupních. Míra tohoto zvýšení vztažená k původnímu entalpickému spádu se nazývá právě reheat faktor. [1]

Pro přibližné určení se vychází ze vztahu

$$q_T = k_T \cdot (1 - \eta_{tdi}) \cdot h_{iz} \cdot \frac{z - 1}{z} = 0,071 [-]$$
(4.1)

Je-li expanzní čára v oblasti přehřáté i mokré páry, pak je konstanta

 $k_T = 3.2 \cdot 10^{-4} \div 4.3 \cdot 10^{-4} [-]$

z je odhadovaný počet stupňů, v tomto případě odhadnut na z = 16.

Nyní je pomocí reheat faktoru určen součet entalpických spádů všech stupňů

$$\sum h_{0st} = (1 + q_T) \cdot h_{iz} = 1341,13 \, [kJ/kg]$$
(4.2)

Pro rovnotlaké lopatkování je uvažován konstantní rychlostní poměr $\left(\frac{u}{c}\right)_{stř} = 0,45$ [–] Ze zkušeností je zvolen střední průměr lopatkování $D_s = 1,1$ [*m*] Výsledný počet stupňů turbíny je

$$x = \frac{2 \cdot \sum h_{0st} \cdot \left(\frac{u}{c}\right)_{st\check{r}}}{\left(\frac{\pi \cdot n}{60}\right)^2 \cdot D_s^2} = 18,19 \ [-]$$
(4.3)

Po zaokrouhlení na celá čísla je určen konečný počet stupňů turbíny roven x = 19 [–]. Po konzultaci s odborníky ze společnosti Doosan Škoda Power byl počet stupňů odsouhlasen.

4.2 Výpočet rozměrů průtočné části

Střední průměr lopatkování

$$D_s = D_p + L_s = [-] \tag{4.4}$$

Obvodová rychlost na středním průměru lopatkování

$$u = \frac{\pi \cdot D_s \cdot n}{60} = [m/s] \tag{4.5}$$

kde *n* jsou otáčky turbíny za minutu. Ze zadání n = 3000 [1/min]

Přepočet rychlostního poměru u paty lopatky na rychlostní poměr středního průměru lopatkování.

$$\left(\frac{u}{c_0}\right)_s = \left(\frac{u}{c_0}\right)_p \cdot \frac{D_s}{D_p} = [-]$$
(4.6)

Rychlostní poměr na patním průměru $\left(\frac{u}{c_0}\right)_p$ byl volen pro každou lopatku tak, aby bylo dosaženo optimálního průběhu expanze v průtočné části

Izentropická rychlost na výstupu z rozváděcích lopatek

$$c_0 = \frac{u}{\left(\frac{u}{c_0}\right)_s} = [m/s] \tag{4.7}$$

Skutečná rychlost na výstupu z rozváděcích lopatek je určena jako součin izentropické rychlosti a rychlostního ztrátového součinitele, který je pro tento případ volen $\varphi = 0.97$ [-]

$$c_1 = \varphi \cdot c_0 = [m/s] \tag{4.8}$$

Entalpický spád zpracovaný ve stupni při izentropickém ději

$$h_{iz} = \frac{c_0^2}{2} = [kJ/kg]$$
(4.9)

Entalpie na výstupu z rozváděcích lopatek při izentropickém ději

$$i_{1,iz} = i_0 - h_{iz} = [kJ/kg]$$
 (4.10)

Ztráty v rozváděcích lopatkách

$$z_0 = (1 - \varphi^2) \cdot h_{iz} = [kJ/kg]$$
(4.11)

Skutečná entalpie na výstupu z rozváděcích lopatek

$$i_1 = i_{1,iz} + z_0 = [kJ/kg]$$
 (4.12)

Měrný objem na výstupu z rozváděcích lopatek byl určen iteračním výpočtem

$$v_1 = f(i_1; p_2) = [m^3/kg]$$
 (4.13)

Pro určení délky rozváděcí lopatky při totálním ostřiku je nutné zvolit kontrakční součinitel zohledňující tloušťku výstupní hrany rozváděcích lopatek $\varepsilon_r = 0.9$ [–]. Výstupní úhel z rozváděcích lopatek α_1 byl volen individuálně pro každý stupeň.

$$L_t = \frac{\dot{m} \cdot v_1}{\pi \cdot \varepsilon_r \cdot D_s \cdot c_1 \cdot \sin \alpha_1} = [mm]$$
(4.14)

Optimální délka rozváděcí lopatky

$$L_{opt} = \sqrt{\frac{\left(1 - \left(\frac{u}{c_0}\right)_s\right) \cdot D_s \cdot L_t}{1,26 + 14,97 \cdot \left(\frac{u}{c_0}\right)_s^2}} = [mm]$$
(4.15)

Parciálnost je určena poměrem skutečné délky lopatky a délky lopatky s totálním ostřikem. Tato turbína je konstruována tak, aby všechny lopatky byly s totálním ostřikem vyjma prvního stupně, kde je použito A-kolo. Proto byla délka skutečné lopatky L_s aby odpovídala délce lopatky s totálním ostřikem.

$$\varepsilon = \frac{L_t}{L_s} = [-] \tag{4.16}$$

Podle poměru délky lopatky a středního průměru lopatkování byl zvolen typ lopatek. Krátké lopatky se zpravidla konstruují jako válcové. Delší lopatky se konstruují jako zkroucené, v literatuře také označovány jako zborcené. Pro válcové lopatky, označeny (V), tedy platí

$$\frac{L_s}{D_s} \le 0.1 \tag{4.17}$$

Pro zkroucené lopatky, označeny (Z), platí

$$\frac{L_s}{D_s} \ge 0,1 \tag{4.18}$$

Účinnost nekonečně dlouhé lopatky

$$\eta_{inf} = 3,74 \cdot \left(1 - \left(\frac{u}{c_0}\right)_s \cdot \left(\frac{u}{c_0}\right)_s\right) = [-]$$
(4.19)

Ztráta konečnou délkou lopatky

$$z_L = \eta_{inf} \cdot \frac{0,0029}{L_s} = [-]$$
(4.20)

Ztráta parciálností

$$z_p = 0,0085 + \frac{0,0137}{D_s} \cdot \frac{1}{\varepsilon} \cdot \left(\frac{u}{c_0}\right)_s = [-]$$
(4.21)

Ztráta ventilací neostříknutých lopatek

$$z_{\nu} = \frac{0.0377}{\sin \alpha_1} \cdot \left(\frac{1}{\varepsilon} - 1\right) = [-]$$
(4.22)

Ztráta rozvějířením

$$z_{rozv} = 0.6 \cdot \left(\frac{L_s}{D_s}\right)^2 = [-]$$
(4.23)

Ztráta třením disku

$$z_t = 0,003 \cdot \frac{D_s}{L_s} \cdot \left(\frac{u}{c_0}\right)_s^3 = [-]$$
 (4.24)

Ztráta vlivem průměru. Pouze pro $D_s < 1 [m]$

$$\Delta \eta_D = 0.05 \cdot (1 - D_s) \cdot \left(\frac{u}{c_0}\right)_s = [-]$$
(4.25)

Ztráta vlivem vlhkosti páry

$$z_{\nu l} = 1 - x_2 = [-] \tag{4.26}$$

Výsledná termodynamická účinnost stupně

$$\eta_{tdi} = \eta_{inf} - (z_L + z_p + z_v + z_{rozv} + z_t + \Delta \eta_D + z_{vl}) = [-]$$
(4.27)

Entalpický spád zpracovaný ve stupni

$$h = h_{iz} \cdot \eta_{tdi} = [kJ/kg] \tag{4.28}$$

Vnitřní výkon stupně

$$P_{st} = \dot{m} \cdot h = [kW] \tag{4.29}$$

Entalpie na výstupu ze stupně

$$i_2 = i_0 - h = [kJ/kg] \tag{4.30}$$

Tlak páry na výstupu ze stupně

$$p_2 = f(i_{1,iz}; s_0) = [bar]$$
(4.31)

Ostatní parametry páry na výstupu ze stupně jsou určeny pomocí entalpie a tlaku

$$t_2, s_2, v_2, x_2 = f(p_2; i_2) \tag{4.32}$$

Číslo	stupně	1	2	3	4	5	6	7
ṁ	[kg/s]	124,43	124,43	124,43	124,43	124,43	124,43	118,32
i ₀	[kJ/kg]	3384,70	3337,33	3294,72	3253,04	3210,46	3167,29	3128,77
p_0	[bar]	85,36	71,27	60,61	51,66	43,74	36,81	31,42
t_0	[°C]	496,72	470,46	447,07	424,31	401,11	377,64	356,71
v_0	$[m^3/kg]$	0,04	0,04	0,05	0,06	0,07	0,08	0,09
<i>s</i> ₀	[kJ/kgK]	6,68	6,69	6,71	6,72	6,73	6,74	6,74
D_p	[<i>m</i>]	0,980	0,915	0,915	0,920	0,922	0,925	0,925
D_s	[<i>m</i>]	1,010	0,947	0,954	0,964	0,972	0,982	0,988
U	[m/s]	158,7	148,8	149,9	151,4	152,7	154,3	155,2
$(U/C_0)_p$	[-]	0,45	0,45	0,46	0,46	0,46	0,49	0,45
$(U/C_0)_S$	[-]	0,464	0,466	0,480	0,482	0,485	0,520	0,481
<i>C</i> ₀	[m/s]	342,08	319,40	312,45	314,16	314,84	296,53	322,89
<i>c</i> ₁	[m/s]	331,82	309,81	303,08	304,73	305,40	287,63	313,20
h _{iz}	[kJ/kg]	58,51	51,01	48,81	49,35	49,56	43,96	52,13
i _{1.iz}	[kJ/kg]	3326,19	3286,32	3245,90	3203,69	3160,90	3123,33	3076,64
Z_0	[kJ/kg]	3,46	3,01	2,88	2,92	2,93	2,60	3,08
<i>i</i> ₁	[kJ/kg]	3329,65	3289,33	3248,79	3206,61	3163,83	3125,92	3079,72
α_1	[°]	14	14	13,5	13,5	13,5	14	13
L_t	[<i>m</i>]	0,0243	0,0317	0,0380	0,0428	0,0487	0,0561	0,0612
Lopt	[<i>m</i>]	0,0540	0,061	0,064	0,068	0,072	0,071	0,082
8	[-]	0,8091	1,0	1,0	1,0	1,0	1,0	1,0
Ls	[<i>mm</i>]	30	32	39	44	50	57	63
L_t/D_s	[-]	0,0297	0,03	0,04	0,05	0,05	0,06	0,06
Тур	[-]	V	V	V	V	V	V	V
η_{inf}	[-]	0,930	0,931	0,933	0,934	0,934	0,933	0,934
Z_L	[-]	0,090	0,084	0,069	0,062	0,054	0,047	0,043
Z_p	[-]	0,016	0,000	0,000	0,000	0,000	0,000	0,000
Z_{12}	[—]	0,004	0,000	0,000	0,000	0,000	0,000	0,000
Z _{rozv}	[-]	0,001	0,001	0,001	0,001	0,002	0,002	0,002
Zt	[-]	0,010	0,009	0,008	0,007	0,007	0,007	0,005
$\Delta \eta_D$	[-]		0,001	0,001	0,001	0,001		
Z _{vl}	[-]	0,000	0,000	0,000	0,000	0,000	0,000	0,000
η_{tdi}	[-]	0,810	0,835	0,854	0,863	0,871	0,876	0,883
h	[kJ/kg]	47,37	42,61	41,68	42,58	43,17	38,52	38,52
P_{st}	[<i>kW</i>]	5894,55	5301,97	5186,01	5297,69	5371,86	4793,32	4793,32
<i>i</i> ₂	[kJ/kg]	3337,33	3294,72	3253,04	3210,46	3167,29	3337,33	3128,77
p_2	[bar]	71,27	60,61	51,66	43,74	36,81	71,27	31,42
t_2	[°C]	470,46	447,07	424,31	401,11	377,64	470,46	356,71
v_2	$[m^3/kg]$	0,045	0,051	0,058	0,067	0,077	0,045	0,087
<i>s</i> ₂	[kJ/kgK]	6,69	6,71	6,72	6,73	6,74	6,69	6,74
<i>x</i> ₂	[-]	1	1	1	1	1	1	1

Tabulka 4: Rozměry průtočné části stupeň 1-7

Číslo	stupně	8	9	10	11	12	13	14
'n	[kg/s]	118,32	118,32	118,32	118,32	118,32	118,32	118,32
i ₀	[kJ/kg]	3082,74	3035,91	2994,60	2952,75	2910,42	2867,18	2814,22
p_0	[bar]	25,88	21,10	17,51	14,40	11,71	9,40	7,08
t_0	[°C]	331,74	306,36	283,98	261,34	238,45	215,09	186,57
v_0	$[m^3/kg]$	0,10	0,12	0,14	0,16	0,19	0,23	0,29
<i>s</i> ₀	[kJ/kgK]	6,76	6,77	6,77	6,78	6,79	6,80	6,82
D_p	[<i>m</i>]	0,930	0,930	0,935	0,940	0,950	1,050	1,180
D_s	[<i>m</i>]	1,002	1,017	1,035	1,048	1,063	1,164	1,300
U	[m/s]	157,4	159,7	162,6	164,6	167,0	182,8	204,2
$(U/C_0)_p$	[—]	0,45	0,48	0,48	0,48	0,48	0,48	0,48
$(U/C_0)_S$	[-]	0,485	0,525	0,531	0,535	0,537	0,532	0,529
<i>C</i> ₀	[m/s]	324,63	304,34	305,98	307,61	310,89	343,61	386,15
<i>c</i> ₁	[m/s]	314,89	295,21	296,80	298,39	301,56	333,30	374,57
h_{iz}	[kJ/kg]	52,69	46,31	46,81	47,31	48,33	59,03	74,56
<i>i</i> _{1,<i>iz</i>}	[kJ/kg]	3030,05	2989,60	2947,79	2905,43	2862,10	2808,14	2739,66
Z ₀	[kJ/kg]	3,11	2,74	2,77	2,80	2,86	3,49	4,41
<i>i</i> ₁	[kJ/kg]	3033,16	2992,34	2950,55	2908,23	2864,95	2811,63	2744,07
α_1	[°]	13	13,1	13	14	15,6	16	16,5
L_t	[m]	0,0707	0,0856	0,0985	0,1060	0,1108	0,1118	0,1173
Lont	[m]	0,087	0,087	0,092	0,095	0,097	0,099	0,104
opt				,				
е Е	[–]	1,0	1,0	1,0	1,0	1,0	1,0	1,0
ε L_s	[–] [<i>mm</i>]	1,0 72	1,0 87	1,0 100	1,0 108	1,0 113	1,0 114	1,0 120
$\frac{\varepsilon}{L_s}$ $\frac{L_t/D_s}{L_t/D_s}$	[-] [<i>mm</i>] [-]	1,0 72 0,07	1,0 87 0,09	1,0 100 0,10	1,0 108 0,10	1,0 113 0,11	1,0 114 0,10	1,0 120 0,09
\mathcal{E} L_s L_t/D_s Typ	[-] [<i>mm</i>] [-] [-]	1,0 72 0,07 V	1,0 87 0,09 V	1,0 100 0,10 V	1,0 108 0,10 Z	1,0 113 0,11 Z	1,0 114 0,10 Z	1,0 120 0,09 Z
arepsilon $arepsilon$ ar	[-] [<i>mm</i>] [-] [-] [-]	1,0 72 0,07 V 0,934	1,0 87 0,09 V 0,933	1,0 100 0,10 V 0,931	1,0 108 0,10 Z 0,930	1,0 113 0,11 Z 0,930	1,0 114 0,10 Z 0,931	1,0 120 0,09 Z 0,932
ε L_s L_t/D_s Typ η_{inf} Z_L	[-] [<i>mm</i>] [-] [-] [-]	1,0 72 0,07 V 0,934 0,038	1,0 87 0,09 V 0,933 0,031	1,0 100 0,10 V 0,931 0,027	1,0 108 0,10 Z 0,930 0,025	1,0 113 0,11 Z 0,930 0,024	1,0 114 0,10 Z 0,931 0,024	1,0 120 0,09 Z 0,932 0,023
$ \begin{array}{c} \varepsilon \\ \hline L_s \\ \hline L_t/D_s \\ \hline Typ \\ \eta_{inf} \\ \hline Z_L \\ \hline Z_p \end{array} $	[-] [<i>mm</i>] [-] [-] [-] [-]	1,0 72 0,07 V 0,934 0,038 0,000	1,0 87 0,09 V 0,933 0,031 0,000	1,0 100 0,10 V 0,931 0,027 0,000	1,0 108 0,10 Z 0,930 0,025 0,000	1,0 113 0,11 Z 0,930 0,024 0,000	1,0 114 0,10 Z 0,931 0,024 0,000	1,0 120 0,09 Z 0,932 0,023 0,000
$ \begin{array}{c} \varepsilon \\ \hline L_s \\ \hline L_t/D_s \\ \hline Typ \\ \eta_{inf} \\ \hline Z_L \\ \hline Z_p \\ \hline Z_v \end{array} $	[-] [<i>mm</i>] [-] [-] [-] [-] [-]	1,0 72 0,07 V 0,934 0,038 0,000 0,000	1,0 87 0,09 V 0,933 0,031 0,000 0,000	1,0 100 0,10 V 0,931 0,027 0,000 0,000	1,0 108 0,10 Z 0,930 0,025 0,000 0,000	1,0 113 0,11 Z 0,930 0,024 0,000 0,000	1,0 114 0,10 Z 0,931 0,024 0,000 0,000	1,0 120 0,09 Z 0,932 0,023 0,000 0,000
	[-] [<i>mm</i>] [-] [-] [-] [-] [-] [-]	1,0 72 0,07 V 0,934 0,038 0,000 0,000 0,000	1,0 87 0,09 V 0,933 0,031 0,000 0,000 0,004	1,0 100 0,10 V 0,931 0,027 0,000 0,000 0,000	1,0 108 0,10 Z 0,930 0,025 0,000 0,000 0,000	1,0 113 0,11 Z 0,930 0,024 0,000 0,000 0,000	1,0 114 0,10 Z 0,931 0,024 0,000 0,000 0,000	1,0 120 0,09 Z 0,932 0,023 0,000 0,000 0,000
$ \begin{array}{c} \varepsilon \\ \hline L_s \\ \hline L_t/D_s \\ \hline Typ \\ \hline \eta_{inf} \\ \hline Z_L \\ \hline Z_p \\ \hline Z_{vozv} \\ \hline Z_t \end{array} $	[-] [<i>mm</i>] [-] [-] [-] [-] [-] [-] [-]	1,0 72 0,07 V 0,934 0,038 0,000 0,000 0,000 0,003 0,005	1,0 87 0,09 V 0,933 0,031 0,000 0,000 0,000 0,004 0,005	1,0 100 0,10 V 0,931 0,027 0,000 0,000 0,000 0,006 0,005	1,0 108 0,10 Z 0,930 0,025 0,000 0,000 0,000 0,006 0,004	1,0 113 0,11 Z 0,930 0,024 0,000 0,000 0,007 0,004	1,0 114 0,10 Z 0,931 0,024 0,000 0,000 0,000 0,006 0,005	1,0 120 0,09 Z 0,932 0,023 0,000 0,000 0,000 0,005 0,005
$ \begin{array}{c} \varepsilon \\ \hline L_s \\ \hline L_t/D_s \\ \hline Typ \\ \eta_{inf} \\ \hline Z_L \\ \hline Z_p \\ \hline Z_v \\ \hline Z_{rozv} \\ \hline Z_t \\ \Delta \eta_D \end{array} $	[-] [<i>mm</i>] [-] [-] [-] [-] [-] [-] [-] [-]	1,0 72 0,07 V 0,934 0,038 0,000 0,000 0,000 0,003 0,005	1,0 87 0,09 V 0,933 0,031 0,000 0,000 0,000 0,004 0,005	1,0 100 0,10 V 0,931 0,027 0,000 0,000 0,000 0,006 0,005	1,0 108 0,10 Z 0,930 0,025 0,000 0,000 0,000 0,006 0,004	1,0 113 0,11 Z 0,930 0,024 0,000 0,000 0,000 0,007 0,004	1,0 114 0,10 Z 0,931 0,024 0,000 0,000 0,000 0,006 0,005	1,0 120 0,09 Z 0,932 0,023 0,000 0,000 0,000 0,005 0,005
	[-] [<i>mm</i>] [-] [-] [-] [-] [-] [-] [-] [-] [-] [-	1,0 72 0,07 V 0,934 0,038 0,000 0,000 0,000 0,005 0,000	1,0 87 0,09 V 0,933 0,031 0,000 0,000 0,000 0,005 0,000	1,0 100 0,10 V 0,931 0,027 0,000 0,000 0,000 0,005	1,0 108 0,10 Z 0,930 0,025 0,000 0,000 0,000 0,004 0,000	1,0 113 0,11 Z 0,930 0,024 0,000 0,000 0,007 0,004 0,000	1,0 114 0,10 Z 0,931 0,024 0,000 0,000 0,005 0,000	1,0 120 0,09 Z 0,932 0,023 0,000 0,000 0,000 0,005 0,005 0,003
	[-] [mm] [-] [-] [-] [-] [-] [-] [-] [-] [-] [-	1,0 72 0,07 V 0,934 0,038 0,000 0,000 0,000 0,003 0,005 0,000 0,889	1,0 87 0,09 V 0,933 0,031 0,000 0,000 0,000 0,004 0,005 0,000 0,892	1,0 100 0,10 V 0,931 0,027 0,000 0,000 0,000 0,005 0,000 0,894	1,0 108 0,10 Z 0,930 0,025 0,000 0,000 0,006 0,004 0,000 0,895	1,0 113 0,11 Z 0,930 0,024 0,000 0,000 0,007 0,004 0,000 0,895	1,0 114 0,10 Z 0,931 0,024 0,000 0,000 0,000 0,005 0,000 0,897	1,0 120 0,09 Z 0,932 0,023 0,000 0,000 0,000 0,005 0,005 0,003 0,896
$ \begin{array}{c} \varepsilon \\ \hline \mathcal{E} \\ \hline \mathcal{L}_s \\ \hline \mathcal{L}_t / \mathcal{D}_s \\ \hline \mathcal{T} y p \\ \hline \eta_{inf} \\ \hline \mathcal{Z}_L \\ \hline \mathcal{Z}_p \\ \hline \mathcal{Z}_v \\ \hline \mathcal{Z}_{rozv} \\ \hline \mathcal{Z}_t \\ \hline \mathcal{\Delta} \eta_D \\ \hline \mathcal{Z}_{vl} \\ \hline \eta_{tdi} \\ \hline h \end{array} $	[-] [<i>mm</i>] [-] [-] [-] [-] [-] [-] [-] [-] [-] [-	1,0 72 0,07 V 0,934 0,038 0,000 0,000 0,000 0,003 0,005 0,000 0,889 46,83	1,0 87 0,09 V 0,933 0,031 0,000 0,000 0,000 0,004 0,005 0,000 0,892 41,32	1,0 100 0,10 V 0,931 0,027 0,000 0,000 0,006 0,005 0,000 0,000 0,894 41,85	1,0 108 0,10 Z 0,930 0,025 0,000 0,000 0,006 0,004 0,000 0,000 0,895 42,32	1,0 113 0,11 Z 0,930 0,024 0,000 0,000 0,007 0,004 0,000 0,895 43,24	1,0 114 0,10 Z 0,931 0,024 0,000 0,000 0,006 0,005 0,000 0,897 52,96	1,0 120 0,09 Z 0,932 0,023 0,000 0,000 0,000 0,005 0,005 0,003 0,896 66,84
$ \begin{array}{c} \varepsilon \\ \hline L_s \\ \hline L_s \\ \hline L_t/D_s \\ \hline Typ \\ \eta_{inf} \\ \hline Z_L \\ \hline Z_p \\ \hline Z_v \\ \hline Z_{rozv} \\ \hline Z_t \\ \hline \Delta\eta_D \\ \hline Z_{vl} \\ \hline \eta_{tdi} \\ \hline h \\ \hline P_{st} \end{array} $	[-] [<i>mm</i>] [-] [-] [-] [-] [-] [-] [-] [-] [<i>kJ/kg</i>] [<i>kW</i>]	1,0 72 0,07 V 0,934 0,038 0,000 0,000 0,000 0,003 0,005 0,000 0,889 46,83 5540,30	1,0 87 0,09 V 0,933 0,031 0,000 0,000 0,004 0,005 0,000 0,892 41,32 4888,42	1,0 100 0,10 V 0,931 0,027 0,000 0,000 0,006 0,005 0,005 0,000 0,894 41,85 4951,82	1,0 108 0,10 Z 0,930 0,025 0,000 0,000 0,000 0,006 0,004 0,000 0,895 42,32 5007,74	1,0 113 0,11 Z 0,930 0,024 0,000 0,000 0,007 0,004 0,000 0,895 43,24 5116,42	1,0 114 0,10 Z 0,931 0,024 0,000 0,000 0,000 0,005 0,000 0,000 0,897 52,96 6265,95	1,0 120 0,09 Z 0,932 0,023 0,000 0,000 0,000 0,005 0,005 0,005 0,003 0,896 66,84 7908,02
$ \begin{array}{c} \varepsilon \\ \hline \mathcal{E} \\ \hline \mathcal{L}_s \\ \hline \mathcal{L}_t / \mathcal{D}_s \\ \hline \mathcal{T} \mathbf{y} \mathbf{p} \\ \hline \eta_{inf} \\ \hline \mathcal{Z}_L \\ \hline \mathcal{Z}_p \\ \hline \mathcal{Z}_v \\ \hline \mathcal{Z}_{rozv} \\ \hline \mathcal{Z}_t \\ \hline \Delta \eta_D \\ \hline \mathcal{Z}_{vl} \\ \hline \eta_{tdi} \\ \hline h \\ \hline P_{st} \\ \hline \mathbf{i}_2 \\ \end{array} $	[-] [<i>mm</i>] [-] [-] [-] [-] [-] [-] [-] [-] [<i>kJ/kg</i>] [<i>kW</i>] [<i>kJ/kg</i>]	1,0 72 0,07 V 0,934 0,038 0,000 0,000 0,000 0,005 0,000 0,005 0,000 0,889 46,83 5540,30 3035,91	1,0 87 0,09 V 0,933 0,031 0,000 0,000 0,000 0,004 0,005 0,000 0,892 41,32 4888,42 2994,60	1,0 100 0,10 V 0,931 0,027 0,000 0,000 0,000 0,005 0,005 0,000 0,894 41,85 4951,82 2952,75	1,0 108 0,10 Z 0,930 0,025 0,000 0,000 0,000 0,004 0,000 0,895 42,32 5007,74 2910,42	1,0 113 0,11 Z 0,930 0,024 0,000 0,000 0,007 0,004 0,000 0,895 43,24 5116,42 2867,18	1,0 114 0,10 Z 0,931 0,024 0,000 0,000 0,000 0,005 0,000 0,005 0,000 0,897 52,96 6265,95 2814,22	1,0 120 0,09 Z 0,932 0,023 0,000 0,000 0,000 0,005 0,005 0,005 0,005 0,003 0,896 66,84 7908,02 2747,38
$ \begin{array}{c} \varepsilon \\ \hline L_s \\ \hline L_t/D_s \\ \hline Typ \\ \hline \eta_{inf} \\ \hline z_L \\ \hline z_p \\ \hline z_v \\ \hline z_{rozv} \\ \hline z_t \\ \hline \Delta \eta_D \\ \hline z_{vl} \\ \hline \eta_{tdi} \\ \hline h \\ \hline P_{st} \\ \hline i_2 \\ \hline p_2 \end{array} $	[-] [<i>mm</i>] [-] [-] [-] [-] [-] [-] [-] [-] [<i>kJ/kg</i>] [<i>kW</i>] [<i>kJ/kg</i>] [<i>kJ/kg</i>] [<i>bar</i>]	1,0 72 0,07 V 0,934 0,038 0,000 0,000 0,000 0,000 0,005 0,005 0,000 0,889 46,83 5540,30 3035,91 21,10	1,0 87 0,09 V 0,933 0,031 0,000 0,000 0,000 0,000 0,000 0,000 0,892 41,32 4888,42 2994,60 17,51	1,0 100 0,10 V 0,931 0,027 0,000 0,000 0,000 0,000 0,005 0,005 0,000 0,894 41,85 4951,82 2952,75 14,40	1,0 108 0,10 Z 0,930 0,025 0,000 0,000 0,000 0,000 0,004 0,004 0,000 0,895 42,32 5007,74 2910,42 11,71	1,0 113 0,11 Z 0,930 0,024 0,000 0,000 0,000 0,007 0,004 0,000 0,895 43,24 5116,42 2867,18 9,40	1,0 114 0,10 Z 0,931 0,024 0,000 0,000 0,000 0,005 0,005 0,000 0,897 52,96 6265,95 2814,22 7,08	1,0 120 0,09 Z 0,932 0,023 0,000 0,000 0,000 0,005 0,005 0,005 0,005 0,003 0,896 66,84 7908,02 2747,38 4,82
$ \begin{array}{c} \varepsilon \\ \hline L_s \\ \hline L_t/D_s \\ \hline Typ \\ \eta_{inf} \\ \hline Z_L \\ \hline Z_p \\ \hline Z_v \\ \hline Z_{rozv} \\ \hline Z_t \\ \hline \Delta \eta_D \\ \hline Z_{vl} \\ \hline \eta_{tdi} \\ \hline \eta_{tdi} \\ \hline h \\ \hline P_{st} \\ \hline i_2 \\ \hline p_2 \\ \hline t_2 \end{array} $	[-] [<i>mm</i>] [-] [-] [-] [-] [-] [-] [-] [-] [<i>kJ/kg</i>] [<i>kJ/kg</i>] [<i>kJ/kg</i>] [<i>kJ/kg</i>] [<i>bar</i>] [° <i>C</i>]	1,0 72 0,07 V 0,934 0,038 0,000 0,000 0,000 0,003 0,005 0,000 0,889 46,83 5540,30 3035,91 21,10 306,36	1,0 87 0,09 V 0,933 0,031 0,000 0,000 0,004 0,005 0,000 0,892 41,32 4888,42 2994,60 17,51 283,98	1,0 100 0,10 V 0,931 0,027 0,000 0,000 0,006 0,005 0,000 0,894 41,85 4951,82 2952,75 14,40 261,34	1,0 108 0,10 Z 0,930 0,025 0,000 0,000 0,000 0,000 0,004 0,000 0,895 42,32 5007,74 2910,42 11,71 238,45	1,0 113 0,11 Z 0,930 0,024 0,000 0,000 0,007 0,004 0,000 0,895 43,24 5116,42 2867,18 9,40 215,09	1,0 114 0,10 Z 0,931 0,024 0,000 0,000 0,000 0,005 0,000 0,897 52,96 6265,95 2814,22 7,08 186,57	1,0 120 0,09 Z 0,932 0,023 0,000 0,000 0,005 0,005 0,005 0,005 0,005 0,005 2,003 0,896 66,84 7908,02 2747,38 4,82 150,83
$ \begin{array}{c} \varepsilon \\ \hline L_s \\ \hline L_s \\ \hline L_t/D_s \\ \hline Typ \\ \hline \eta_{inf} \\ \hline Z_L \\ \hline Z_p \\ \hline Z_v \\ \hline Z_{rozv} \\ \hline Z_t \\ \hline \Delta \eta_D \\ \hline Z_{vl} \\ \hline \eta_{tdi} \\ \hline \eta_{tdi} \\ \hline h \\ \hline P_{st} \\ \hline i_2 \\ \hline p_2 \\ \hline t_2 \\ \hline v_2 \\ \end{array} $	$\begin{bmatrix} - \\ [mm] \\ \begin{bmatrix} - \\ \end{bmatrix} \\ \begin{bmatrix} kJ/kg \\ \end{bmatrix} \\ \begin{bmatrix} kJ/kg \\ \end{bmatrix} \\ \begin{bmatrix} kJ/kg \\ \end{bmatrix} \\ \begin{bmatrix} bar \\ \end{bmatrix} \\ \begin{bmatrix} bar \\ \end{bmatrix} \\ \begin{bmatrix} o^{C} \\ \end{bmatrix} \\ \begin{bmatrix} m^{3}/kg \end{bmatrix}$	1,0 72 0,07 V 0,934 0,038 0,000 0,000 0,000 0,003 0,005 0,005 0,000 0,889 46,83 5540,30 3035,91 21,10 306,36 0,120	1,0 87 0,09 V 0,933 0,031 0,000 0,000 0,004 0,005 0,000 0,892 41,32 4888,42 2994,60 17,51 283,98 0,139	1,0 100 0,10 V 0,931 0,027 0,000 0,000 0,006 0,005 0,005 0,000 0,894 41,85 4951,82 2952,75 14,40 261,34 0,163	1,0 108 0,10 Z 0,930 0,025 0,000 0,000 0,000 0,006 0,004 0,000 0,895 42,32 5007,74 2910,42 11,71 238,45 0,192	1,0 113 0,11 Z 0,930 0,024 0,000 0,000 0,007 0,004 0,000 0,895 43,24 5116,42 2867,18 9,40 215,09 0,229	1,0 114 0,10 Z 0,931 0,024 0,000 0,000 0,000 0,000 0,005 0,000 0,897 52,96 6265,95 2814,22 7,08 186,57 0,287	1,0 120 0,09 Z 0,932 0,023 0,000 0,000 0,005 0,005 0,005 0,005 0,005 2,003 0,896 66,84 7908,02 2747,38 4,82 150,83 0,388
$ \begin{array}{c} \varepsilon \\ \hline \mathcal{E} \\ \hline L_s \\ \hline L_t/D_s \\ \hline Typ \\ \eta_{inf} \\ \hline \mathcal{Z}_L \\ \hline \mathcal{Z}_p \\ \hline \mathcal{Z}_v \\ \hline \mathcal{Z}_r \\ \hline \mathcal{Z}_v \\ \hline \mathcal{Z}_{tozv} \\ \hline \mathcal{Z}_{tozv$	[-] [<i>mm</i>] [-] [-] [-] [-] [-] [-] [-] [-] [<i>kJ/kg</i>] [<i>kW</i>] [<i>kJ/kg</i>] [<i>kJ/kg</i>] [<i>bar</i>] [<i>bar</i>] [<i>bar</i>] [<i>bar</i>] [<i>bar</i>]	1,0 72 0,07 V 0,934 0,038 0,000 0,000 0,000 0,003 0,005 0,005 0,000 0,889 46,83 5540,30 3035,91 21,10 306,36 0,120 6,77	1,0 87 0,09 V 0,933 0,031 0,000 0,000 0,000 0,004 0,005 0,000 0,892 41,32 4888,42 2994,60 17,51 283,98 0,139 6,77	1,0 100 0,10 V 0,931 0,027 0,000 0,000 0,006 0,005 0,005 0,000 0,000 0,894 41,85 4951,82 2952,75 14,40 261,34 0,163 6,78	1,0 108 0,10 Z 0,930 0,025 0,000 0,000 0,006 0,004 0,000 0,000 0,895 42,32 5007,74 2910,42 11,71 238,45 0,192 6,79	1,0 113 0,11 Z 0,930 0,024 0,000 0,000 0,007 0,004 0,000 0,895 43,24 5116,42 2867,18 9,40 215,09 0,229 6,80	1,0 114 0,10 Z 0,931 0,024 0,000 0,000 0,000 0,005 0,000 0,005 0,000 0,897 52,96 6265,95 2814,22 7,08 186,57 0,287 6,82	1,0 120 0,09 Z 0,932 0,003 0,000 0,005 0,005 0,005 0,005 0,005 2,003 0,896 66,84 7908,02 2747,38 4,82 150,83 0,388 6,84

Tabulka 5: Rozměry průtočné části stupeň 8-14

Číslo	stupně	15	16	17	18	19
ṁ	[kg/s]	113,11	113,11	97,88	97,88	97,88
i ₀	[kJ/kg]	2747,38	2675,40	2602,24	2512,99	2398,43
p_0	[bar]	4,82	3,06	1,85	0,95	0,36
t_0	[°C]	150,83	134,26	117,77	98,14	73,12
v_0	$[m^3/kg]$	0,39	0,58	0,91	1,65	4,00
<i>s</i> ₀	[kJ/kgK]	6,84	6,86	6,90	6,95	7,04
D_p	[<i>m</i>]	1,240	1,300	1,360	1,500	1,500
D_s	[<i>m</i>]	1,391	1,510	1,614	1,901	2,157
U	[m/s]	218,5	237,2	253,5	298,6	338,8
$(U/C_0)_p$	[—]	0,48	0,49	0,46	0,44	0,43
$(U/C_0)_S$	[-]	0,538	0,569	0,545	0,554	0,624
<i>C</i> ₀	[m/s]	405,79	417,10	464,91	539,11	542,90
<i>c</i> ₁	[m/s]	393,62	404,59	450,97	522,94	526,61
h _{iz}	[kJ/kg]	82,33	86,99	108,07	145,32	147,37
i _{1,iz}	[kJ/kg]	2665,05	2588,42	2494,17	2367,67	2251,06
Z ₀	[kJ/kg]	4,87	5,14	6,39	8,59	8,71
<i>i</i> ₁	[kJ/kg]	2669,92	2593,56	2500,55	2376,26	2259,77
α ₁	[°]	16	16	17,6	20,1	29,8
L_t	[<i>m</i>]	0,1533	0,2151	0,2586	0,4012	0,6560
Lopt	[<i>m</i>]	0,116	0,128	0,150	0,185	0,196
Е	[—]	1,0	1,0	1,0	1,0	1,0
L _s	[<i>mm</i>]	151	210	254	401	657
L_t/D_s	[—]	0,11	0,14	0,16	0,21	0,30
Тур	[-]	Z	Z	Z	Z	Z
η_{inf}	[—]	0,929	0,917	0,927	0,924	0,877
Z_L	[-]	0,018	0,013	0,011	0,007	0,004
Z_p	[-]	0,000	0,000	0,000	0,000	0,000
Z_v	[-]	0,000	0,000	0,000	0,000	0,000
Z _{rozv}	[-]	0,007	0,012	0,015	0,027	0,056
Zt	[-]	0,004	0,004	0,003	0,002	0,002
$\Delta \eta_D$	[-]					
Z _{vl}	[-]	0,03	0,048	0,073	0,100	0,123
η_{tdi}	[-]	0,874	0,841	0,826	0,788	0,692
h	[kJ/kg]	71,98	73,17	89,24	114,56	102,05
P_{st}	[kW]	8141,67	8276,11	8734,80	11212,83	9988,15
<i>i</i> ₂	[kJ/kg]	2675,40	2602,24	2512,99	2398,43	2296,38
p_2	[bar]	3,06	1,85	0,95	0,36	0,12
t_2	[°C]	134,26	117,77	98,14	73,12	49,32
v_2	$[m^3/kg]$	0,580	0,909	1,654	4,001	10,888
<i>S</i> ₂	[kJ/kgK]	6,86	6,90	6,95	7,04	7,18
<i>x</i> ₂	[-]	0,977	0,955	0,929	0,900	0,877

Tabulka 6: Rozměry průtočné části stupeň 15-19

4.3 Lopatkový plán

Schéma lopatkového plánu umožňuje prvotní představu o geometrickém tvaru průtočné části. Z plánu je patrné, že první regulační stupeň je osazen na vyšším patním průměru. Se vzrůstajícím měrným objemem se musí také zvětšovat průřez průtočného kanálu.

Obrázek 7: Lopatkový plán průtočné části

4.4 Výpočet rychlostních trojúhelníků

Pomocí výpočtu rychlostních trojúhelníků je možné získat velikosti absolutních, relativních a obvodových rychlostí na vstupu a výstupu ze stupně. Pro prvních deset stupňů byly rychlostní trojúhelníky počítány na středním průměru. Lopatky 11- 19 jsou zkroucené. Rychlostní poměry jsou tak počítány na patním průměru.

Obrázek 8: Rychlostní trojúhelníky turbínového stupě

Reakce na středním průměru lopatkování

$$R_{s} = 1 - \left(\frac{D_{p}}{D_{s}}\right)^{2 \cdot \varphi^{2} \cdot \cos^{2} \alpha_{1}} \cdot \left(1 - R_{p}\right) = [-]$$
(4.33)

Stupeň reakce na patním průměru byl pro všechny stupně zvolen jako $R_p = 0.03$.

Obvodová rychlost na středním průměru lopatkování, platí pro lopatky 1 – 10.

$$u = \pi \cdot D_s \cdot 50 = [m/s] \tag{4.34}$$

Lopatky 11 – 19 jsou zkroucené. Obvodová složka rychlosti je tak určena na patním průměru lopatkování.

$$u = \pi \cdot D_p \cdot 50 = [m/s] \tag{4.35}$$

Absolutní rychlost na výstupu z rozváděcích lopatek

$$c_1 = \varphi \cdot \sqrt{2000 \cdot (1 - R_s) \cdot h_{iz}} = [m/s]$$
 (4.36)

Obvodová složka rychlosti na výstupu z rozváděcích lopatek

$$c_{1u} = c_1 \cdot \cos \alpha_1 = [m/s]$$
 (4.37)

Axiální složka absolutní rychlosti na výstupu z rozváděcích lopatek

$$c_{1a} = c_1 \cdot \sin \alpha_1 = [m/s]$$
 (4.38)

Obvodová složka relativní rychlosti

$$w_{1u} = c_{1u} - u = [m/s] \tag{4.39}$$

Axiální složka relativní rychlosti je rovna axiální složce absolutní rychlosti

$$w_{1a} = c_1 \cdot \sin \alpha_1 = [m/s] \tag{4.40}$$

Relativní rychlost na výstupu z rozváděcích lopatek

$$w_1 = \sqrt{w_{1u}^2 + w_{1a}^2} = [m/s] \tag{4.41}$$

Úhel relativní rychlosti

$$\sin \beta_1 = \frac{w_{1a}}{w_1} \to \beta_1 = \arcsin \frac{w_{1a}}{w_1} = [^\circ]$$
 (4.42)

Pro výpočet rychlostních trojúhelníků je nejprve nutné pro každý stupeň zvolit úhel relativní rychlosti na výstupu z oběžných lopatek β_2

Rychlostní ztrátový součinitel pro oběžné lopatky

$$\psi = -1,0714 \cdot 10^{-5} \cdot (\beta_1 + \beta_2)^2 + 0,002964 \cdot (\beta_1 + \beta_2) + 0,7507$$
(4.43)
$$\psi = [-]$$

Relativní rychlost na výstupu z oběžných lopatek

$$w_2 = \psi \cdot \sqrt{w_1^2 + 2 \cdot R_s \cdot h_{iz}} = [m/s]$$
(4.44)

Obvodová složka relativní rychlosti

$$w_{2u} = w_2 \cdot \cos \beta_2 = [m/s]$$
 (4.45)

Axiální složka relativní rychlosti

$$w_{2a} = w_2 \cdot \sin \beta_2 = [m/s] \tag{4.46}$$

Obvodová složka absolutní rychlosti

$$c_{2u} = w_{2u} - u = [m/s] \tag{4.47}$$

Axiální složka absolutní rychlosti je rovna axiální složce relativní rychlosti

$$c_{2a} = w_{2a} = [m/s] \tag{4.48}$$

Absolutní rychlost na výstupu z oběžných lopatek

$$c_2 = \sqrt{c_{2u}^2 + c_{2a}^2} = [m/s] \tag{4.49}$$

Úhel absolutní rychlosti

$$\cos \alpha_2 = \frac{c_{2u}}{c_2} \rightarrow \alpha_2 = \arccos \frac{c_{2u}}{c_2} = [^\circ]$$
(4.50)

Číslo s	stupně	1	2	3	4	5	6	7
D_p	[m]	0,980	0,915	0,915	0,920	0,922	0,925	0,925
D_s	[<i>m</i>]	1,010	0,947	0,954	0,964	0,972	0,982	0,988
h_{iz}	[kJ/kg]	58,51	51,01	48,81	49,35	49,56	43,96	52,13
α_1	[°]	14	14	13,5	13,5	13,5	14	13
R_p	[-]	0,03	0,03	0,03	0,03	0,03	0,03	0,03
R _S	[-]	0,080	0,087	0,099	0,107	0,117	0,128	0,138
U	[m/s]	158,65	148,75	149,85	151,42	152,68	154,25	155,19
<i>C</i> ₁	[m/s]	318,19	295,98	287,62	287,91	286,98	268,67	290,83
<i>c</i> _{1<i>a</i>}	[m/s]	76,98	71,60	67,14	67,21	66,99	65,00	65,42
W _{1a}	[m/s]	76,98	71,60	67,14	67,21	66,99	65,00	65,42
<i>C</i> _{1<i>u</i>}	[m/s]	308,74	287,19	279,67	279,96	279,05	260,69	283,38
$W_{1\mu}$	[m/s]	150,09	138,43	129,82	128,53	126,37	106,44	128,19
<i>w</i> ₁	[m/s]	168,68	155,86	146,15	145,04	143,03	124,71	143,92
β_1	[°]	27,15	27,35	27,35	27,61	27,93	31,41	27,04
β_2	[°]	24	24	24	24	24	24	24
ψ	[-]	0,874	0,875	0,875	0,875	0,876	0,882	0,874
<i>w</i> ₂	[m/s]	170,13	159,36	154,16	155,65	156,79	144,30	163,69
W_{2a}	[m/s]	69,20	64,82	62,70	63,31	63,77	58,69	66,58
C _{2a}	[m/s]	69,20	64,82	62,70	63,31	63,77	58,69	66,58
$W_{2\mu}$	[m/s]	155,42	145,59	140,84	142,19	143,23	131,83	149,53
C_{2u}	[m/s]	-3,23	-3,17	-9,02	-9,23	-9,45	-22,43	-5,66
<i>C</i> ₂	[m/s]	69,27	64,90	63,35	63,98	64,47	62,83	66,82
α ₂	[0]	92.67	92.80	98 18	98 30	98 43	110 91	94 86
00 Z	L J	52,07	52,00	50,10	50,50	50,45	110,51	54,00
Číslo s	stupně	8	9	10	11	12	13	14
Číslo s D _p	stupně [m]	8 0,930	9 0,930	10 0,935	11 0,940	12 0,950	13 1,050	14 1,180
Číslo s D _p D _s	stupně [m] [m]	8 0,930 1,002	9 0,930 1,017	10 0,935 1,035	11 0,940 1,048	12 0,950 1,063	110,51 13 1,050 1,164	14 1,180 1,300
$ \begin{array}{c} $	[m] [m] [kJ/kg]	8 0,930 1,002 52,69	9 0,930 1,017 46,31	10 0,935 1,035 46,81	11 0,940 1,048 47,31	12 0,950 1,063 48,33	13 1,050 1,164 59,03	14 1,180 1,300 74,56
$ \begin{array}{c} \overline{C} islos \\ D_p \\ D_s \\ \overline{h_{iz}} \\ \alpha_1 \end{array} $	[m] [m] [m] [kJ/kg] [°]	8 0,930 1,002 52,69 13	9 0,930 1,017 46,31 13,1	10 0,935 1,035 46,81 13	11 0,940 1,048 47,31 14	12 0,950 1,063 48,33 15,6	13 1,050 1,164 59,03 16	14 1,180 1,300 74,56 16,5
$ \begin{array}{c} \overset{\scriptstyle \text{C}islos}{}\\ \overset{\scriptstyle D_p}{}\\ \overset{\scriptstyle D_s}{}\\ \overset{\scriptstyle h_{iz}}{}\\ \overset{\scriptstyle \alpha_1}{}\\ \overset{\scriptstyle R_p}{}\end{array} $	[m] [m] [m] [kJ/kg] [°] [-]	8 0,930 1,002 52,69 13 0,03	9 0,930 1,017 46,31 13,1 0,03	10 0,935 1,035 46,81 13 0,03	30,30 11 0,940 1,048 47,31 14 0,03	30,43 12 0,950 1,063 48,33 15,6 0,03	110,051 13 1,050 1,164 59,03 16 0,03	14 1,180 1,300 74,56 16,5 0,03
$ \begin{array}{r} \begin{array}{c} \overline{C} islos \\ \overline{D}_{p} \\ \overline{D}_{s} \\ \overline{h}_{iz} \\ \overline{\alpha}_{1} \\ \overline{R}_{p} \\ \overline{R}_{s} \end{array} $	[m] [m] [m] [kJ/kg] [°] [-] [-]	8 0,930 1,002 52,69 13 0,03 0,151	9 0,930 1,017 46,31 13,1 0,03 0,173	10 0,935 1,035 46,81 13 0,03 0,191	30,30 11 0,940 1,048 47,31 14 0,03 0,200	30,43 12 0,950 1,063 48,33 15,6 0,03 0,203	110,91 13 1,050 1,164 59,03 16 0,03 0,189	14 1,180 1,300 74,56 16,5 0,03 0,180
$\begin{array}{c} {} {} {} {} {} {} {} {} {} {} \atop {} \atop {} \atop \atop }{} {} \atop {} \atop \atop }{} {} {} {} {} {} {} {} {} \atop \atop }{} {} {} {} {} {} {} {} {} \atop \atop }{} {} {} {} {} {} \atop \atop }{} {} {} {} {} \atop \atop }{} {} {} {} \atop \atop }{} {} \atop }{} {} {} {} {} {} {} {} \atop }{} {} {} {} {} {} \atop }{} {} \atop }{} {} {} {} \atop }{} {} \atop }{} {} {} \atop }{} {} {} {} \atop }{} {} {} \atop }{} {} {} \atop }{} {} \atop }{} {} \atop }{} {} {} \atop }{} \atop } {} \atop}{} {} \atop }{} \atop } {} \atop}{} {} \atop}{} \atop$	[m] [m] [m] [kJ/kg] [°] [-] [-] [m/s]	8 0,930 1,002 52,69 13 0,03 0,151 157,39	9 0,930 1,017 46,31 13,1 0,03 0,173 159,75	10 0,935 1,035 46,81 13 0,03 0,191 146,87	30,30 11 0,940 1,048 47,31 14 0,03 0,200 147,65	30,43 12 0,950 1,063 48,33 15,6 0,03 0,203 149,23	110,91 13 1,050 1,164 59,03 16 0,03 0,189 164,93	14 1,180 1,300 74,56 16,5 0,03 0,180 185,35
$\begin{array}{c} \hline C \\ \tilde{C} \\ \tilde{C} \\ D_p \\ D_s \\ h_{iz} \\ \alpha_1 \\ R_p \\ R_s \\ U \\ C_1 \end{array}$	[m] [m] [kJ/kg] [°] [-] [-] [m/s] [m/s]	8 0,930 1,002 52,69 13 0,03 0,151 157,39 290,15	9 0,930 1,017 46,31 13,1 0,03 0,173 159,75 268,44	30,13 10 0,935 1,035 46,81 13 0,03 0,191 146,87 266,95	30,30 11 0,940 1,048 47,31 14 0,03 0,200 147,65 266,88	30,43 12 0,950 1,063 48,33 15,6 0,03 0,203 149,23 269,25	110,91 13 1,050 1,164 59,03 16 0,03 0,189 164,93 300,13	14 1,180 1,300 74,56 16,5 0,03 0,180 185,35 339,26
$\begin{array}{c} \overline{C} islos \\ \overline{D}_p \\ \overline{D}_s \\ \overline{h}_{iz} \\ \overline{\alpha}_1 \\ \overline{R}_p \\ \overline{R}_s \\ \overline{U} \\ \overline{C}_1 \\ \overline{C}_{1a} \end{array}$	[m] [m] [k]/kg] [°] [-] [-] [m/s] [m/s] [m/s]	8 0,930 1,002 52,69 13 0,03 0,151 157,39 290,15 65,27	9 0,930 1,017 46,31 13,1 0,03 0,173 159,75 268,44 60,84	30,13 10 0,935 1,035 46,81 13 0,03 0,191 146,87 266,95 60,05	30,30 11 0,940 1,048 47,31 14 0,03 0,200 147,65 266,88 64,57	30,43 12 0,950 1,063 48,33 15,6 0,03 0,203 149,23 269,25 72,41	110,91 13 1,050 1,164 59,03 16 0,03 0,189 164,93 300,13 82,73	14 1,180 1,300 74,56 16,5 0,03 0,180 185,35 339,26 96,36
$\begin{array}{c} \overline{C} islos \\ \overline{C} views \\ \overline{D}_p \\ \overline{D}_s \\ \overline{D}_s \\ \overline{A}_1 \\ \overline{A}_1 \\ \overline{R}_p \\ \overline{R}_s \\ \overline{U} \\ \overline{C}_1 \\ \overline{C}_{1a} \\ \overline{W}_{1a} \end{array}$	[m] [m] [kJ/kg] [°] [-] [-] [m/s] [m/s] [m/s] [m/s] [m/s]	8 0,930 1,002 52,69 13 0,03 0,151 157,39 290,15 65,27 65,27	9 0,930 1,017 46,31 13,1 0,03 0,173 159,75 268,44 60,84 60,84	30,10 10 0,935 1,035 46,81 13 0,03 0,191 146,87 266,95 60,05	36,30 11 0,940 1,048 47,31 14 0,03 0,200 147,65 266,88 64,57 64,57	30,43 12 0,950 1,063 48,33 15,6 0,03 0,203 149,23 269,25 72,41 72,41	110,91 13 1,050 1,164 59,03 16 0,03 0,189 164,93 300,13 82,73 82,73	14 1,180 1,300 74,56 16,5 0,03 0,180 185,35 339,26 96,36 96,36
$\begin{array}{c} {} {} {} {} {} {} {} {} {} \atop \atop } {} {} \atop \atop } {} \atop \atop } \atop } {} {} {} \atop } {} \atop } {} {} \atop } {} \atop \atop } {} \atop \atop } {} \atop \atop } {} \atop \atop } \atop \atop } \atop \atop } \atop \atop } \atop } \atop } \atop \atop \atop } \atop \atop \atop } \atop \atop \atop \atop \atop } \atop \atop$	[m] [m] [m] [k]/kg] [°] [-] [-] [m/s] [m/s] [m/s] [m/s] [m/s] [m/s] [m/s] [m/s]	8 0,930 1,002 52,69 13 0,03 0,151 157,39 290,15 65,27 65,27 282,71	9 0,930 1,017 46,31 13,1 0,03 0,173 159,75 268,44 60,84 60,84 261,46	30,10 10 0,935 1,035 46,81 13 0,03 0,191 146,87 266,95 60,05 60,05 260,11	30,30 11 0,940 1,048 47,31 14 0,03 0,200 147,65 266,88 64,57 64,57 258,96	12 0,950 1,063 48,33 15,6 0,03 0,203 149,23 269,25 72,41 72,41 259,33	110,51 13 1,050 1,164 59,03 16 0,03 0,189 164,93 300,13 82,73 82,73 288,50	14 1,180 1,300 74,56 16,5 0,03 0,180 185,35 339,26 96,36 96,36 325,29
$\begin{array}{c} \hline C_{1}\\ \hline W_{1}\\ \hline W_{1}\\ \hline W_{1}\\ \hline W_{1}\\ \hline \end{array}$	[m] [m] [m] [kJ/kg] [°] [-] [-] [m/s] [m/s] [m/s] [m/s] [m/s] [m/s] [m/s]	8 0,930 1,002 52,69 13 0,03 0,151 157,39 290,15 65,27 65,27 282,71 125,32	9 0,930 1,017 46,31 13,1 0,03 0,173 159,75 268,44 60,84 60,84 261,46 101,71	30,13 10 0,935 1,035 46,81 13 0,03 0,191 146,87 266,95 60,05 60,05 260,11 113,24	30,30 11 0,940 1,048 47,31 14 0,03 0,200 147,65 266,88 64,57 64,57 258,96 111,30	30,43 12 0,950 1,063 48,33 15,6 0,03 0,203 149,23 269,25 72,41 72,41 259,33 110,11	110,51 13 1,050 1,164 59,03 16 0,03 0,189 164,93 300,13 82,73 288,50 123,57	14 1,180 1,300 74,56 16,5 0,03 0,180 185,35 339,26 96,36 96,36 325,29 139,94
$\begin{array}{c} {} {} {} {} {} {} {} {} {} \atop \atop } {} \atop } {} {} \atop } {} \atop } {} \atop } {} \atop } {} \atop } {} \atop } {} \atop } {} \atop } {} \atop } {} \atop } {} \atop } {} \atop } \atop } \atop $	[m] [m] [m] [k]/kg] [°] [-] [-] [m/s]	8 0,930 1,002 52,69 13 0,03 0,151 157,39 290,15 65,27 65,27 282,71 125,32 141,30	9 9 0,930 1,017 46,31 13,1 0,03 0,173 159,75 268,44 60,84 60,84 261,46 101,71 118,52	30,18 10 0,935 1,035 46,81 13 0,03 0,191 146,87 266,95 60,05 260,11 113,24 128,17	30,30 11 0,940 1,048 47,31 14 0,03 0,200 147,65 266,88 64,57 64,57 258,96 111,30 128,67	30,43 12 0,950 1,063 48,33 15,6 0,03 0,203 149,23 269,25 72,41 72,41 259,33 110,11 131,78	110,51 13 1,050 1,164 59,03 16 0,03 0,189 164,93 300,13 82,73 288,50 123,57 148,70	14 1,180 1,300 74,56 16,5 0,03 0,180 185,35 339,26 96,36 925,29 139,94 169,90
$\begin{array}{c} {} {} {} {} {} {} {} {} {} \atop \atop } {} {} \atop } {} {} \atop }{} {} \atop }{} \atop }{} \atop }{} \atop$	[m] [m] [m] [m] [k]/kg] [°] [-] [-] [m/s]	8 0,930 1,002 52,69 13 0,03 0,151 157,39 290,15 65,27 65,27 282,71 125,32 141,30 27,51	9 9 0,930 1,017 46,31 13,1 0,03 0,173 159,75 268,44 60,84 261,46 101,71 118,52 30,89	30,18 10 0,935 1,035 46,81 13 0,03 0,191 146,87 266,95 60,05 260,11 113,24 128,17 27,94	30,30 11 0,940 1,048 47,31 14 0,03 0,200 147,65 266,88 64,57 258,96 111,30 128,67 30,12	Jo, 43 12 0,950 1,063 48,33 15,6 0,03 0,203 149,23 269,25 72,41 72,41 259,33 110,11 131,78 33,33	110,51 13 1,050 1,164 59,03 16 0,03 0,189 164,93 300,13 82,73 288,50 123,57 148,70 33,80	14 1,180 1,300 74,56 16,5 0,03 0,180 185,35 339,26 96,36 325,29 139,94 169,90 34,55
$\begin{array}{c} & \tilde{C} \hat{c} \hat{s} \hat{l} \hat{o} \hat{s} \\ \hline & \tilde{C} \hat{b} \hat{l} \hat{s} \\ \hline & D_p \\ \hline & D_s \\ \hline & D_s \\ \hline & D_s \\ \hline & D_s \\ \hline & \Omega_s \\ \hline & \Omega_s \\ \hline & \Omega_1 \\ \hline & R_p \\ \hline & R_p \\ \hline & R_p \\ \hline & R_p \\ \hline & R_s \\ \hline & U \\ \hline & C_1 \\ \hline$	[n] [m] [m] [m] [k]/kg] [°] [-] [-] [m/s] [m] [°]	8 0,930 1,002 52,69 13 0,03 0,151 157,39 290,15 65,27 65,27 282,71 125,32 141,30 27,51 24	9 9 0,930 1,017 46,31 13,1 0,03 0,173 159,75 268,44 60,84 261,46 101,71 118,52 30,89 24	30,18 10 0,935 1,035 46,81 13 0,03 0,191 146,87 266,95 60,05 260,11 113,24 128,17 27,94 24	30,30 11 0,940 1,048 47,31 14 0,03 0,200 147,65 266,88 64,57 258,96 111,30 128,67 30,12 24	12 0,950 1,063 48,33 15,6 0,03 0,203 149,23 269,25 72,41 259,33 110,11 131,78 33,33 24	110,51 13 1,050 1,164 59,03 16 0,03 0,189 164,93 300,13 82,73 82,73 288,50 123,57 148,70 33,80 24	14 1,180 1,300 74,56 16,5 0,03 0,180 185,35 339,26 96,36 96,36 325,29 139,94 169,90 34,55 24
$\begin{array}{c} {} {} {} {} {} {} {} {} {} \atop \atop}{} {} {} \atop}{} {} \atop}{} \atop \atop}{} \atop \atop}{} \atop$	[m] [m] [m] [k]/kg] [°] [-] [m/s] [m] [n]	8 0,930 1,002 52,69 13 0,03 0,151 157,39 290,15 65,27 65,27 282,71 125,32 141,30 27,51 24 0,875	9 9 0,930 1,017 46,31 13,1 0,03 0,173 159,75 268,44 60,84 60,84 261,46 101,71 118,52 30,89 24 0,881	10 0,935 1,035 46,81 13 0,03 0,191 146,87 266,95 60,05 260,11 113,24 128,17 27,94 24 0,876	30,30 11 0,940 1,048 47,31 14 0,03 0,200 147,65 266,88 64,57 64,57 258,96 111,30 128,67 30,12 24 0,880	30,43 12 0,950 1,063 48,33 15,6 0,03 0,203 149,23 269,25 72,41 72,41 131,78 33,33 24 0,885	110,051 13 1,050 1,164 59,03 16 0,03 0,189 164,93 300,13 82,73 288,50 123,57 148,70 33,80 24 0,886	14 1,180 1,300 74,56 16,5 0,03 0,180 185,35 339,26 96,36 96,36 325,29 139,94 169,90 34,55 24 0,888
$\begin{array}{c} {} {} {} {} {} {} {} {} {} \atop \atop } {} {} {} \atop \atop } {} \atop \atop }{} {} \atop }{} \atop }{} \atop }{} \atop$	[n] [m] [m] [k]/kg] [°] [-] [m/s]	8 0,930 1,002 52,69 13 0,03 0,151 157,39 290,15 65,27 65,27 282,71 125,32 141,30 27,51 24 0,875 165,73	9 9 0,930 1,017 46,31 13,1 0,03 0,173 159,75 268,44 60,84 60,84 261,46 101,71 118,52 30,89 24 0,881 152,82	30,10 10 0,935 1,035 46,81 13 0,03 0,191 146,87 266,95 60,05 260,11 113,24 128,17 27,94 24 0,876 162,22	30,30 11 0,940 1,048 47,31 14 0,03 0,200 147,65 266,88 64,57 64,57 258,96 111,30 128,67 30,12 24 0,880 165,71	12 0,950 1,063 48,33 15,6 0,03 0,203 149,23 269,25 72,41 72,41 131,78 33,33 24 0,885 170,24	110,91 13 1,050 1,164 59,03 16 0,03 0,189 164,93 300,13 82,73 288,50 123,57 148,70 33,80 24 0,886 186,84	14 1,180 1,300 74,56 16,5 0,03 0,180 185,35 339,26 96,36 325,29 139,94 169,90 34,55 24 0,888 209,37
$\begin{array}{c} {} {} {} {} {} {} {} {} {} \atop \atop }{} {} {} {} \atop \atop }{} \atop \atop }{} {} \atop }{} {} \atop }{} \atop }{} \atop }{} \atop }{ }{ }{ }{ }{ }{ \atop }{} \atop }{ }{} \atop }{} \atop }{ }{ }{ }{ }{ }{ }{ }{ }{ }{ }{ }{ }{ $	[n] $[m]$ $[m]$ $[m]$ $[k]/kg]$ $[°]$ $[-]$ $[m/s]$	8 0,930 1,002 52,69 13 0,03 0,151 157,39 290,15 65,27 65,27 282,71 125,32 141,30 27,51 24 0,875 165,73 67,41	9 9 0,930 1,017 46,31 13,1 0,03 0,173 159,75 268,44 60,84 261,46 101,71 118,52 30,89 24 0,881 152,82 62,16	10 0,935 1,035 46,81 13 0,03 0,191 146,87 266,95 60,05 260,11 113,24 128,17 27,94 24 0,876 162,22 65,98	30,30 11 0,940 1,048 47,31 14 0,03 0,200 147,65 266,88 64,57 258,96 111,30 128,67 30,12 24 0,880 165,71 67,40	Jo, 43 12 0,950 1,063 48,33 15,6 0,03 0,203 149,23 269,25 72,41 72,41 259,33 110,11 131,78 33,33 24 0,885 170,24 69,24	110,51 13 1,050 1,164 59,03 16 0,03 0,189 164,93 300,13 82,73 288,50 123,57 148,70 33,80 24 0,886 186,84 75,99	14 1,180 1,300 74,56 16,5 0,03 0,180 185,35 339,26 96,36 325,29 139,94 169,90 34,55 24 0,888 209,37 85,16
$\begin{array}{c} {} {} {} {} {} {} {} {} {} {} \atop \atop}{} {} {} {} \atop \atop}{} {} \atop \atop}{} \atop \atop}{} {} {} \atop \atop}{} \atop \atop}{} {} {} \atop \atop}{} {} {} \atop \atop}{} \atop \atop}{} \atop \atop}{} {} \atop \atop}{} \atop \atop}{} \atop}{}$	[n] [m] [m] [k]/kg] [°] [-] [m/s]	8 0,930 1,002 52,69 13 0,03 0,151 157,39 290,15 65,27 65,27 282,71 125,32 141,30 27,51 24 0,875 165,73 67,41 67,41	9 9 0,930 1,017 46,31 13,1 0,03 0,173 159,75 268,44 60,84 261,46 101,71 118,52 30,89 24 0,881 152,82 62,16 62,16	30,18 10 0,935 1,035 46,81 13 0,03 0,191 146,87 266,95 60,05 260,11 113,24 128,17 27,94 24 0,876 162,22 65,98 65,98	30,30 11 0,940 1,048 47,31 14 0,03 0,200 147,65 266,88 64,57 258,96 111,30 128,67 30,12 24 0,880 165,71 67,40 67,40	30,43 12 0,950 1,063 48,33 15,6 0,03 0,203 149,23 269,25 72,41 72,41 131,78 33,33 24 0,885 170,24 69,24 69,24	110,91 13 1,050 1,164 59,03 16 0,03 0,189 164,93 300,13 82,73 288,50 123,57 148,70 33,80 24 0,886 186,84 75,99 75,99	14 1,180 1,300 74,56 16,5 0,03 0,180 185,35 339,26 96,36 96,36 325,29 139,94 169,90 34,55 24 0,888 209,37 85,16 85,16
$\begin{array}{c} & \tilde{C}(islo\ s) \\ & \tilde{C}(islo\ s) \\ & D_p \\ & D_s \\ & h_{iz} \\ & \alpha_1 \\ & R_p \\ & R_s \\ & U \\ & C_1 \\ & C_{1a} \\ & W_{1a} \\ & C_{1u} \\ & W_{1a} \\ & C_{1u} \\ & W_{1a} \\ & \phi_{1a} \\ & $	[n] [m] [m] [m] [k]/kg] [°] [-] [m/s]	8 0,930 1,002 52,69 13 0,03 0,151 157,39 290,15 65,27 65,27 282,71 125,32 141,30 27,51 24 0,875 165,73 67,41 67,41 151,40	9 9 0,930 1,017 46,31 13,1 0,03 0,173 159,75 268,44 60,84 60,84 261,46 101,71 118,52 30,89 24 0,881 152,82 62,16 62,16 139,61	10 0,935 1,035 46,81 13 0,03 0,191 146,87 266,95 60,05 260,11 113,24 128,17 27,94 24 0,876 162,22 65,98 148,20	30,30 11 0,940 1,048 47,31 14 0,03 0,200 147,65 266,88 64,57 64,57 258,96 111,30 128,67 30,12 24 0,880 165,71 67,40 151,38	12 0,950 1,063 48,33 15,6 0,03 0,203 149,23 269,25 72,41 72,41 259,33 110,11 131,78 33,33 24 0,885 170,24 69,24 69,24 155,52	110,051 13 1,050 1,164 59,03 16 0,03 0,189 164,93 300,13 82,73 288,50 123,57 148,70 33,80 24 0,886 186,84 75,99 170,69	14 1,180 1,300 74,56 16,5 0,03 0,180 185,35 339,26 96,36 96,36 325,29 139,94 169,90 34,55 24 0,888 209,37 85,16 191,27
$\begin{array}{c} & \tilde{C}(islo\ s) \\ & \tilde{C}(islo\ s) \\ & D_p \\ & D_s \\ & h_{iz} \\ & \alpha_1 \\ & \alpha_1 \\ & R_p \\ & R_s \\ & U \\ & C_1 \\ & C_1 \\ & C_1 \\ & U \\ & C_1 \\ & C_1 \\ & W_{1a} \\ & C_{1u} \\ & W_{1a} \\ & C_{1u} \\ & W_{1a} \\ & \phi_{1u} \\ & W_{1a} \\ & \phi_{1a} \\ $	[m] [m] [m] [k]/kg] [°] [] [m/s] [m/s]	8 0,930 1,002 52,69 13 0,03 0,151 157,39 290,15 65,27 65,27 282,71 125,32 141,30 27,51 24 0,875 165,73 67,41 151,40 -6,00	9 9 0,930 1,017 46,31 13,1 0,03 0,173 159,75 268,44 60,84 60,84 261,46 101,71 118,52 30,89 24 0,881 152,82 62,16 139,61 -20,14	10 0,935 1,035 46,81 13 0,03 0,191 146,87 266,95 60,05 260,11 113,24 128,17 27,94 24 0,876 162,22 65,98 148,20 1,33	30,30 11 0,940 1,048 47,31 14 0,03 0,200 147,65 266,88 64,57 64,57 258,96 111,30 128,67 30,12 24 0,880 165,71 67,40 151,38 3,73	12 0,950 1,063 48,33 15,6 0,03 0,203 149,23 269,25 72,41 72,41 131,78 33,33 24 0,885 170,24 69,24 155,52 6,29	13 1,050 1,164 59,03 16 0,03 0,189 164,93 300,13 82,73 288,50 123,57 148,70 33,80 24 0,886 186,84 75,99 170,69 5,75	14 1,180 1,300 74,56 16,5 0,03 0,180 185,35 339,26 96,36 96,36 325,29 139,94 169,90 34,55 24 0,888 209,37 85,16 85,16 191,27 5,92
$\begin{array}{c} {} {} {} {} {} {} {} {} {} \atop \atop }{} {} {} {} \atop }{} \atop$	[n] $[m]$ $[m]$ $[m]$ $[k]/kg]$ $[°]$ $[-]$ $[m/s]$	8 0,930 1,002 52,69 13 0,03 0,151 157,39 290,15 65,27 65,27 282,71 125,32 141,30 27,51 24 0,875 165,73 67,41 151,40 -6,00 67,67	9 9 0,930 1,017 46,31 13,1 0,03 0,173 159,75 268,44 60,84 60,84 261,46 101,71 118,52 30,89 24 0,881 152,82 62,16 62,16 62,16 62,16 62,16 534	10 0,935 1,035 46,81 13 0,03 0,191 146,87 266,95 60,05 260,11 113,24 128,17 27,94 24 0,876 162,22 65,98 148,20 1,33 65,99	30,30 11 0,940 1,048 47,31 14 0,03 0,200 147,65 266,88 64,57 64,57 258,96 111,30 128,67 30,12 24 0,880 165,71 67,40 151,38 3,73 67,50	30,43 12 0,950 1,063 48,33 15,6 0,03 0,203 149,23 269,25 72,41 72,41 72,41 33,33 24 0,885 170,24 69,24 69,24 69,24 69,24 69,24 69,24 69,24 69,24 69,24 69,24 69,24 69,24 69,24 69,24 69,24 69,24 69,24 69,25 6,29 6,9,53	110,91 13 1,050 1,164 59,03 16 0,03 0,189 164,93 300,13 82,73 288,50 123,57 148,70 33,80 24 0,886 186,84 75,99 75,99 170,69 5,75 76,21	14 1,180 1,300 74,56 16,5 0,03 0,180 185,35 339,26 96,36 325,29 139,94 169,90 34,55 24 0,888 209,37 85,16 191,27 5,92 85,37

Tabulka 7: Rychlostní poměry stupeň 1-14
Katedra energetických strojů a zařízení

Bc. Martin Janeček

Číslo s	stupně	15	16	17	18	19
D_p	[<i>m</i>]	1,240	1,300	1,360	1,500	1,500
D_s	[<i>m</i>]	1,391	1,510	1,614	1,901	2,157
h _{iz}	[kJ/kg]	82,33	86,99	108,07	145,32	147,37
α_1	[°]	16	16	17,6	20,1	29,8
R_p	[-]	0,03	0,03	0,03	0,03	0,03
R _S	[-]	0,206	0,252	0,276	0,345	0,420
U	[m/s]	194,78	204,20	213,63	235,62	235,62
<i>c</i> ₁	[m/s]	350,81	349,83	383,67	423,12	400,96
<i>c</i> _{1<i>a</i>}	[m/s]	96,70	96,43	116,01	145,41	199,27
<i>w</i> _{1<i>a</i>}	[m/s]	96,70	96,43	116,01	145,41	199,27
<i>c</i> _{1<i>u</i>}	[m/s]	337,22	336,28	365,71	397,35	347,94
W_{1u}	[m/s]	142,44	132,07	152,08	161,73	112,32
<i>w</i> ₁	[m/s]	172,16	163,53	191,28	217,48	228,74
β_1	[°]	34,17	36,13	37,34	41,96	60,59
β_2	[°]	24	24	24	28	36
ψ	[-]	0,887	0,890	0,892	0,906	0,937
<i>W</i> ₂	[m/s]	223,50	236,61	276,84	348,01	393,33
W_{2a}	[m/s]	90,90	96,24	112,60	163,38	231,19
C _{2a}	[m/s]	90,90	96,24	112,60	163,38	231,19
<i>W</i> _{2<i>u</i>}	[m/s]	204,17	216,15	252,91	307,27	318,21
<i>C</i> _{2<i>u</i>}	[m/s]	9,39	11,95	39,28	71,65	82,59
<i>C</i> ₂	[m/s]	91,39	96,98	119,26	178,40	245,50
α_2	[°]	84,10	82,92	70,77	66,32	70,34

Tabulka 8: Rychlostní poměry stupeň 15-19

Výsledné rychlostní trojúhelníky jsou vyobrazeny v Příloha 8

4.5 Volba profilů lopatek

Při volbě profilů lopatek je nutné dodržet podmínku minimálních ztrát při obtékání pracovní látkou. Je nutné, aby na povrchu lopatek docházelo k plynulým změnám tlaku a nedocházelo k odtržení proudu. Lopatková mříž by také měla mít co nejmenší ztrátu úplavem.

Lopatky ovšem musí splňovat i pevnostní podmínky. Proto je při volbě materiálu nutné brát v potaz délku lopatky, přenášený výkon, otáčky turbíny, ale také pracovní teplotu, apod.

Návrhy lopatkových profilů se zabývá řada organizací, výsledky výzkumu jedné z nich jsou uvedeny v literatuře [2]. Pro volbu profilů lopatek bylo užito těchto poznatků uvedených v *Příloha 1*.

Výběr lopatek je na základě Machova čísla a výstupního úhlu. V případě rozváděcích lopatek je to absolutní výstupní úhel proudu α_1 . U oběžných lopatek pak relativní výstupní úhel β_2 .

Podle hodnoty Machova čísla na výstupu z lopatkového kanálu se typy profilů lopatek dělí do čtyř skupin:

Тур	Proudění	Machovo číslo
А	Podzvukové	<i>Ma</i> < 0,9
В	Transsonické	0,9 < Ma < 1,15
C	Nadzvukové	1,1 < <i>Ma</i> < 1,3
D	Nadzvukové	$Ma > 1,3 \div 1,5$

Tabulka 9: Rozdělení profilů podle výstupního Machova čísla

Profilové lopatkové konvergentní kanály – průřezově se zužující typ A, B, C. Typ D konvergentně-divergentní Lavalova dýza.

Machovo číslo je obecně dáno poměrem rychlosti proudění a rychlosti zvuku

$$Ma = \frac{c}{a} = [-] \tag{4.51}$$

Rychlost zvuku v oblasti přehřáté páry je funkcí tlaku a entalpie

$$a = f(p; i) = [m/s]$$
 (4.52)

Obrázek 9: Charakteristické rozměry lopatkové mříže

Mezi charakteristické rozměry lopatkové mříže se řadí šířka lopatky B, délka tětivy b a rozteč lopatek t.

4.5.1 Volba profilů rozváděcích lopatek

Machovo číslo je určeno vztahem

$$Ma = \frac{c_1}{a_1} \tag{4.53}$$

Pro proudění v oblasti přehřáté páry je rychlost zvuku

$$a_1 = f(p_1; i_1) = [m/s]$$
(4.54)

Při proudění v oblasti mokré páry je nutné nejprve určit suchost páry

$$x_1 = f(p_1; i_1) = [-]$$
(4.55)

Rychlost zvuku v mokré páře je pak

$$a_1 = a(p_1; x = 0) + x_1 \cdot [a(p_1; x = 1) - a(p_1; x = 0)] = [m/s]$$
 (4.56)

Hodnoty v tabulce platí pro šířku rozváděcí lopatky $B_{RL} = 25 \ [mm]$.

Úhel nastavení profilu rozváděcí (oběžné) lopatky v mříži

$$\gamma_{RL} = \arccos \frac{B_{RL}}{b_{RL}} = [^{\circ}]$$
(4.57)

Číslo s	tupně	1	2	3	4	5	6	7
a_1	[m/s]	638,74	630,26	621,58	612,35	602,79	594,13	583,27
Ма	[-]	0,52	0,49	0,49	0,50	0,51	0,48	0,54
Profil		S-90-12A	S-90-12A	S-90-12A	S-90-12A	S-90-12A	S-90-12A	S-90-12A
α_1	[°]	10 ÷ 14	10 ÷ 14	10 ÷ 14	10 ÷ 14	$10 \div 14$	10 ÷ 14	10 ÷ 14
α_0	[°]	70 ÷ 120	70 ÷ 120	70 ÷ 120	70 ÷ 120	70 ÷ 120	70 ÷ 120	70 ÷ 120
t_{opt}	[-]	0,72-0,87	0,72-0,87	0,72-0,87	0,72-0,87	0,72-0,87	0,72-0,87	0,72-0,87
b_{RL}'	[cm]	6,25	6,25	6,25	6,25	6,25	6,25	6,25
S_{RL}'	$[cm^2]$	4,09	4,09	4,09	4,09	4,09	4,09	4,09
W_{RL}'	[<i>cm</i> ³]	0,575	0,575	0,575	0,575	0,575	0,575	0,575
J_{RL}'	$[cm^4]$	0,591	0,591	0,591	0,591	0,591	0,591	0,591
γ_{RL}	[°]	66,4	66,4	66,4	66,4	66,4	66,4	66,4
t_{opt}	[-]	0,720	0,720	0,720	0,720	0,720	0,720	0,720

Tabulka 10: Profily RL stupeň 1-7

Západočeská univerzita v Plzni, Fakulta strojní, Diplomová práce, akad.rok 2019/2020 Katedra energetických strojů a zařízení

Bc. Martin Janeček

Číslo stupně		8	9	10	11	12	13	14
<i>a</i> ₁	[m/s]	572,02	561,88	551,19	540,03	528,24	513,12	495,22
Ма	[-]	0,55	0,53	0,54	0,55	0,57	0,65	0,76
Profil		S-90-12A	S-90-12A	S-90-12A	S-90-12A	S-90-18A	S-90-18A	S-90-18A
α_1	[°]	10 ÷ 14	10÷14	10÷14	10÷14	$10 \div 14$	10 ÷ 14	10÷14
α ₀	[°]	70 ÷ 120	70 ÷ 120	70 ÷ 120	70 ÷ 120	70 ÷ 120	70 ÷ 120	70 ÷ 120
t _{opt}	[-]	0,72-0,87	0,72-0,87	0,72-0,87	0,72-0,87	0,72-0,87	0,72-0,87	0,72-0,87
b_{RL}'	[<i>cm</i>]	6,25	6,25	6,25	6,25	6,25	6,25	6,25
S_{RL}'	$[cm^2]$	4,09	4,09	4,09	4,09	4,09	4,09	4,09
W_{RL}'	[<i>cm</i> ³]	0,575	0,575	0,575	0,575	0,575	0,575	0,575
J_{RL}'	$[cm^4]$	0,591	0,591	0,591	0,591	0,591	0,591	0,591
γ_{RL}	[°]	66,4	66,4	66,4	66,4	66,4	66,4	66,4
t _{opt}	[—]	0,720	0,720	0,720	0,720	0,720	0,720	0,720

Tabulka 11: Profily RL stupeň 8-14

Číslo s	stupně	15	16	17	18	19
<i>a</i> ₁	[m/s]	514,75	533,42	554,57	580,26	597,74
Ма	[-]	0,76	0,76	0,81	0,90	0,88
Profil		S-90-18A	S-90-18A	S-90-18A	S-90-27A	S-90-33A
α ₁	[°]	10 ÷ 14	10 ÷ 14	10 ÷ 14	24 ÷ 30	30 ÷ 36
α_0	[°]	70 ÷ 120	70 ÷ 120	70 ÷ 120	70 ÷ 120	70 až 120
t _{opt}	[-]	0,72-0,87	0,72-0,87	0,72-0,87	0,65-0,75	0,62 ÷ 0,75
b_{RL}'	[cm]	6,25	6,25	6,25	4,5	4,5
S_{RL}'	$[cm^2]$	4,09	4,09	4,09	2,03	1,84
W_{RL}'	[<i>cm</i> ³]	0,575	0,575	0,575	0,195	0,163
J_{RL}'	$[cm^4]$	0,591	0,591	0,591	0,116	0,09
γ_{RL}	[°]	66,4	66,4	66,4	56,3	56,3
t _{opt}	[—]	0,720	0,720	0,720	0,65	0,62

Tabulka 12: Profily RL stupeň 15-19

4.5.2 Volba profilů oběžných lopatek

Machovo číslo je určeno vztahem

$$Ma = \frac{w_2}{a_2} = [-] \tag{4.58}$$

Pro proudění v oblasti přehřáté páry je rychlost zvuku

$$a_2 = f(p_2; i_2) = [m/s]$$
(4.59)

Při proudění v oblasti mokré páry je nutné nejprve určit suchost páry

$$x_2 = f(p_2; i_2) = [-]$$
(4.60)

Rychlost zvuku v mokré páře je pak

$$a_2 = a(p_2; x = 0) + x_2 \cdot [a(p_2; x = 1) - a(p_2; x = 0)] = [m/s]$$
(4.61)

Hodnoty v tabulce platí pro šířku oběžné lopatky $B_{OL} = 25 \ [mm]$

Úhel nastavení profilu rozváděcí (oběžné) lopatky v mříži

$$\gamma_{OL} = \arccos \frac{B_{OL}}{b_{OL}} = [^{\circ}]$$
(4.62)

Číslo s	stupně	1	2	3	4	5	6	7
<i>a</i> ₁	[m/s]	640,46	631,50	622,58	613,29	603,65	594,85	584,07
Ма	[-]	0,27	0,25	0,25	0,25	0,26	0,24	0,28
Profil		R-30-21A	R-30-21A	R-30-21A	R-30-21A	R-30-21A	R-30-21A	R-30-21A
α ₁	[°]	19 ÷ 24	19 ÷ 24	19 ÷ 24	19 ÷ 24	19 ÷ 24	19 ÷ 24	19 ÷ 24
α_0	[°]	25 ÷ 32	25 ÷ 32	25 ÷ 32	25 ÷ 32	25 ÷ 32	25 ÷ 32	25 ÷ 32
t _{opt}	[-]	0,58 0,68	0,58- 0,68	0,58- 0,68	0,58- 0,68	0,58- 0,68	0,58- 0,68	0,58- 0,68
b_{OL}'	[<i>cm</i>]	2,56	2,56	2,56	2,56	2,56	2,56	2,56
S_{OL}'	$[cm^2]$	1,85	1,85	1,85	1,85	1,85	1,85	1,85
W_{OL}'	[<i>cm</i> ³]	0,205	0,205	0,205	0,205	0,205	0,205	0,205
J _{OL} '	$[cm^4]$	0,234	0,234	0,234	0,234	0,234	0,234	0,234
γοι	[°]	12,4	12,4	12,4	12,4	12,4	12,4	12,4
t _{opt}	[-]	0,62	0,62	0,62	0,62	0,62	0,62	0,62

Tabulka 13: Profily OL stupeň 1-7

Číslo s	tupně	8	9	10	11	12	13	14
<i>a</i> ₁	[m/s]	572,77	562,51	551,82	540,67	528,92	513,94	493,36
Ма	[-]	0,29	0,27	0,29	0,31	0,32	0,36	0,42
Profil		R-30-21A						
α_1	[°]	19 ÷ 24	19 ÷ 24	19 ÷ 24	19 ÷ 24	19 ÷ 24	19 ÷ 24	19 ÷ 24
α_0	[°]	25 ÷ 32	25 ÷ 32	25 ÷ 32	25 ÷ 32	25 ÷ 32	25 ÷ 32	25 ÷ 32
t _{opt}	[-]	0,58- 0,68	0,58- 0,68	0,58- 0,68	0,58- 0,68	0,58- 0,68	0,58- 0,68	0,58- 0,68
b_{OL}'	[<i>cm</i>]	2,56	2,56	2,56	2,56	2,56	2,56	2,56
S_{OL}'	$[cm^2]$	1,85	1,85	1,85	1,85	1,85	1,85	1,85
W_{OL}'	[<i>cm</i> ³]	0,205	0,205	0,205	0,205	0,205	0,205	0,205
J _{OL} '	$[cm^4]$	0,234	0,234	0,234	0,234	0,234	0,234	0,234
Yol	[°]	12,4	12,4	12,4	12,4	12,4	12,4	12,4
t _{opt}	[-]	0,62	0,62	0,62	0,62	0,62	0,62	0,62

Tabulka 14: Profily OL stupeň 8-14

Číslo s	tupně	15	16	17	18	19
<i>a</i> ₁	[m/s]	511,25	528,26	547,22	567,67	578,51
Ма	[-]	0,44	0,45	0,51	0,61	0,68
Profil		R-30-21A	R-30-21A	R-30-21A	R-35-25A	R-60-33A
α_1	[°]	19 ÷ 24	19 ÷ 24	19 ÷ 24	19 ÷ 24	19 ÷ 24
α_0	[°]	25 ÷ 32	25 ÷ 32	25 ÷ 32	25 ÷ 32	25 ÷ 32
t_{opt}	[—]	0,58- 0,68	0,58- 0,68	0,58- 0,68	0,55- 0,65	0,43- 0,55
b_{OL}'	[<i>cm</i>]	2,56	2,56	2,56	2,54	2,56
S_{OL}'	$[cm^2]$	1,85	1,85	1,85	1,62	1,02
W_{OL}'	[<i>cm</i> ³]	0,205	0,205	0,205	0,131	0,044
J _{OL} '	$[cm^4]$	0,234	0,234	0,234	0,168	0,079
γ_{OL}	[°]	12,4	12,4	12,4	10,2	12,4
t_{opt}	[—]	0,62	0,62	0,62	0,6	0,5

Tabulka 15: Profily OL stupeň 15-19

5 Pevnostní výpočet

Tato kapitola ověřuje dostatečné dimenzování oběžných lopatek, rozváděcích lopatek a rozváděcích kol. U těchto částí nesmí docházet k přetěžování, které by mohlo vést k poškození průtočné části turbíny. Pevnostní výpočet je proveden pro plný výkon, tedy $P_{el} = 120 [MW]$.

U prvního regulačního stupně (A-kolo) je při výpočtech uvažován parciální ostřik. Počet namáhaných lopatek je jen v pracovní párou ostříknutých segmentech.

5.1 Volba materiálu

Při volbě vhodného materiálu pro výrobu oběžných lopatek rozhoduje především teplota prostředí, v němž lopatky pracují. Povrchovou teplotu lopatky T_{OL} je možno předpokládat s ohledem na přestup tepla z páry do kovu o 50 °C nižší, než je teplota páry. V závislosti na teplotě jsou uvedena dovolená napětí v materiálu.

Materiál lopatek byl volen dle Příloha 2

5.2 Namáhání oběžných lopatek

Oběžné lopatky je nutno z hlediska dimenzování ověřit na namáhání ohybem a tahem. Ohybové namáhání je vyvoláno obvodovou silou F_u odpovídající výkonu stupně připadajícího na jednu lopatku v ostřiku. Namáhání tahem dosahuje nejvyšších hodnot v patním průřezu lopatky. Tahové namáhání je vyvolané odstředivými silami všech hmot nad tímto průřezem tj. listu lopatky, bandáže, případně vázacích a tlumících drátů.

5.3 Namáhání ohybem

Při pevnostním dimenzování je nutné zvolit lopatky B_{OL} , tu je případně vysokého zatížení nutné zvětšovat.

Délka oběžné lopatky je určena délkou rozváděcí lopatky stanovenou v kapitole 4.2 přičemž platí, že $L_s = L_{RL}$.

Délka oběžné lopatky je stanovena přičtením ΔL , které bylo pro prvních deset stupňů zvoleno 2 mm. Pro stupně 11 – 14 bylo zvoleno 5 mm, následující stupně 10 mm, 20 mm a 40 mm. Poslední dva stupně jsou modulové s rozváděcí lopatkou o délce 440 mm předposlední a 760 mm pro poslední stupeň.

$$L_{OL} = L_{RL} + \Delta L \tag{5.1}$$

Přepočet délky tětivy pro nově zvolenou šířku lopatky

$$b_{OL} = \frac{B_{OL}}{\cos \gamma_{OL}} = [mm]$$
(5.2)

Přepočet plochy profilu na patním průměru

$$S_{OL} = S_{0L}' \cdot \left(\frac{B_{OL}}{25}\right)^2 = [cm^2]$$
(5.3)

Přepočet průřezového modulu v ohybu

$$W_{OL} = W'_{OL} \cdot \left(\frac{B_{OL}}{25}\right)^3 = [cm^3]$$
(5.4)

Předběžný výpočet rozteče oběžných lopatek

$$t_{OL}' = t_{opt} \cdot b_{OL} = [mm] \tag{5.5}$$

Teoretický počet lopatek

$$z' = \frac{\pi \cdot D_s}{t_{OL}'} = [-]$$
(5.6)

Po zaokrouhlení na celé vyšší číslo je získán skutečný počet lopatek z Skutečná rozteč lopatek v mříži je pak

$$t_{OL} = \frac{\pi \cdot D_s}{z} = [mm] \tag{5.7}$$

Stanovení obvodové síly

$$F_u = \dot{m} \cdot \frac{c_{1u} - c_{2u}}{z} = [N]$$
(5.8)

Axiální síla, kde první člen představuje sílu vyvolanou změnou hybnosti páry v oběžném kole. Druhý člen představuje sílu od přetlaku

$$F_a = \frac{\dot{m}}{z} \cdot (c_{1a} - c_{2a}) + \Delta p \cdot t \cdot L_{OL} = [N]$$
(5.9)

Rozdíl tlaků na středním průměru

$$\Delta p = p_1 - p_2 = [bar] \tag{5.10}$$

Tlak na výstupu z rozváděcích lopatek p_1 je určen ze znalosti reakce na středním průměru R_s a izentropického spádu zpracovaného ve stupni h_{iz} .

$$p_1 = f(i_1; s_0) = [bar]$$
(5.11)

$$i_1 = i_0 - h_{iz} \cdot (1 - R_s) = [kJ/kg]$$
 (5.12)

Výsledná ohybová síla

$$F = \sqrt{F_u^2 + F_a^2} = [N]$$
(5.13)

Maximální ohybový moment působící na lopatku

$$M_{max} = F \cdot \frac{L_{OL}}{2} = [N \cdot m] \tag{5.14}$$

Namáhání v ohybu

$$\sigma_o = \frac{M_{max}}{W_{OL}} = [MPa] \tag{5.15}$$

Při pevnostním výpočtu lopatky musí platit

$$\sigma_o < \sigma_{o,DOV} \tag{5.16}$$

Dovolené napětí v ohybu je $\sigma_{o,DOV} = 16 [MPa]$ pro stupně, za kterými následuje odběr a pro první stupeň, který je navržen s parciálním ostřikem a dochází v něm tak ke střídavému namáhání. Pro ostatní stupně napětí v ohybu nesmí překročit $\sigma_{o,DOV} = 20 [MPa]$.

5.4 Namáhání tahem

Namáhání tahem je způsobeno odstředivou silou všech hmot nacházejících se nad patním průřezem lopatky.

Hmotnost lopatky

$$m_{OL} = \rho_O \cdot S_{OL} \cdot L_{OL} = [kg] \tag{5.17}$$

Hustota oceli je $\rho_0 = 7850 [kg/m^3]$

Otáčky rotoru při zásahu pojistného regulátoru

$$n' = 1, 1 \cdot n = 3300 \left[1/min \right] \tag{5.18}$$

Úhlová rychlost zásahu regulátoru

$$\omega' = \left(\frac{\pi \cdot n'}{30}\right) = 345,58 \ [rad/s] \tag{5.19}$$

Odstředivá síla listu lopatky

$$O_{OL} = m_{OL} \cdot \frac{D_s}{2} \cdot {\omega'}^2 = [N]$$
 (5.20)

Pro stanovení hmotnosti bandáže je potřeba zvolit výšku bandáže *b*. Šířka bandáže *B*je totožná s šířkou oběžné lopatky B_{OL} . U posledních tří stupňů nebyla bandáž vzhledem k vysokým odstředivým silám použita.

$$m_b = \rho_0 \cdot \pi \cdot D_b \cdot B \cdot b \cdot \frac{1}{z} = [kg]$$
(5.21)

Odstředivá síla vyvolaná hmotností bandáže

$$O_b = m_b \cdot \frac{D_b}{2} \cdot {\omega'}^2 = [N]$$
(5.22)

Celková odstředivá síla působící na oběžnou lopatku

$$O_c = O_{OL} + O_b = [N]$$
(5.23)

Celkové namáhání tahovou silou na patním průměru lopatky

$$\sigma_t = \frac{O_c}{k \cdot S_{OL}} = [MPa] \tag{5.24}$$

k je součinitel odlehčení u posledních čtyř lopatek.

5.5 Celkové namáhání oběžných lopatek

Celkové namáhání oběžných lopatek je dáno složením tahového a ohybového namáhání

$$\sigma_c = 2 \cdot \sigma_o + \sigma_t = [MPa] \tag{5.25}$$

Musí být splněna podmínka

$$\sigma_c < \sigma_D \tag{5.26}$$

Číslo s	stupně	1	2	3	4	5	6	7
L _{OL}	[mm]	32	34	41	46	52	59	65
B _{OL}	[mm]	30	25	25	30	30	40	40
b _{OL}	[mm]	30,7	25 <i>,</i> 6	25,6	30,7	30,7	41,0	41,0
S _{OL}	$[cm^2]$	2,66	1,85	1,85	2,66	2,66	4,74	4,74
W_{OL}	[<i>cm</i> ³]	0,40	0,23	0,23	0,40	0,40	0,96	0,96
t_{OL}'	[mm]	19,0	15,9	15,9	19,0	19,0	25,4	25,4
Ζ	[-]	134	188	189	160	161	122	123
t_{OL}	[mm]	23,7	15,8	15,9	18,9	19,0	25,3	25,2
F_u	[N]	289,69	192,18	190,06	224,90	222,97	288,75	278,04
Δp	[bar]	1,06	0,88	0,84	0,80	0,76	0,65	0,71
F_a	[N]	71,92	51,85	57,58	73,28	78,15	103,79	116,84
F	[N]	298,48	199,05	198,59	236,53	236,27	306,84	301,59
M _{max}	$[N \cdot m]$	4,78	3,38	4,07	5,44	6,14	9,05	9,80
σ_o	[MPa]	11,81	14,46	17,40	13,45	15,19	9,44	10,23
m _{OL}	[kg]	0,067	0,049	0,060	0,096	0,109	0,219	0,242
O_{OL}	[N]	4035,81	2792,06	3391,79	5537,25	6311,44	12861,75	14256,30
b	[mm]	5	5	5	5	5	5	5
D_b	[m]	1,049	0,988	1,002	1,017	1,031	1,048	1,06
O_b	[N]	1813,9	955,7	977,8	1427,9	1458,3	2651,4	2690,4
<i>O_c</i>	[N]	5849,7	3747,8	4369 <i>,</i> 6	6965,1	7769,8	15513,1	16946,7
σ_t	[MPa]	21,96	20,26	23,62	26,15	29,17	32,76	35,78
σ_c	[MPa]	45 <i>,</i> 58	49,18	58,41	53 <i>,</i> 05	59 <i>,</i> 55	51,64	56,23
t_{OL}	[°C]	417,8	395,2	372,9	349,8	326,5	305,8	280,8
Mat	eriál	PAK 1.6	PAK 1.6	PAK 1.6	PAK 1.6	PAK 1.6	PAK 1.6	PAK 1.6
σ_D	[MPa]	69	88	123	137	137	157	157
Pevnostně	é vyhovuje	ANO	ANO	ANO	ANO	ANO	ANO	ANO

Číslav		0	0	10	11	10	10	1.4
CISIO S	stupne	8	9	10	11	12	13	14
L _{OL}		74	89	105	113	118	119	125
B _{OL}	[mm]	40	40	40	40	40	40	50
b _{OL}	[mm]	41,0	41,0	41,0	41,0	41,0	41,0	51,2
S_{OL}	$[cm^2]$	4,74	4,74	4,74	4,74	4,74	4,74	7,40
W_{OL}	[<i>cm</i> ³]	0,96	0,96	0,96	0,96	0,96	0,96	1,87
t_{OL}'	[mm]	25,4	25,4	25,4	25,4	25,4	25,4	31,7
Ζ	[-]	125	126	128	130	132	135	129
t_{OL}	[mm]	25,2	25,4	25,4	25,3	25,3	27,1	31,7
F_u	[N]	273,27	264,43	239,20	232,29	226,81	247,81	292,92
Δp	[bar]	0,67	0,58	0,56	0,50	0,44	0,40	0,36
F_a	[N]	124,58	130,98	143,68	141,82	134,16	127,04	151,99
F	[N]	300,33	295,09	279,04	272,16	263,52	278,48	330,01
M _{max}	$[N \cdot m]$	11,11	13,13	14,65	15,38	15,55	16,57	20,63
σ_o	[MPa]	11,59	13,70	15,28	16,04	16,22	17,29	11,02
m_{OL}	[kg]	0,275	0,331	0,390	0,420	0,439	0,442	0,726
O_{OL}	[N]	16460,2	20093,1	24124,9	26289,1	27845,2	30749,3	56365,1
b	[mm]	5	5	5	6	6	8	10
D_b	[m]	1,083	1,113	1,15	1,172	1,192	1,296	1,44
<i>Ob</i>	[N]	2763,4	2895,5	3042,9	3734,2	3804,2	5862,7	11835,3
<i>O_c</i>	[N]	19223,7	22988,6	27167,9	30023,3	31649,5	36612,1	68200,4
σ_t	[MPa]	40,59	48,54	57,36	63,39	66,83	77,31	92,16
σ_c	[MPa]	63,78	75,94	87,93	95,48	99,27	111,88	114,20
t _{OL}	[°C]	255,5	233,3	210,7	187,8	164,4	135,8	101,3
Mat	eriál	PAK 1.6	P-AK 1 TD					
σ_D	[MPa]	157	157	157	172	172	172	260
Pevnostne	ě vyhovuje	ANO						

Tabulka 16: Pevnostní kontrola OL stupeň 1-7

Tabulka 17: Pevnostní kontrola OL stupeň 8-14

Katedra energetických strojů a zařízení

Bc. Martin Janeček

Číslo s	tupně	15	16	17	18	19
L _{OL}	[mm]	161	230	294	440	760
B_{OL}	[mm]	75	75	100	120	200
b_{OL}	[mm]	76,8	76,8	102,4	121,9	204,8
S_{OL}	$[cm^2]$	16,65	16,65	29,60	37,32	65,28
W_{OL}	[<i>cm</i> ³]	6,32	6,32	14,98	18,58	40,45
t_{OL}'	[mm]	47,6	47,6	63,5	73,2	102,4
Ζ	[-]	92	100	80	82	66
t_{OL}	[mm]	47,5	47,4	63,4	72,8	102,7
F_u	[N]	403,06	366,86	399,37	388,75	393,51
Δp	[bar]	0,31	0,26	0,20	0,15	0,07
F_a	[N]	241,77	282,24	374,33	459,79	517,99
F	[N]	470,01	462,87	547,37	602,11	650,51
M _{max}	$[N \cdot m]$	37,84	53,23	80,46	132,46	247,19
σ_o	[MPa]	5,99	8,43	5,37	7,13	6,11
m_{OL}	[kg]	2,10	3,01	6,83	12,89	38,95
O_{OL}	[N]	174780,1	271046,5	658365,9	1463379,8	5016128,6
b	[mm]	10	10		0	0
D_b	[m]	1,572	1,77	1,948	2,38	3,02
O_b	[N]	29665,6	34600,5	0,0	0,0	0,0
<i>O</i> _c	[N]	204445,7	305647,0	658365,9	1463379,8	5016128,6
σ_t	[MPa]	122,79	141,21	148,28	206,35	258,72
σ_c	[MPa]	134,77	158,06	159,03	220,61	270,94
t_{OL}	[°C]	85,2	68,7	49,3	24,6	0,7
Materiál		P-AK 1 TD				
σ_D	[MPa]	260	260	260	260	275
Pevnostně	é vyhovuje	ANO	ANO	ANO	ANO	ANO

Tabulka 18: Pevnostní kontrola OL stupeň 15-19

5.6 Závěsy oběžných lopatek

V případě této turbíny byly použity tři typy závěsů. Závěs typu T pro prvních 13 stupňů, kromě regulačního, u kterého vzhledem k namáhání byl zvolen vidličkový závěr. Pro stupně 14 až 17, které jsou více namáhané, byly použity vidličkové závěsy. Poslední dva stupně jsou modulové a je u nich použit stromečkový závěs.

Výrobci parních turbín používají standardizované závěsy pro dané šířky lopatek, jedná se o bedlivě střežené výrobní tajemství každého výrobce.

5.6.1 Závěs typu T

Závěs typu T je běžně užívaným závěsem pro vysokotlaké části turbíny. *Obrázek 1* dává představu o rozměrech nutných pro pevnostní výpočet závěsu.

Obrázek 10: Závěs typu T

Průměr těžiště závěsu

$$D_T = D_p - 2 \cdot x = [mm] \tag{5.27}$$

Kde *x* je vzdálenost těžiště od paty lopatky

Rozteč těžiště závěsu

$$t_T = \frac{\pi \cdot D_T}{z} = [mm] \tag{5.28}$$

Hmotnost závěsu

$$m_Z = \rho_O \cdot t_T \cdot S_Z = [kg] \tag{5.29}$$

 S_Z je plocha závěsu

Odstředivá síla vyvolaná hmotností závěsu

$$O_Z = m_Z \cdot \frac{D_T}{2} \cdot {\omega'}^2 = [N]$$

Diplomová práce, akad.rok 2019/2020 Bc. Martin Janeček

Celková odstředivá síla působící na závěs lopatky

$$O_c = O_{OL} + O_b + O_Z = [N]$$
(5.30)

Průřez nejvíce namáhaný tahem je průřez 1-1 na

$$A_{11} = a \cdot t_T = [mm^2]$$

Maximální tahové namáhání závěsu

$$\sigma_{TZ} = \frac{O_c}{A_{11}} = [MPa] \tag{5.31}$$

Pevnostní kontrola. Dovolené namáhání σ_D je pro závěs i lopatku stejné

$$\sigma_{TZ} < \sigma_D \tag{5.32}$$

Kritický průřez pro namáhaný smykem je průřez 1-2 na

$$A_{12} = b \cdot t_T = [mm^2] \tag{5.33}$$

Smykové namáhání

$$\tau = \frac{O_c}{2 \cdot A_{12}} = [MPa]$$
(5.34)

Pevnostní kontrola

$$\tau < (0,6 \div 0,7) \cdot \sigma_D \tag{5.35}$$

Průřez namáhaný na otlačení (na Obrázek 10 označen 1-3)

$$A_{13} = c \cdot t_T = [mm^2] \tag{5.36}$$

Namáhání otlačením

$$p = \frac{O_c}{A_{13}} = [MPa]$$
(5.37)

Kontrola na otlačení

$$p < 150 \div 200 \ [MPa]$$
 (5.38)

Západočeská univerzita v Plzni, Fakulta strojní, Diplomová práce, akad.rok 2019/2020 Katedra energetických strojů a zařízení

Bc. Martin Janeček

Číslo s	stupně	2	3	4	5	6	7
B _{OL}	[mm]	25	25	30	30	40	40
x	[mm]	14,5	14,5	13,8	13,8	16,2	16,2
D_T	[m]	0,886	0,886	0,892	0,894	0,893	0,893
t_T	[m]	0,015	0,015	0,018	0,017	0,023	0,023
S_Z	$[mm^2]$	590	590	640	640	946	946
m_z	[kg]	0,069	0,068	0,088	0,088	0,171	0,169
O_z	[N]	3627,7	3608,5	4690,9	4682,7	9097,5	9023,5
<i>O</i> _c	[N]	7375 <i>,</i> 5	7978,2	11656,0	12452,4	24610,6	25970,2
а	[mm]	12	12	12	12	14	14
A ₁₁	$[mm^2]$	177,7	176,7	210,3	209,4	321,8	319,2
σ_{TZ}	[MPa]	41,51	45,14	55,43	59,46	76,48	81,37
σ_D	[MPa]	88	123	137	137	157	157
b	[mm]	10	10	12	12	12	12
A ₁₂	$[mm^2]$	148,1	147,3	210,3	209,4	275,8	273,6
τ	[MPa]	24,91	27,09	27,72	29,73	44,61	47,46
$ au_D$	[MPa]	57	80	89	89	102	102
С	[mm]	6	6	6	6	10,8	10,8
A ₁₃	$[mm^2]$	88,83	88,36	105,13	104,71	248,24	246,22
р	[MPa]	83,027	90,288	110,869	118,918	99,140	105,475
p_D	[MPa]	180	180	180	180	180	180

Tabulka 19: Pevnostní kontrola závěsu typu T (OL 2-7)

Číslo s	tupně	8	9	10	11	12
B _{OL}	[mm]	25	25	30	30	40
x	[mm]	14,5	14,5	13,8	13,8	16,2
D_T	[m]	0,886	0,886	0,892	0,894	0,893
t_T	[m]	0,015	0,015	0,018	0,017	0,023
S_Z	$[mm^2]$	590	590	640	640	946
m_z	[kg]	0,069	0,068	0,088	0,088	0,171
O_z	[N]	3627,7	3608,5	4690,9	4682,7	9097,5
<i>O_c</i>	[N]	7375,5	7978,2	11656,0	12452,4	24610,6
а	[mm]	12	12	12	12	14
A ₁₁	$[mm^2]$	177,7	176,7	210,3	209,4	321,8
σ_{TZ}	[MPa]	41,51	45,14	55 <i>,</i> 43	59,46	76,48
σ_D	[MPa]	88	123	137	137	157
b	[mm]	10	10	12	12	12
A ₁₂	$[mm^2]$	148,1	147,3	210,3	209,4	275,8
τ	[MPa]	24,91	27,09	27,72	29,73	44,61
$ au_D$	[MPa]	57	80	89	89	102
С	[mm]	6	6	6	6	10,8
A ₁₃	$[mm^2]$	88,83	88,36	105,13	104,71	248,24
р	[MPa]	83,027	90,288	110,869	118,918	99,140
p_D	[MPa]	180	180	180	180	180

Tabulka 20: Pevnostní kontrola závěsu typu T (OL 8-12)

5.6.2 Vidličkový závěs

U delších lopatek dochází k nárůstu odstředivé síly působící na závěs, proto bylo u stupňů 14 až 17 použit vidličkový závěs. První lopatka regulačního stupně je zase namáhána proměnlivým zatížením a velkým tepelným spádem.

Při pevnostním dimenzování je potřeba zkontrolovat tahové namáhání v průřezu 1-1. pozice lopatky je zajištěna kolíkem, ten je potřeba zkontrolovat pro namáhání na smyk. Poslední kontrolou je otlačení mezi kolíkem a závěsem.

Obrázek 11: Vidličkový závěs

Těžištní průměr závěsu

$$D_T = D_p - 2 \cdot x = [mm] \tag{5.39}$$

Rozteč těžiště závěsu

$$t_T = \frac{\pi \cdot D_T}{z} = [mm] \tag{5.40}$$

Hmotnost závěsu

$$m_Z = \rho_0 \cdot t_T \cdot S_Z = [kg] \tag{5.41}$$

 S_Z je plocha závěsu

Odstředivá síla vyvolaná hmotností závěsu

$$O_Z = m_Z \cdot \frac{D_T}{2} \cdot {\omega'}^2 = [N]$$

Celková odstředivá síla působící na závěs lopatky

$$O_c = O_{OL} + O_b + O_Z = [N]$$
(5.42)

Rozteč v průřezu 1-1

$$t_{11} = \frac{\pi \cdot D_{11}}{z} = [mm] \tag{5.43}$$

Plocha namáhaná tahem, n_v je počet rozvidlení, b šířka nožky a d průměr kolíku

$$A_{11} = n_v \cdot b \cdot (t_{11} - d) = [mm^2]$$
(5.44)

Namáhání závěsu tahem

$$\sigma_T = \frac{O_c}{A_{11}} = [MPa] \tag{5.45}$$

Pevnostní podmínka

$$\sigma_T < \sigma_D \tag{5.46}$$

Průřez kolíků namáhaných na smyk, n_k je počet kolíků

$$A_k = 2 \cdot n_v \cdot n_k \cdot \frac{\pi \cdot d^2}{4} = [mm^2]$$
(5.47)

Smykové napětí

$$\tau = \frac{O_c}{A_k} = [MPa] \tag{5.48}$$

Vypočtené smykové napětí nesmí přesáhnout hodnotu maximálního dovoleného napětí dle vztahu

$$\tau < (0,6 \div 0,7) \cdot \sigma_D \tag{5.49}$$

Kontrola ploch mezi kolíkem a závěsem na otlačení

$$A_p = n_v \cdot b \cdot d = [mm^2] \tag{5.50}$$

Namáhání otlačením

$$p = \frac{O_c}{A_p} = [MPa] \tag{5.51}$$

Musí být splněna podmínka

$$p_D = 1,5 \cdot \sigma_D \tag{5.52}$$

Číslo s	tupně	1	14	15	16	17
B _{OL}	[mm]	30	50	75	75	100
v	[mm]	8	12	15	15	15
x	[mm]	19	28	36,36	36,36	37,97
b	[mm]	11	11	11	11	14,75
d	mm	7	10	13	13	13,5
S_z	$[mm^2]$	761	2211	4085	4085	5688
D_T	[mm]	942	1124,00	1167,28	1227,28	1284,06
t_T	[mm]	22,08	27,37	39,86	38,56	50,42
m_z	[kg]	0,132	0,475	1,278	1,236	2,252
O_Z	Ν	7420,9	31886,5	89090	90605,4	172629,5
<i>D</i> ₁₁	[mm]	942,00	1124,00	1168,00	1228,00	1288,00
t ₁₁	[mm]	22,08	27,37	39,88	38,58	50,58
n_v	[—]	2,00	3,00	4,00	4,00	4,00
<i>O_c</i>	[N]	13270,60	100086,82	293535,72	325718,47	611540,07
A ₁₁	$[mm^2]$	331,87	573,32	1182,92	1125,47	2187,70
σ_T	[MPa]	39,99	174,57	248,14	222,62	186,36
σ_D	[MPa]	69	260	260	260	260
A_K	$[mm^2]$	307,88	942,48	2123,72	2123,72	2290,22
τ	[MPa]	24,10	33,83	41,95	42,66	75,38
$ au_D$	[MPa]	66,3	97,5	97,5	97,5	97,5
A_p	$[mm^2]$	308	660	1144	1144	1593
р	[MPa]	43,09	151,65	256,59	284,72	383,89
p_D	[MPa]	103,5	390	390	390	390

Tabulka 21: Pevnostní kontrola vidličkového závěsu

5.7 Namáhání rozváděcích kol

Rozváděcí kola jsou namáhána rozdílem tlaků Δp před a za rozváděcím kolem. Zjednodušeně lze říci, že rozváděcí kolo je kruhová deska, která je po celém vnějším obvodu podepřena. Složitost a tím i částečná neurčitost namáhání je způsobena dvěma zvláštnostmi. Deska je totiž průřezově zeslabena rozváděcími lopatkami a půlena horizontální rovinou. Tuhost kola se tak mění v radiálním i obvodovém směru. Tím se odlišuje od kruhové desky stejné tloušťky.

Relativně spolehlivé hodnoty namáhání a průhybu může poskytnout experiment.

Tlak za rozváděcím kolem

$$p_1 = f(i_{1,iz}; s_0) = [bar]$$
(5.53)

Rozdíl tlaků před a za rozváděcím kolem

$$\Delta p = p_0 - p_1 = [bar]$$
(5.54)

Vnitřní průměr rozváděcího kola D_2 je určen průměrem rotoru turbíny $D_R = 800 \ [mm]$ a výškou ucpávky, která byla zvolena 18 mm. Vnější průměr rozváděcího kola D_1 je určen špičkovým průměrem rozváděcí lopatky a vnější výškou rozváděcího kola.

Vnější poloměr rozváděcího kola

$$R = \frac{D_1}{2} = [mm]$$
(5.55)

Maximální napětí v rozváděcím kole, součinitel φ je určen z *Příloha 3* a *h* je zvolená šířka rozváděcího kola.

$$\sigma_{max} = \varphi \cdot \Delta p \cdot \frac{R^2}{h^2} = [MPa]$$
(5.56)

Maximální průhyb, součinitel μ je určen z *Příloha 5*. Youngův modul pružnosti v závislosti na teplotě je určen z *Příloha 4*

$$y_{max} = \mu \cdot \Delta p \cdot \frac{R^4}{E \cdot h^3} = [mm]$$
(5.57)

Maximální doporučená velikost průhybu je stanovena dle výsledů experimentu

$$y_{max,D} = 0,002 \cdot R = [mm] \tag{5.58}$$

Západočeská univerzita v Plzni, Fakulta strojní, Diplomová práce, akad.rok 2019/2020 Katedra energetických strojů a zařízení

Bc. Martin Janeček

Číslo s	tupně	1	2	3	4	5	6	7
L _{RL}	[mm]	30	32	39	44	50	57	63
Δp	[bar]	13,31	10,07	8,45	7,48	6,55	5,08	5,24
<i>D</i> ₂	[mm]	665	665	665	665	665	665	665
D_1	[mm]	1090	1079	1103	1128	1142	1159	1171
φ	[–]	1,24	1,2	1,26	1,29	1,31	1,33	1,38
R	[mm]	545	539,5	551,5	564	571	579 <i>,</i> 5	585,5
r	[mm]	332,5	332,5	332,5	332,5	332,5	332,5	332,5
h	[mm]	80	80	66	64	62	60	60
σ_{max}	[MPa]	76,63	54,95	74,31	74,94	72,79	63,04	68,84
t _p	[°C]	446	420	397	374	351	327	306
σ_D	[MPa]	121	125	132	132	139	139	139
μ	[—]	0,67	0,66	0,68	0,69	0,71	0,75	0,77
Ε	[MPa]	179000	180000	182000	184000	188000	190000	193000
<i>Y</i> _{max}	[mm]	0,859	0,611	1,015	1,083	1,103	1,047	1,137
$y_{max,D}$	[mm]	1,09	1,079	1,103	1,128	1,142	1,159	1,171

Tabulka 22: Pevnostní kontrola RK 1-7

Číslo s	stupně	8	9	10	11	12	13	14
L_{RL}	[mm]	8	9	10	11	12	13	14
Δp	[bar]	4,52	3,39	2,95	2,54	2,19	2,20	2,14
D_2	[mm]	665	665	665	665	665	665	665
D_1	[mm]	1214	1244	1275	1296	1316	1418	1560
φ	[-]	1,39	1,43	1,46	1,51	1,54	1,6	1,83
R	[mm]	607	622	637,5	648	658	709	780
r	[mm]	332,5	332,5	332,5	332,5	332,5	332,5	332,5
h	[mm]	60	60	60	60	60	60	70
σ_{max}	[MPa]	64,25	52,13	48,54	44,70	40,55	49,08	48,68
t _p	[°C]	282	256	234	211	188	165	137
σ_D	[MPa]	147	147	147	147	159	159	159
μ	[-]	0,79	0,83	0,84	0,89	0,91	0,96	1,16
Е	[MPa]	195000	197000	198000	199000	201000	202500	203000
<i>Y_{max}</i>	[mm]	1,150	0,990	0,955	0,926	0,860	1,218	1,321
$y_{max,D}$	[mm]	1,214	1,244	1,275	1,296	1,316	1,418	1,56

Tabulka 23: Pevnostní kontrola RK 8-14

Bc. Martin Janeček

Číslo s	tupně	15	16	17	18	19
L_{RL}	[mm]	15	16	17	18	19
Δp	[bar]	1,67	1,16	0,86	0,57	0,23
D_2	[mm]	765	765	830	830	830
D_1	[mm]	1692	1870	2028	2502	3240
φ	[–]	1,75	1,92	1,91	2,21	2,48
R	[mm]	846	935	1014	1251	1620
r	[mm]	382,5	382,5	415	415	415
h	[mm]	70	70	70	80	100
σ_{max}	[MPa]	42,65	39 <i>,</i> 63	34 <i>,</i> 55	30,79	14,89
t _p	[°C]	101	84	68	48	23
σ_D	[MPa]	159	172	172	172	172
μ	[–]	1,09	1,17	1,22	1,36	1,49
Ε	[MPa]	205000	208000	209000	210000	212000
<i>Y</i> _{max}	[mm]	1,325	1,450	1,551	1,765	1,107
У _{тах,D}	[mm]	1,692	1,87	2,028	2,502	3,24

Tabulka 24: Pevnostní kontrola RK 15-19

5.8 Namáhání rozváděcích lopatek

Profil rozváděcí lopatky je namáhán silou od přetlaku. Patní průřez lopatky je tak nutné zkontrolovat na namáhání v ohybu.

Přepočet délky tětivy profilu pro zvolenou šířku rozváděcí lopatky

$$b_{RL} = \frac{B_{RL}}{\cos \gamma_{RL}} = [mm] \tag{5.59}$$

Přepočet plochy profilu na patním průměru

$$S_{RL} = S'_{RL} \cdot \left(\frac{B_{RL}}{25}\right)^2 = [mm^2]$$
 (5.60)

Přepočet průřezového modulu v ohybu

$$W_{RL} = W'_{RL} \cdot \left(\frac{B_{RL}}{25}\right)^3 = [mm^3]$$
(5.61)

Předběžný výpočet rozteče lopatek

 $t' = t_{opt} \cdot b_{RL} = [mm]$ Teoretický počet rozváděcích lopatek v mříži

$$z' = \frac{\pi \cdot D_s}{t'} = [-] \tag{5.62}$$

Po zaokrouhlení na celé vyšší číslo je získán skutečný počet lopatek z

Skutečná rozteč lopatek v mříži je pak

$$t = \frac{\pi \cdot D_s}{z} = [mm] \tag{5.63}$$

Velikost namáhané plochy profilu ohybem

$$A_{RL} = \frac{\pi}{4} \cdot (D_1^2 - D_2^2) = [m^2]$$
(5.64)

Síla na lopatku vyvolaná přetlakem

$$F = \frac{\Delta p \cdot A_{RL}}{z} = [N] \tag{5.65}$$

Síla v ose maximálního kvadratického momentu průřezu

$$F' = F \cdot \cos \alpha = [N] \tag{5.66}$$

Úhel α je určen pomocí úhlu nastavení mříže

$$\alpha = 90 - \gamma = [^{\circ}] \tag{5.67}$$

Ohybový moment působící u paty lopatky, kde f je vzdálenost místa působení síly od patního průměru rozváděcí lopatky

$$M = f \cdot F' = [N \cdot m] \tag{5.68}$$

Ohybové namáhání v patním průřezu

$$\sigma_o = \frac{M}{W_{RL}} = [MPa] \tag{5.69}$$

Pevnostní kontrola

$$\sigma_o < \sigma_D \tag{5.70}$$

Dovolené namáhání σ_D je určeno podle zvoleného materiálu. Rozváděcí lopatky jsou vyrobeny z materiálu ČSN 15 335.3 určeného z Příloha 2. Při volbě vhodného materiálu rozhoduje především teplota prostředí, v němž lopatky pracují. Povrchovou teplotu rozváděcí lopatky lze předpokládat o 50 [°C] nižší než je teplota páry.

Západočeská univerzita v Plzni, Fakulta strojní, Diplomová práce, akad.rok 2019/2020 Katedra energetických strojů a zařízení

Bc. Martin Janeček

Číslo s	stupně	1	2	3	4	5	6	7
B_{RL}	[mm]	45	45	45	45	45	45	45
γ	[°]	66,4	66,4	66,4	66,4	66,4	66,4	66,4
b_{RL}	[mm]	112,5	112,5	112,5	112,5	112,5	112,5	112,5
S_{RL}	[<i>cm</i> ²]	13,25	13,25	13,25	13,25	13,25	13,25	13,25
W_{RL}	[<i>cm</i> ³]	3,353	3,353	3,353	3,353	3,353	3,353	3,353
t_{RL}'	[mm]	81,0	81,0	81,0	81,0	81,0	81,0	81,0
Ζ	[-]	40	37	37	38	38	39	39
t_{RL}	[mm]	79,3	80,4	81,0	79,7	80,4	79,1	79,6
A_{RL}	$[m^2]$	0,10	0,10	0,12	0,13	0,15	0,18	0,20
Δp	[bar]	13,31	10,07	8,45	7,48	6,55	5 <i>,</i> 08	5,24
F	[N]	3168,63	2590,55	2668,21	2623,27	2632,05	2291,05	2626,72
F'	[N]	2904,10	2374,28	2445,45	2404,27	2412,31	2099,78	2407,43
f	[mm]	42,5	57	66,5	74	80	87	93
М	[Nm]	123,42	135,33	162,62	177,92	192,98	182,68	223,89
σ_o	[MPa]	36,81	40,36	48,49	53,06	57,55	54,48	66,77
t	[°C]	446,72	420,46	397,07	374,31	351,11	327,64	306,71
σ_D	[MPa]	212	212	251	251	251	251	251

Tabulka 25: Pevnostní kontrola RL 1-7

Číslo s	stupně	8	9	10	11	12	13	14
B _{RL}	[mm]	45	45	45	45	45	45	45
γ	[°]	66,4	66,4	66,4	66,4	66,4	66,4	66,4
b_{RL}	[mm]	112,5	112,5	112,5	112,5	112,5	112,5	112,5
S_{RL}	$[cm^2]$	13,25	13,25	13,25	13,25	13,25	13,25	13,25
W_{RL}	[<i>cm</i> ³]	3,353	3,353	3,353	3,353	3,353	3,353	3,353
t_{RL}'	[mm]	81,0	81,0	81,0	81,0	81,0	81,0	81,0
Ζ	[-]	39	40	41	41	42	43	51
t_{RL}	[mm]	80,7	79,9	79,3	80,3	79,5	85 <i>,</i> 0	80,1
A_{RL}	$[mm^2]$	0,23	0,28	0,33	0,36	0,38	0,42	0,49
Δp	[bar]	4,52	3,39	2,95	2,54	2,19	2,20	2,14
F	[N]	2624,44	2357,12	2335,61	2200,92	1967,10	2129,89	2058,70
F'	[N]	2405,34	2160,33	2140,62	2017,18	1802,88	1952,08	1886,83
f	[mm]	107	122	135	143	148	149	155
М	[Nm]	257,37	263,56	288,98	288,46	266,83	290,86	292,46
σ_o	[MPa]	76,75	78,60	86,18	86,02	79,57	86,74	87,21
t	[°C]	281,74	256,36	233,98	211,34	188,45	165,09	136,57
σ_D	[MPa]	267	267	267	267	282	282	282

Tabulka 26: Pevnostní kontrola RL 8-14

Katedra energetických strojů a zařízení

Bc. Martin Janeček

Číslo s	stupně	15	16	17	18	19
B_{RL}	[mm]	50	60	60	70	90
γ	[°]	66,4	66,4	66,4	56,3	56,3
b_{RL}	[mm]	125	150	150	126	162
S_{RL}	$[cm^2]$	16,36	23,56	23,56	15,92	23,85
W_{RL}	[<i>cm</i> ³]	4,600	7,949	7,949	4,281	7,605
t_{RL}'	[mm]	90,0	108,0	108,0	81,9	100,4
Ζ	[-]	54	59	63	73	87
t_{RL}	[mm]	80,9	80,4	80,5	81,8	77,9
A_{RL}	$[mm^2]$	0,66	1,00	1,29	2,39	4,45
Δp	[bar]	1,67	1,16	0,86	0,57	0,23
F	[N]	2038,83	1953,37	1762,29	1868,95	1170,67
F'	[N]	1868,62	1790,30	1615,17	1553,99	973,39
f	[mm]	188,5	247,5	294	451	763,5
М	[Nm]	352,23	443,10	474,86	700,85	743,18
σ_o	[MPa]	76,57	55,74	59,74	163,73	97,72
t	[°C]	100,83	84,26	67,77	48,14	23,12
σ_D	[MPa]	282	229	229	229	229

Tabulka 27: Pevnostní kontrola RL 15-19

5.9 Dimenzování průměru potrubí

Rozměry odběrových potrubí jsou pevně dány původním vnějším tělesem turbíny. Proto v této kapitole bude pouze

Tato kapitola obsahuje výpočet základních parametrů přívodních a odvodních potrubí turbíny. Průřez potrubí je stanoven z jednoduché rovnice kontinuity

$$S = \frac{\dot{m} \cdot v}{w} = [m^2] \tag{5.71}$$

 \dot{m} je hmotnostní průtok páry, v měrný objem a w rychlost proudění, která byla zvolena 50 [m/s]

Průměr potrubí

$$S = \frac{\pi \cdot D^2}{4} \to D = \sqrt{\frac{4 \cdot S}{\pi}}$$
(5.72)

Dle stanoveného průřezu byla zvolena jmenovitá světlost potrubí DN. Pro tuto světlost byla zpětně vypočítána skutečná rychlost proudící páry v potrubí.

		Vstup páry	P.O.	NN	NTO
'n	[kg/s]	31,11	6,11	5,20	15,24
v	$[m^3/kg]$	0,039	0,087	0,388	0,909
S	$[m^2]$	0,0241	0,0107	0,0404	0,2771
D	[mm]	175,2	116,6	226,9	594 <i>,</i> 0
D	N	150	200	250	400
w	[m/s]	68,20	17,00	41,18	55,13

Tabulka 28: Dimenze potrubí

Návrh základních rozměrů rotoru 6

Stanovení základních rozměrů rotoru je nutnou podmínkou pro další výpočty. Rozměry rotoru jsou určeny konstrukčními požadavky, jako například patní průměry lopatek a šířka rozváděcích kol. Dále je zvolit správnou vzdálenost mezi jednotlivými disky v závislosti na šířce rozváděcích kol.

Ložiskovou vzdálenost L_b bylo nutné zachovat stejnou jako u původního stroje.

$$L_b = 5930 \ [mm] \tag{6.1}$$

Hmotnost hřídele m_H byla zjištěna vytvořením 3D modelu v programu Catia V5

$$m_H = 24\ 027,7\ [kg] \tag{6.2}$$

Obrázek 12: 3D model rotoru

Přičtením hmotnosti všech oběžných lopatek získáme celkovou hmotnost rotoru G

$$G = m_H + m_{Lop} = 24\ 027,7 + 6971,7 = 30\ 999,4\ [kg]$$
(6.3)

6.1 Stanovení kritických otáček

Při návrhu rotoru parní turbíny je nutné zkontrolovat, zda jsou kritické otáčky dostatečně vzdáleny od jmenovitých otáček turbíny. Pro elastické rotory platí, že kritické otáčky by měly být kolem 70% otáček jmenovitých.

$$n'_{k} = 0.7 \cdot n_{j} = 0.7 \cdot 3000 = 2100 \ [1/min] \tag{6.4}$$

Kritické otáčky pak lze určit podle rovnice

$$n_{k} = 7.5 \cdot \frac{\left(\frac{d_{0}}{L_{b}}\right)^{2}}{\sqrt{\frac{G}{L_{b}}}} = 1945 \ [1/min]$$
(6.5)

kde d_0 je maximální průměr hřídele Pro nominální otáčky n = 3000[1/min] jsou kritické otáčky v přijatelných mezích.

7 Ložiska parní turbíny

Rotor turbíny je uložen na hydrodynamických ložiscích. Na přední i zadní straně turbíny jsou uloženy radiální (nosná) ložiska. Axiální ložisko slouží k zachycení síly v osovém směru a je umístěno v předním ložiskovém stojanu.

7.1 Výpočet radiálního (nosného) ložiska

Pro dimenzování nosného ložiska je nejprve nutné určit reakce v ložisku. Ty jsou vyvolány hmotností rotoru, ale také parciálním ostřikem

7.1.1 Reakce od hmotnosti

Při zjišťování reakce bylo postupováno následovně. Nejprve byl vytvořen 3D model rotoru v programu Catia V5. Byly stanoveny hmotnosti jednotlivých úseků s různými průměry a jejich vzdálenost jejich těžiště od osy ložiska. K daným částem rotoru byly přičteny hmotnosti lopatek. Do výpočtu je nutné zahrnout i převislý konec rotoru za osou ložiska.

Reakce od hmotnosti v zadním ložisku je určena z momentové rovnováhy

$$R_{mz} = \frac{\sum F_i \cdot L_i - \sum F_{ii} \cdot L_{ii}}{L_b} = 167596,91 [N]$$
(7.1)

Pro reakci v předním ložisku platí

$$R_{mp} = G \cdot g - R_{mz} = 30999, 4 \cdot 9, 81 - 167596, 9 =$$
(7.2)
= 131 182,5 [N]

Kde G představuje celkovou hmotnost rotoru a g gravitační zrychlení

7.1.2 Reakce od parciálního ostřiku

Pro regulační stupeň s parciálním ostřikem je z výpočtu průtočné části turbíny znám výkon stupně P_{st} a velikost parciálního ostřiku ε

Obvodová síla odpovídající výkonu regulačního stupně je:

$$F_{ui} = \frac{P_i}{U} = \frac{5894.6 \cdot 10^3}{158.65} = 37514.4 \ [N] \tag{7.3}$$

Vzhledem k symetrii ostřiku je možno předpokládat působení obvodové síly v bodě vychýleném o úhel $\alpha/4$

Pro parciálnost platí:

$$\varepsilon = \frac{\alpha}{2\pi} \tag{7.4}$$

Výsledná síla je

$$F_{uisk} = F_{ui} \cos\frac{\alpha}{4} = 37514, 4 \cdot \cos\frac{291}{4} = 10\ 974\ [N] \tag{7.5}$$

Reakce od parciálnosti v zadním ložisku je opět určena z momentové rovnováhy

$$R_{oz} = \frac{F_{uisk} \cdot x}{L_b} = \frac{10\ 794 \cdot 1,23}{5,93} = 2276\ [N]$$
(7.6)

Kde x je vzdálenost osy regulačního stupně od osy ložiska. Reakce v předním ložisku

$$R_{op} = F_{uisk} - R_{oz} = 10\ 974 - 2276 = 8698\ [N] \tag{7.7}$$

7.1.3 Výsledná reakce v ložiscích

Přední ložisko

$$R_p = \sqrt{R_{mp}^2 + R_{op}^2} = \sqrt{131\ 182,5^2 + 8698^2} = 131470,5\ [N]$$
(7.8)

Zadní ložisko

$$R_z = \sqrt{R_{mz}^2 + R_{oz}^2} = \sqrt{167\ 596,91^2 + 2276^2} = 167612,4\ [N]$$
(7.9)

7.1.4 Kontrola rozměrů ložisek

V tomto případě bylo použito radiální citronové ložisko o průměru $D_b = 380 \ [mm]$. Délka nosné pánve ložiska byla zvolena $L = 240 \ [mm]$, tak aby bylo dodrženo, že poměr $\frac{L}{D_h} = 0.5 \div 0.8.$

Specifické tlak by měl být volen v rozmezí $0.8 \div 2 [MPa]$. S ohledem na stabilitu čepu ložiska by neměl být menší než 0,8 [MPa].

Specifický tlak v předním ložisku

$$p_p = \frac{R_p}{L \cdot D} = \frac{131470,5}{240 \cdot 380} = 1,44 \ [MPa] \tag{7.10}$$

Specifický tlak v zadním ložisku

$$p_z = \frac{R_p}{L \cdot D} = \frac{167596,4}{240 \cdot 380} = 1,84 \ [MPa] \tag{7.11}$$

7.2 Výpočet axiálního (opěrného) ložiska

Pro určení rozměrů axiálního ložiska je nutné stanovit celkovou axiální sílu působící na rotor. Tato síla má tři složky.

7.2.1 Stanovení celkové axiální síly

Celková axiální síla je vyvolána proudem páry a rozdílem tlaků před a za oběžnými lopatkami. Je tvořena těmito složkami:

- 1. síla působící na lopatkování od rozdílu tlaků před a za oběžnými lopatkami,
- 2. síla působící na disk oběžného kola,
- 3. síla vznikající ve vnějších ucpávkách (přední a zadní) a vnitřních (v rozváděcích kolech),
- 4. síly vyvolané různými průměry hřídele nacházející se v různých tlacích (síla na výstupky tj. na plochy dané rozdíly průměrů hřídele – rotoru "ústupky" hřídele).

Při určení rozdíl tlaků nelze předpokládat nulovou reakci podél délky lopatky. Reakci na středním průměru je možné určit z rovnice (4.33).

Střední tlak před oběžnou lopatkou je určen ze vztahu

$$R_s = \frac{p_s - p_2}{p_1 - p_2} \tag{7.12}$$

Tlak v mezeře mezi rozváděcí a oběžnou a rozváděcí lopatkou

$$R_p = \frac{p_m - p_2}{p_1 - p_2} \tag{7.13}$$

Axiální síla na lopatkování je

$$F_{1a} = \pi \cdot D_s \cdot L_{OL} \cdot (p_s - p_2) + \dot{m} \cdot (w_{1a} - w_{2a})$$
(7.14)

U rovnotlakého lopatkování nelze zanedbat impulzní sílu od průtoku páry m. Tato síla představuje druhý člen v rovnici (7.14)

Axiální síla na disk oběžného kola

Pro určení axiální síly na disk oběžného kola je nutné nejprve zná tlak před vyrovnávacím otvorem p_o .

$$p_o = p_m - k \cdot (p_m - p_2) = [bar]$$
(7.15)

Hodnota součinitele k se teoreticky může měnit v mezích $0 \le k \le 1$, v tomto případě bylo dle zkušeností zvoleno k = 0,4

Pro k = 0, tlak $p_o = p_m$ a v mezeře mezi rozváděcí a oběžnou lopatkou bude nulový

Pro k = 1, tlak $p_o = p_2$ průtok odlehčovacím otvorem bude nulový

Síla působící na disk oběžného kole je

$$F_{2a} = \frac{\pi}{4} \cdot \left(D_p^2 - D_h^2 \right) \cdot \left(p_0 - p_2 \right) = [N]$$
(7.16)

kde D_h je průměr hřídele

Síla působící na vnější přední labyrintovou ucpávku

$$F_{1u} = \frac{1}{2} \cdot \frac{\pi}{4} \cdot (D_1^2 + D_2^2 - 2 \cdot D_h^2) \cdot (p_1 - p_2) = -62026,11 [N]$$
(7.17)

Síla působící na zadní vnější labyrintovou ucpávku

$$F_{2u} = \frac{\pi}{4} \cdot (D_1^2 - D_h^2) \cdot (p_1 - p_2) = 608,22 [N]$$
(7.18)

Síla na ucpávky v rozváděcích kolech jednotlivých stupňů

$$F_{3u} = \frac{1}{2} \cdot \frac{\pi}{4} \cdot (D_2^2 - D_h^2) \cdot (p_1 - p_2) = [N]$$
(7.19)

Celková axiální síla je

$$F_{ac} = F_{1a} + F_{2a} + F_{1u} + F_{2u} + F_{3u} = 323\ 059,4\ [N]$$

7.2.2 Rozměry axiálního ložiska

Pro zachycení axiální síly se používají segmentová ložiska, u kterých činná ploch tvoří 65-80% z celkové plochy mezikruží.

Vnější průměr ložiskových segmentů

$$D_1 = 725 \ [mm] \tag{7.20}$$

Vnitřní průměr ložiskových segmentů

$$D_2 = 440 \ [mm] \tag{7.21}$$

Nosná plocha segmentů pro specifický tlak p = 2 [MPa] zvolený dle literatury [2]

$$A_s = \frac{F_{ac}}{p} = \frac{323\ 059,4}{2\cdot 10^6} = 0,161\ [m^2]$$
(7.22)

Pro jmenovité otáčky turbíny n = 3000 [1/min] se poměr obvodového a radiálního rozměru segmentu volí $\frac{a}{b} \sim 1$.

Radiální rozměr segmentu je

$$b = \frac{1}{2} \cdot (D_1 - D_2) = 142,5 \ [mm] \tag{7.23}$$

Počet segmentů z

$$z' = \frac{A_s}{b} = 8,98 \ [-] \tag{7.24}$$

Po zaokrouhlení na celé číslo je skutečný počet segmentů z = 9[-] a je možné určit skutečnou plochu segmentů

$$A' = z \cdot b^2 = 182756 \ [mm^2] \tag{7.25}$$

Skutečný specifický tlak

$$p' = \frac{F_{ac}}{A'} = 1,77 \ [MPa] \tag{7.26}$$

Musí být splněna podmínka p' < 2MPa

8 Bilance výkonu a stanovení účinnosti

Při určování účinností a výkonů je vycházeno z výpočtu průtočné části turbíny a výpočtu tepelného schématu. Z návrhu průtočné části je zřejmé, že se podařilo dosáhnout požadovaného výkonu a to dokonce s jistou rezervou.

Při jmenovitém výkonu $P_i = 120[MW]$ bylo dosaženo celkové tepelné účinnosti cyklu $\eta =$ 35,3%. Účinnost cyklu je limitována dvěma faktory. Prvním je absence dokonalejšího regeneračního systému, který se skládá jen z odplyňováku a jednoho nízkotlakého ohříváku. Druhým důvodem je že z turbíny se odvádí pára do procesu. Tato pára tak nemůže vykonat práci v turbíně.

Z rovnice (8.8) je patrné, že do účinnosti cyklu příznivě přispívá chladič procesní vody, jehož příspěvek činí zhruba 1%.

8.1 Tepelná účinnost při jmenovitém výkonu (120 MW)

Teplo přivedené v kotli

$$Q_p = \vec{m} \cdot (i_0 - i_{NV}) = 124,43 \cdot (3384,7 - 632,7) =$$

$$= 342\,429,93\,[kWt]$$
(8.1)

Elektrický výkon na svorkách generátoru je získán součtem výkonů jednotlivých stupňů

$$P_G = \sum P_{st} \cdot \eta_m \cdot \eta_G = 120\ 869\ [kW] \tag{8.2}$$

Tepelná účinnost celého cyklu

$$\eta = \frac{P_G}{Q_p} \cdot 100 \% = \frac{120\,869}{342429,93} \cdot 100 \% = 35,3 \%$$
(8.3)

Tepelná účinnost cyklu bez započtení chladiče kondenzátu

$$\eta_{\check{c}} = \frac{P_G}{Q_p + Q_{ch}} \cdot 100 \% = \frac{120\ 869}{342429,93 + 7,2 \cdot 10^3} \cdot 100 \%$$
(8.4)
= 34,6 %

Vnitřní termodynamická účinnost turbíny při jmenovitém výkonu dosahuje hodnoty

$\eta_{TD} = 85,64 \%$ 8.2 Tepelná účinnost při sníženém výkonu (90 MW)

Teplo přivedené v kotli

$$Q_p = \vec{m} \cdot (i_0 - i_{NV}) = 94,24 \cdot (3384,7 - 632,7) =$$

$$= 259361,5 [kWt]$$
(8.5)

Elektrický výkon na svorkách generátoru je získán součtem výkonů jednotlivých stupňů

$$P_G = \sum P_{st} \cdot \eta_m \cdot \eta_G = 90587,5 \ [kW] \tag{8.6}$$

Tepelná účinnost celého cyklu

$$\eta = \frac{P_G}{Q_p} \cdot 100 \% = \frac{90587,5}{259361,5} \cdot 100 \% = 34,92 \%$$
(8.7)

Tepelná účinnost cyklu bez započtení chladiče kondenzátu

$$\eta_{\check{c}} = \frac{P_G}{Q_p + Q_{ch}} \cdot 100 \% = \frac{90587,5}{259361,5 + 7,2 \cdot 10^3} \cdot 100 \%$$
(8.8)
= 33,98 %

Vnitřní termodynamická účinnost turbíny při jmenovitém výkonu dosahuje hodnoty $\eta_{TD} = 85,59 \%$

9 Závěr

Cílem diplomové práce byl návrh retrofitu jednotělesové kondenzační parní turbíny 120 MW. Po nastínění rozsahu prováděného retrofitu byl proveden výpočet tepelné bilance cyklu a průtočné části turbíny. Na základě vypočtených hodnot byly zvoleny profily rozváděcích a oběžných lopatek. Všechny navržené rozměry průtočné části byly následovně pevnostně ověřeny. Výsledné rozměry byly použity v přiloženém výkresu podélného řezu parní turbíny.

Navržená parní turbína se skládá z 19 stupňů, přičemž první stupeň je stupněm regulačním. Z turbíny je odváděna pára celkem na třech místech. Prvním je procesní odběr při tlaku 31,4 bar, tak aby byla pokryta tlaková ztráta v odběru. Následuje odběr pro napájecí nádrž s odplyněním a jeden odběr pro nízkotlaký ohřívák. Po stanovení hmotnosti rotoru byly určeny kritické otáčky turbíny. Na závěr byl proveden návrh a kontrola axiálních (opěrných) a radiálních (nosných) ložisek.

Výsledná vnitřní termodynamická účinnost cyklu byla stanovena na 85,59% a to při průtoku páry 124,4 kg/s. Konečný výkon turbíny se podařilo zvýšit na 120 869 kW. Celková tepelná účinnost cyklu je 35,3%. Účinnost je limitována nedokonalou regenerací.

Posledním úkolem této práce bylo vytvořit výkres podélného řezu turbíny. Jelikož se jedná o retrofit, byla známa geometrie vnějšího tělesa a pozice odběrů z turbíny. Této pevně dané geometrii bylo nutné přizpůsobit návrh průtočné části.

10 Seznam použitých zdrojů

- [1] J. KUČERA, "Parní turbíny a kondenzátory," Přednáška ZČU, Plzeň, 2019.
- [2] J. ŠKOPEK, Parní turbína- Tepelný a pevnostní výpočet, Plzeň: Západočeská univerzita v Plzni, 2007.
- [3] F. Jan, "Parní turbíny Návrh a výpočet," Akademické nakladatelství CERM, Brno, 2004.
- [4] J. LOUTHAN, "Parní turbíny a kondenzátory," Přednáška ZČU, Plzeň, 2019.
- [5] J. BEČVÁŘ, Tepelné turbíny, Praha: Nakladateltví technické literatury, 1968.

Seznam obrázků

Obrázek 1: Expanzní křivka i-s diagram	16
Obrázek 2: Tepelné schéma cyklu	17
Obrázek 3: Konstrukční schéma NTO	19
Obrázek 4: Bilance v napájecí nádrži	22
Obrázek 5: Bilance v NTO	22
Obrázek 6: i-s diagram expanze páry v turbíně	24
Obrázek 7: Lopatkový plán průtočné části	
Obrázek 8: Rychlostní trojúhelníky turbínového stupě	
Obrázek 9: Charakteristické rozměry lopatkové mříže	
Obrázek 10: Závěs typu T	49
Obrázek 11: Vidličkový závěs	
Obrázek 12: 3D model rotoru	61

Seznam tabulek

13
20
24
30
31
32
36
37
38
40
40
41
41
42

Západočeská univerzita v Plzni, Fakulta strojní,Diplomová práce, akad.rok 2019/2020Katedra energetických strojů a zařízeníBc. Martin Janeček

Tabulka 16: Pevnostní kontrola OL stupeň 1-7	47
Tabulka 17: Pevnostní kontrola OL stupeň 8-14	47
Tabulka 18: Pevnostní kontrola OL stupeň 15-19	
Tabulka 19: Pevnostní kontrola závěsu typu T (OL 2-7)	51
Tabulka 20:Pevnostní kontrola závěsu typu T (OL 8-12)	51
Tabulka 21: Pevnostní kontrola vidličkového závěsu	54
Tabulka 22: Pevnostní kontrola RK 1-7	56
Tabulka 23: Pevnostní kontrola RK 8-14	56
Tabulka 24: Pevnostní kontrola RK 15-19	57
Tabulka 25: Pevnostní kontrola RL 1-7	59
Tabulka 26: Pevnostní kontrola RL 8-14	59
Tabulka 27: Pevnostní kontrola RL 15-19	60
Tabulka 28: Dimenze potrubí	61
▲	

Seznam příloh

Příloha 1: Profily lopatek	72
Příloha 2: Dovolená napětí materiálu	73
Příloha 3: Součinitel o pro výpočet namáhání RK	74
Příloha 4: Youngův modul pružnosti	75
Příloha 5: Součinitel μ pro výpočet průhybu RK	76
Příloha 6: Tepelné schéma parní turbíny 120 MW	77
Příloha 7: Tepelné schéma turbíny 90 MW	78
Příloha 8: Rychlostní trojúhelníky	79

Příloha 1: Profily lopatek

Označení Profilu	α; (°)	α ₀ (°)	t _{opt}	M1s ^{opt} , M1s ^{opt}	b ₀ (cm)	So (cm ²)	Jomin (cm [®])	Womin (cm ³)
S - 90 - 09A	8 až 11	70 až 120	0,72 až 0,85	do 0,90	6,06	3,45	0,416	0,471
S-90-12A	10 až 14	70 až 120	0,72 až 0,87	do 0,85	6,25	4,09	0,591	0,575
S - 90 - 15A	13 až 14	70 až 120	0,70 až 0,85	do 0,85	5,15	3,3	0,36	0,45
S-90-18A	16 až 20	70 až 120	0,70 až 0,80	do 0,90	4,71	2,72	0,243	0,333
S-90-22A	20 až 24	70 až 120	0,70 až 0,80	do 0,90	4,5	2,35	0,167	0,265
S-90-27A	24 až 30	70 až 120	0.65 až 0.75	do 0.90	4,5	2,03	0,116	0,195
S - 90 - 33A	30 až 36	70 až 120	0,62 až 0,75	do 0,90	4,5	1,84	0,09	0,163
S - 90 - 38A	35 až 42	70 až 120	0,60 až 0,73	do 0,90	4,5	1,75	0,081	0,141
S - 55 - 15A	12 až 18	45 až 75	0,72 až 0,87	do 0,90	4,5	4,41	1,195	0,912
S - 55 - 20A	17 až 23	45 aż 75	0,70 až 0,85	do 0,90	4,15	2,15	0,273	0,275
S-45-25A	21 až 28	35 aż 65	0,60 až 0,75	do 0,90	4,58	3,3	0,703	0,536
S-60-30A	27 až 34	45 a2 85	0,52 až 0,70	do 0,90	3,46	1,49	0,118	0,154
S-65-20A	17 až 23	45 až 85	0,60 až 0,75	do 0,90	4,5	2,26	0,338	0,348
S-70-25A	22 až 28	55 až 90	0,50 až 0,67	do 0,90	4,5	1,86	0,242	0,235
S-90-12B	10 až 14	70 až 120	0,72 až 0,87	0,85 až 1,15	5,66	3,31	0,388	0,42
S - 90 - 15B	13 až 17	70 až 120	0,70 až 0,85	0,85 až 1,15	5,2	3,21	0,326	0,413
S - 90 - 12D	10 až 14	70 až 120	0,58 až 0,68	1,40 až 1,80	4,09	2,3	0,237	0,324
S-90-15D	13 až 17	70 až 120	0,55 až 0,65	1,40 až 1,70	4,2	2	0,153	0,238

NĚKTERÉ CHARAKTERISTIKY PROFILŮ - rozváděcí

α₀ vstupní úhel

NĚKTERÉ CHARAKTERISTIKY PROFILŮ - oběžné

Označeni Profilu	β ₂ (°)	β ₁ (°)	t _{apt}	M1s ^{opt} , M1s ^{opt}	b _o (cm)	So (cm ²)	Jomin (cm ⁴)	Worgin (cm ³)
R-23-14A	12 až 16	20 až 30	0,60 až 0,75	do 0,95	2,59	2,44	0,43	0,39
R-26-17A	15 až 19	23 až 35	0,60 až 0,70	do 0,95	2,57	2,07	0,215	0,225
R-30-21A	19 až 24	25 až 40	0,58 až 0,68	do 0,90	2,56	1,85	0,205	0,234
R - 35 - 25A	22 až 28	30 až 50	0,55 až 0,65	do 0,85	2,54	1,62	0,131	0,168
R - 46 - 29A	25 až 32	44 až 60	0,45 až 0,58	do 0,85	2,56	1,22	0,71	0,112
R-60-33A	30 až 36	47 až 65	0,43 až 0,55	do 0,85	2,56	1,02	0,044	0,079
R-60-38A	35 až 42	55 aż 75	0,41 až 0,51	do 0,85	2,61	0,76	0,018	0,035
R - 23 - 14A _k	12 až 16	20 až 30	0,60 až 0,75	do 0,95	2,59	2,35	0,387	0,331
R-26-17Ak	15 až 19	23 až 45	0,60 až 0,70	do 0,95	2,57	1,81	0,152	0,165
R-27-17B	15 až 19	23 až 45	0,57 až 0,65	0,80 až 1,15	2,54	2,06	0,296	0,296
R - 27 - 178k	15 až 19	23 aż 45	0,57 až0,68	0,85 až 1,15	2,54	1,79	0,216	0,216
R-30-21B	19 až 24	25 až 40	0,55 až 0,65	0,85 až 1,10	2,01	1,11	0,073	0,101
R - 35 - 25B	22 až 28	30 až 50	0,55 až 0,65	0.85 až 1,10	2,52	1,51	0,126	0,159
R-21-18D	16 až 20	19 až 24	0,60 až 0,70	1,30 až 1,60	2	1,16	0,118	0,142
R - 25 - 22D	20 až 24	23 až 27	0,54 až 0,67	1,35 až 1,60	2	0,99	0.084	0,1

Platí pro profily o šířce B₀ = 25 mm

(jen pro oběžné lopatky)

Typ A (podzvukové) pro M < 0,7 - 0,9

B (transonické) 0,9 < M < 1,15

C (nadzvukové) 1,1 < M <1,3

D (rozšiřující se, Lavalovy dýzy M > 1,3 - 1,5
	the second	Azev mater.	ELCON D	1 TI BK	S20, 100, 20A	0.300.	11000	73. au	0.420.	6-00-b	60. 4B	0. 3UI	J. 310.	320.	DEC	240.5	T R	VI PER	0.100	. 200.	300.	600.3	00. 501		oznámky až do konce	
ē	0101	15 128.5	363.	550.	181.172.159	0. 147.	139.1	35, 13,	1.128	125.1	21.10	9. 84	73.	99	8	30	3	214	6. 211.	20%	197	1 38	161 164	10.	echy, výkovky i nad 400° C	
0	0102	11 523.1	304	400.	152, 132, 118	1 103.	.53	87. 61										216	0.210	102	197.	=			lechy, vykovky i do 400° C	
019	0103	422347.6	410.	550.	216.196.181	. 172	167.1	64, 161	2,160.	1221	25. 10	0. 30	12 1	19	51.	- 10	z	213	3.211	204	193.1	1.166.1	77.16	*	ditky i nut 400° C	
8	0104	022744.6	184	5540.	142, 137, 130	2, 127.	123.1	18, 111	1,109	103.1	01. 9	R 83	14	19	-15	43.	36.	213	3.210	204	197.	1.88	79.161	s. "o	dlicky i nad 400° C	
AZ	1 5010	422742.6	314.	500	157. 142. 121	7.115.	108.1	03. 91	1. 96.	3	86. 3	1 33	2					212	2. 209.	. 2001.	1961	87.1	76.164	* *	dlitky i nad 400, do 500° C i do	8 turn
0 10	0106	422713.5	245.	400.	123.113, 99	8. 83.	68	59. 4/										212	2.208	. 202.	193.	34.		*	ditky I do 400° C	
8	0107	422904.5	767	350.	147, 132, 118	R. 108.	103.											216	6.211	201	196.	87.		3	workent. (pro jademet 220)	
i i	0108	SN 422903.6	360.	400	180.145.140	0. 135.	132.1	31.13									1	ň	4, 209	207	193	2		10.0	provival. (pro jademe 1000)	
0	0100	422425	245	250	59. 59. 59	5. 59.												124	6, 124	121	116			*	mins i do 250° C	
1¢	0201	15 128.5	274.	550	220.214.20	7. 196.	172.1	22. 17.	2.153.	153.1	33.13	1. 133	8	198	39.	50. 5	6							£1.	6c, vt profily i nad 400° C	
8	0202	15 335.3	392	550	314, 229, 28,	2.267.	251.2	51.25	1.212.1	212.1	72.13	2.172	133.	133.	94. 5	34. 9	*							· 10	de, vi profily i nad 400° C	
do	0203	17 021.2	274.	400.	220.204.181	8. 180.	172.1	72. 17																· .	Ce, st profily i do 400° C	
0	0204	422745	319.	550.	255.245.24	0.235.	220.2	20. 221	0.208.	208.1	24.13	4, 134	88	88	50. 5	19. 31								. 6	testić odlaky u starých strojá	
AZI	0205	SN 422903	360.	400.	284. 231. 223	1.216.	208.2	02.30									Ĩ							*	uitovank rozvádňcí kola i do 400	U L
0	0206	422904	294.	400	235.220.206	191.	1881	\$6,131																· .	veřevená norváděcí kola i do 400	U.L
8	0207	422905	245.	400	196, 180, 166	9.161.	153.1	53.15																	ev. Jop. zullté v Sedé litiné (NT)	
8	8020	Alsh-CSIR-J	443	550	353.328.309	9.279.	258.2	58.25	231.	231.1	47.14	7.147	115.	115.	100	の対	20							¥.,	Iszborn, nahrada 15 335	
8	1060	15 335.9	490.	550.	196, 186, 174	6. 157.	147.1	42, 13	7, 133.	129.1	23.11	3.103	88	.66	28	F d								•		
0	0302	15 320.9	490	550.	196.186.178	\$. 157.	147.1	42, 13	7, 133.	129.1	23.10	8, 83	20.	59.	50. 4	12 3	vi							>	T.ST rotory mané naméhané a s	audered it.
10 14	0303	16 236.6	539.	550.	216.201.180	\$ 167.	157.1	55, 15	1.142.	132.1	23. 10	8. 93	- 86	-18	77 0	5 3	N							2.	T.ST notony vice namehand a ter-	Alejší
010	0304	16 431.6	588.	500.	235.216.196	\$ 176.	167.1	62, 15	7.152	137.1	18. 9	12 4												•		
B N	0305	16 431.9	637.	500	255. 235. 216	\$ 196	186.1	81.17	S 172.	137.1	18. 9	12 2												•		
8	9000	16 444.6(.9)	135.	027	22.02.20	5.230	216.1	96.17	6.147.															P.	sky skládných rotorů	
8	1060	16 536.6	686	420	276, 260, 23	5.216.	206.1	11.16	6. 347	192														P.	sky svař. NT rotorů, běžně použ	Tyunk
8	0308	16 536.6 a	334.	420.	314, 299, 27	6. 245.	230.2	006.17	6. 147.	1														ф.	sky do Eliky 500 mm	
0	0401	PAK 1.6	490.	460.	196, 186, 172	2 157.	137.1	23. 8	69	53.	11															
ion top	0402	PAK 1.6 vyk.	539.	420	216.206.186	\$ 172.	152,1	32 9	1 18																	
9	0403	PAK 2MV.7	570.	\$50	230. 221. 21	1.201.	191.1	86.18	1.176	1721	67.16	121.12	123	103.	22	新美										
8	0404	P-AK 1 TD	686	200	275, 260, 24	wi																				
likv 0	10501	15 320.9	SSE	550.	157, 150, 144	1.125.	115.1	10.10	5. 102.	66	96. 8	2. 63	52.	44,	37. 3	1. 26	1									

Příloha 2: Dovolená napětí materiálu

Příloha 3: Součinitel φ pro výpočet namáhání RK

Příloha 4: Youngův modul pružnosti

Příloha 5: Součinitel µ pro výpočet průhybu RK

Příloha 6: Tepelné schéma parní turbíny 120 MW

Příloha 7: Tepelné schéma turbíny 90 MW

Příloha 8: Rychlostní trojúhelníky

