Zapadoceska univerzita v Plzni
Fakulta aplikovanych véd

MODELOVANI VLIVU EROZE
NA GEOMETRICKE OBJEKTY

Ing. Véra Skorkovska

disertacni prace
k ziskani akademického titulu doktor
v oboru Informatika a vypo¢€etni technika

Skolitel: prof. Dr. Ing. lvana Kolingerovéa

Katedra: Katedra informatiky a vypoéetni techniky

Plzen 2019

University of West Bohemia
Faculty of Applied Sciences

MODELING OF EROSION IMPACT
ON GEOMETRIC OBJECTS

Ing. Véra Skorkovska

doctoral thesis
submitted in partial fulfillment of the requirements
for the degree of Doctor of Philosophy
in Computer Science and Engineering

Supervisor: prof. Dr. Ing. Ivana Kolingerova

Department: Department of Computer Science and Engineering

Pilsen 2019

Prohlaseni

Predkladam timto k posouzeni a obhajobé disertacni praci zpracovanou na zaver
doktorského studia na Fakulté aplikovanych véd Zapadoceské univerzity v Plzni.
Prohlasuji, ze jsem tuto préci zpracovala samostatné s pouzitim odborné literatury
a dostupnych pramenu uvedenych v seznamu, jenz je soucasti této prace.

V Plzni dne Ing. Véra Skorkovska

Abstrakt

Simulace eroze je dulezitym problémem v oblasti pocitacové grafiky. Nejvyz-
namnéjsimi eroznimi procesy v prirodé jsou zvétravani a hydraulickd eroze. Mnoho
metod se témito problémy zabyva, ale vétsinou jsou tyto metody zalozeny na
vyskovych mapach nebo volumetrickych datech. Vyskové mapy neumoznuji sim-
ulaci slozitych plné trojrozmérnych scén, zatimco volumetrickd data maji vysoké
pamét’ové naroky. Tato diserta¢ni prace zkouma vyhody reprezentace erodovanych
objekti pomoci trojuhelnikovych siti a navrhuje feseni problému, které vznikaji
v dusledku pouziti této datové struktury. Trojuhelnikové sité se ukazaly byt
vhodnou datovou strukturou pro pouziti pii simulaci eroze diky jejich adaptivité
a moznosti modelovat slozité konkavni prvky scény. Pouziti trojihelnikovych siti
vSak prinasi nové problémy, napiiklad problém vzniku nekonzistence sité v dusledku
silné eroze nebo problém simulace slozitych scén slozenych z vice materialu. Tato
prace zkouma zminéné problémy a navrhuje jejich mozna teseni.

Abstract

Erosion simulation is an important problem in the field of computer graphics. The
most prominent erosion processes in nature are weathering and hydraulic erosion.
Many methods address these problems but they are mostly based on height fields or
volumetric data. Height fields do not allow the simulation of complex fully 3D scenes
while the volumetric data have high memory requirements. This thesis explores the
advantages of representing the eroded objects as triangular meshes and proposes
solutions to problems that arise due to the use of this data structure. Triangular
meshes prove to be an advantageous data structure for erosion simulations due to
their adaptivity and the possibility to model complex concave features. However,
the use of the triangular meshes brings new problems to the erosion simulation, such
as the problem of creation of an inconsistency in the mesh due to heavy erosion or
the problem of simulation of complex scenes composed of multiple materials. This
thesis explores these problems and suggests possible solutions.

Acknowledgements

I wish to express my gratitude to all the people who supported me during the
realization of this thesis. First and foremost, I would like to thank my supervisor
prof. Dr. Ing. Ivana Kolingerova for her valued advice and never-ending patience.
This thesis would not have been possible without prof. Ing. Bedfich Benes, PhD.,
whose experience in this field of research was very helpful. My thanks also go to my
family and my friends whose support was very important during my studies.

11

Contents

2_Erosionl

2.1 Weathering| . .

2.3 Hydraulic Erosion|. o000

[2.3.1 Physically Inspired Solutions|.

[2.3.2 Physically Based Solutions|

B 3D Flud Simulation
[3.1 Eulerian Approachl 0oL

[3.2 Lagrangian Approach|.

[3.2.1 Smoothed Particle Hydrodynamics|

[3.2.2 Other particle-based fluid models|

[3.3 Semi-Lagrangian

Approach[.

Data Structures for Erosion Modeling|

[4.1 Height Map| . .

17
18
19

21
22
24
26
27
28

31
31
32
33
35
36

37
37
38
39
39
40
41

13

[5 Repair of Intersecting Meshes| 43
[>.1 Global Approaches| 43
[>.2 Local Approaches| oo 45

[5.2.1 Neighbor Tracing Method| 47

6 Materials| 51

(7__Contributions| 55

[8 Hydraulic Erosion Modeling on a Triangular Mesh| 57
8.1 Flud-Terrain Interactionl oo 58
[8.2 Erosion and Deposition|. 00, 59
8.3 Mesh Modification| o000 59
BZ Resultd. 61
[8.5 Method Summary and Future Workl 63

[9 A Unified Curvature-Driven Approach for Weathering and Hy- |

| draulic Erosion Simulation on Triangular Meshes| 65
0.1 Curvature estimationl 65
9.2 Vertex displacement| 66
9.3 Weathering| 68
9.4 Hydraulic Erosion|. oo 69
D5 Resultd. o 70

[9.5.1 Weathering| 0 71
[9.5.2 Hydraulic erosion| 72
9.0.3 Fxecution timelo 76
9.6 Method Summary and Future Workl 79

(10 A Simple and Robust Approach to Computation of Meshes Inter- |

[_section 81
(10.1 Intersection Boundary Detection|. 82
(10.2 Mesh Fixing| 87
MO3 Resullsl. oo oo 88
(10.4 Method Summary and Future Workl 94

14

(11 Complex Multi-Material Approach for Dynamic Simulations| 95

(1.1 Materialin a Vertex] 95
(11.2 Division by a Plane|o 96
(11.3 Division by a Function|, 97
[11.4 Binary Space Partitions] 98
(L1.5 Automated Generation of the BSP Treel. 100
(11.6 Results and Experiments| 102

(11.6.1 Splitting Planes| 102

(11.6.2 Implicit Splitting Surfaces| 103

11.6.3 Automated Generation of the BSP Treel 105
(11.7 Method Summary and Future Workl 109

(12 Erosion-Inspired Simulation of Aging for Deformation-Based Head |

[Modeling] 111
(12.1 Remeshing|. 112
[12.2 Detection of the Affected Regions| 112
(12.3 Local Subdivision of the Meshl 112
(12.4 Frosion Factor. 113
(12.5 Mesh deformationlo 114
M26 Resulfd o o oo 114
12.7 Automatic Detection of Control Pomntsl 117
[12.8 Method Summary and Future Workl 118

(13 Summary of Contributions| 121

14 Conclusion| 123

A Professi [Actvitics 133

15

Chapter 1

Introduction

Erosion is an important land-changing process and as such it deserves our attention.
Erosion is mainly observed as a process that shapes the landscape over the years,
but its effects can also be observed on smaller individual objects. As the erosion of
the land surface is the most important, it will be given higher attention. However,
the erosion algorithms can be generalized and applied to general objects as well.

In computer graphics, erosion is mainly seen as a means of creating visually plausible
models of terrains for the use in various fields, such as animation or computer games.
The existing erosion approaches usually fall into one of two groups: volumetric
approaches or approaches working on a height field. The height field data structure
is very straightforward and the algorithms built upon it can be very fast, but it
cannot be used to model fully 3D scenes as a consequence of its simplicity. On the
other hand, the volumetric solutions can represent any object with concave features
and complex topology, but the methods are memory demanding and usually much
slower than the methods based on height fields.

While some of the most recent erosion methods in the field of computer graph-
ics focus on automated generation of large visually plausible complex landscapes
(|Cor+16; |Cor+17]), there are still many open problems in smaller-scale erosion
simulations as none of the existing methods allows for the simulation of erosion on
small-scale but complex fully 3D objects that would have sufficient quality and at
the same time would not be very computationally expensive.

Our main interest lies in the simulation of hydraulic erosion and weathering, as
they have the biggest influence on the landscape evolution. Our goal is to propose
a spatially adaptive solution that would be capable of working with fully 3D objects
while maintaining real-time characteristics.

Triangular mesh data structure fits our requirements as it can represent any object
and its resolution can be adaptively adjusted according to the local complexity of
the eroded object. The adaptivity of triangular meshes and the possibility to model
complex concave features are the main advantages of the data structure in relation
to erosion simulation. The triangular mesh data structure allows to model an object
adaptively with varying density of vertices based on the complexity of the object,
leading to lower memory requirements of the scene when compared to the volumetric

17

approaches, while it keeps the ability to model fully 3D scenes with complex features.
Also, as triangular meshes are by far the most commonly used object representation
in computer graphics, it is reasonable to design methods using this structure.

However, the use of triangular mesh data structures introduces other challenges.
It may be more difficult to estimate the object properties such as curvature on
irregular data structures. Also, when the triangular mesh is being deformed during
the simulation, it has to be deformed in such a manner that does not damage its
integrity or alternatively, a mesh repair algorithm needs to be applied to restore the
correct topology.

Another problem that arises due to the use of triangular mesh data representation
is the problem of erosion of non-homogenous objects composed of several different
materials. Real-life erosion scenes are usually formed of multiple materials and so
a reliable means of material definition suitable for triangular meshes is needed.

1.1 Aim of the Thesis

Our aim is to propose a complex erosion simulation approach that will be capable of
simulating hydraulic erosion and weathering on both complex terrains, containing
features such as caves, tunnels or overhangs, and also general objects, such as statues
or other man-made objects. Our focus is on the creation of a unified solution that
could be used for both scientific simulations, such as the evolution of landscape or
river systems, or for creation of visually plausible eroded terrains or general objects
- just by exchanging the underlying erosion simulation equations.

As the triangular mesh data structure seems to be a valid candidate for the data
representation structure for the proposed erosion approach due to its adaptivity and
capability of representing any complex features, a secondary aim of the thesis is to
prove the soundness of the data structure choice and to propose possible solutions
to the problems that are caused by the use of the data structure.

The objective of the thesis is to propose solutions to the following problems:

e Hydraulic erosion of complex concave terrains, including terrains with caves,
tunnels or overhangs

e Hydraulic erosion of general objects, such as statues or other man-made objects

e Weathering simulation based on similar principles as the hydraulic erosion
simulation

e Correct handling of topology changes in the triangular mesh, such as merging
or splitting

e Erosion simulation of multiple material scenes

18

1.2 Thesis Structure

The thesis is divided into two main parts. The first part of the thesis explains the
background of the problem and summarizes the state-of-the-art solutions that focus
on erosion simulation and connected areas of research. The second part builds up
on the existing methods and presents our contributions to the problem of erosion
simulation.

The structure of the thesis is as follows: Chapters [2| and [3| describe the state-of-the-
art methods used in erosion simulation in computer graphics. Chapter [summarizes
the data structures that are the most common in erosion simulations. Chapter
introduces the problems of mesh repair and describes the existing solutions and
their strengths and weaknesses. Chapter [6]lists the most common approaches to the
definition of multiple materials.

Our contributions start with Chapter [7]that shortly introduces the proposed methods
which are then discussed in further detail in the following Chapters. Chapter
describes our solution to the hydraulic erosion problem based on the combination
of terrains represented by triangular meshes with fluid represented as a particle
system. Chapter [J] extends the solution to create a unified approach for simulation
of both hydraulic erosion and weathering. Chapter addresses the problem of
repair of intersections that can be created during the erosion simulation. Chapter
presents several possible approaches for simulation of multiple materials. Chapter
takes the erosion principles and applies them to 3D head models to simulate aging.
Finally, Chapter [L3] summarizes our contributions and suggests possible avenues for
the continuation of our research and Chapter [14] concludes the thesis.

19

Chapter 2

Erosion

Erosion is a process happening in nature by which material such as sand and rocks
is taken from its original location, transported and deposited at another location by
the means of water, wind or other natural forces. Erosion is a long-term process
that has a huge impact on the evolution of the landscape over the years. It can
be observed in large-scale scenarios as well as on smaller individual objects, such
as rocks and stones. Man-made objects, e.g., buildings, roads or statues, are also
affected by the erosion processes.

Erosion is usually studied in the context of terrain alteration where it is the most
noticeable. In computer graphics, erosion simulation has a long history as a means
of generating visually plausible artificial terrains. The first attempts to create arti-
ficial terrains tried to generate the terrains straight away but the generated terrains
usually looked too sharp and unrealistic. As the performance of the computers im-
proved, new approaches to the terrain modeling appeared. Most of the improved
methods were based on erosion. The approaches simulate the natural processes that
form the terrain in the real world. A generated artificial terrain (e.g., a terrain
created using a fractal geometry [Man82]) is taken as a base and altered using an
erosion simulation. However, erosion as it takes place in the nature is a very complex
process and it is not easy to simulate. Even with the modern powerful computers it
is not possible to create an erosion simulation that would be both physically exact
and at the same time running in real-time.

Erosion processes can be subdivided into three main categories: weathering, wind
erosion and hydraulic erosion. Hydraulic erosion is leaving the most significant
mark on the landscape and as such it draws the biggest attention of the researchers.
Hydraulic erosion is not only the erosion caused by rain and flowing or still water,
erosion caused by glaciers and avalanches also fall into this category. Wind erosion
is generally not causing so substantial changes but in certain landscapes, such as
desert sceneries, its effects can be essential.

21

rimrock

hillslide ’ ’
J 111 ‘ I'L

(a) Table mountain shape (b) Inner structure of a table mountain

Figure 2.1: Generation of table mountains [BAO5|

2.1 Weathering

Weathering is a process of breaking down rocks, e.g., due to the contact with chem-
ical substances, living organisms or due to thermal changes. Weathering happens
in place without material transferring to other locations, so it is not an erosion pro-
cess in the strict meaning of the term. But in the field of computer graphics it is
commonly ranked as erosion as it is often coupled with other erosion processes.

Thermal weathering is the most common weathering process. It is caused by expan-
sion and contraction of the material due to the temperature changes. This process is
the most distinctive in the deserts, where the temperatures vary greatly between day
and night. The eroded material drops off of the rocks and falls down to the ground,
where it creates talus slopes with a critical angle defined by the material. When the
angle of the talus exceeds a critical value, movement occurs and the material slides
down to restore the state of equilibrium.

One of the first algorithms on this matter was introduced by Musgrave et
al. [MKMS89]. They presented a new two-step approach to the synthesis of frac-
tal terrain height fields with local control of fractal dimension. In the first pass,
a fractal terrain is generated using a noise function to locally influence the smooth-
ness and asymmetry of the terrain. In the second pass, a simplified global erosion
is applied. At each time step they compare the difference in heights of each vertex
and its neighbors and if the slope is greater than the critical talus angle, some of
the material is moved to the lower neighbors. Using this simple algorithm the scene
converges to stable slopes. Many other researchers have adopted this approach and
used it in their simulations.

Benes and Arriaga presented a method designed to generate table mountains
in [BAO5]. The goal of the work is a geologically inspired algorithm which can
simulate visually plausible terrains. They work with two types of material: hard
rock and soft eroded material (sand). The hard material is eroded when exposed
to moisture and thermal changes and the eroded parts are falling off and becoming
the soft material (Figure 2.1). The motion of the soft material is simulated by a dif-
fusion algorithm to achieve an equilibrium state and the characteristic hillsides of
table mountains.

Dorsey et al. [Dor+99| presented a method for modeling and rendering of weathered
stones. They proposed a novel voxel surface-aligned data structure called slab that
works as an intermediate between the stone and the surrounding erosion factors.

22

Figure 2.2: Slab data structure [Dor+99|

The slabs constrain the erosion computation to the regions adjacent to the surface
of the object and allow the sampling of the object beneath the surface. Each slab
is a trilinear volume defined by its eight corners, neighboring slabs share the cor-
responding four corners (Figure . They designed the algorithm to simulate the
flow of water and dissolution and transportation of minerals that causes the surface
erosion.

Beardall et al. proposed a method for generating sandstone structures
called goblins using a voxel-based simulation of spheroidal weathering. They ap-
proximate the effects of spheroidal weathering by using bubbles centered in the
voxels. Spheroidal weathering is simulated for voxels on or near the surface by com-
puting the ratio of air to stone within a fixed bubble-shaped volume around each
voxel. The amount of erosion at each voxel is then calculated as a function of that
ratio and the voxel’s resistance to weathering.

A similar method that works with 3D objects was proposed by Jones et al. [Jon+10].
They presented an algorithm for spheroidal and cavernous weathering of rocks with
concave surfaces which allows the user to control the durability of the material and
by doing so affecting the resulting scene. The algorithm is built on a voxel grid and
the erosion is calculated through the mean curvature estimation. The method is
not physically accurate but produces visually plausible results which can be used in
computer animation or games (see Figure 2.3).

Tychonievich and Jones proposed a weathering method using a tetrahedral mesh
data structure in [TJ10]. The mesh is based on Delaunay deformable models (DDM).
In each iteration of the algorithm, the vertices of the mesh are moved to their
new location to simulate erosion (Figure and a new Delaunay triangulation
(DT) is constructed (Figure 2.4D). By moving the vertices and building the new
triangulation the information about the material in each of the vertices is lost.
To restore it, a backward advection scheme is used: for each cell of the DT the
mean offset of its vertices is found and applied to the circumcenter of the cell, the
material that occupied this location in the previous frame is assigned to the cell

23

Figure 2.3: Various weathered rocks created by spheroidal and cavernous weathering
|[Jon+10)]

‘e lp Vo o

(a) Initial models) DT of the offseted (c) Material correla- (d) Resulting models
with vertices offsets vertlces tion

Figure 2.4: Material restoration in tetrahedra-based erosion simulation [TJ10]

(Figure 2.4d). The newly created DT serves as a base for the next iteration of the
algorithm (Figure . The authors demonstrate the use of the data structure
in weathering and erosion simulation whose objective is the creation of visually
plausible scenes for the use in computer animations. The main drawback of their
approach is that it is not capable of running interactively as the creation of the DT
in each step of the algorithm is very computationally expensive.

Warszawski and Nikiel proposed an erosion method for terrains with hardness layer
in [WN14]. In their approach, the erosion force is applied uniformly across the entire
model with local distribution of varying terrain sensitivity. They use a two-layered
model; the first layer represents the information about the height of the terrain
stored as a height map, while the second layer stores the hardness of the terrain.
They use synthetic data to demonstrate the capability of their method to drive the
erosion speed based on the terrain hardness (see Figure .

2.2 Wind Erosion

Wind erosion has major influence in arid landscapes where the hydraulic erosion
is nearly absent. Wind erosion consists of two main parts, abrasion of rocks and
transferring of the material particles. Abrasion happens when the wind carries the

24

(a) Height-field layer (b) Model after 100 steps (c) Hardness-field layer

Figure 2.5: Terrain model with hardness layer [WN14]

Figure 2.6: Desert scenery with wind-ripples [ONOO|

material particles and hits the solid surface of a rock, causing small pieces of the
material to fall off. The transfer of material takes place when the wind captures the
particles and moves them to a different location, creating formations such as sand
dunes or wind-ripples.

Onoue and Nishita proposed a method for modeling desert sceneries. They
use a height field terrain model and divide the erosion process into two parts, salta-
tion and creep. Saltation is the effect when the wind grabs a particle and lifts it to
move it, while creep is occurring when the wind moves the particle on the surface.
Equations describing the creation of the sand dunes and wind-ripples are proposed
in the paper. The two sand structures are created separately and then combined
during rendering using bump-mapping technique. Their results can be seen in Figure
2.0l

Benes and Roa extended their algorithm by adding an interaction with obstacles
in [BR04]. The material is accumulated on the windward side of the obstacles and the
wind shadow appears on the leeward side. The intensity of the wind is reduced in the
wind shadow based on the simplified geometry of the obstacle, causing a reduction
of the wind-ripples. The accumulation on the windward side is done by an extension
of the saltation and creep algorithm - if the particle is moved and the final position is
inside an obstacle, it is moved to the boundary. An example of a generated scenery
is shown in Figure

Miao et al. [MMWO1]| introduced a method to simulate the initiation and evolution
of the wind blown sand ripples and dunes. Their model is capable of reproducing

25

Figure 2.7: Material is accumulated on the windward side of the obstacles [BR04|

sand ripples and describe a repair of the destroyed rippled surface. They also include
an algorithm for sliding when the gradient of the sand slope is greater than the angle
of repose.

Hatano and Hatano published a method producing dune patterns such as
barchans and linear dunes from the initial random state. They studied the efficiency
of sand transport which turned out to be the most efficient for the linear transverse
dune and least efficient when no pattern was formed.

More recently, Wang and Hu proposed a physically and procedurally based method
for the simulation of sand movement and sand ripple evolution in [WHI12]. The
method is based on the physics of blown sand, i.e., the mechanical behavior of
individual sand grains, and defines a set of rules to create realistic desert scenes.
A simplified vegetation and wind field model is used to speed up the simulation.
The method is implemented on the GPU to achieve real-time simulations. Several
examples of desert scenes generated by the method are shown in Figure 2.8

Most recent papers from this area of research shift from the graphical view point to
more physically based approaches. Abdikerem et al. propose three kinds
of models with different complex air flow fields for the purpose of simulating the
sand ripple formation process. Wei et al. demonstrate in their paper that
the standard sine-shaped model for sand surface electromagnetic scattering does not
correctly describe natural sand ripples and propose a discrete model for sand ripples
generation.

2.3 Hydraulic Erosion

Hydraulic erosion is the erosion caused by still or lowing water, but also the erosion
caused by glaciers or avalanches. It has the most noticeable impact on the evolution
of the landscape. The erosion caused by rain can smooth the rocks and mountains
while the streams and rivers can cause the creation of river beds, valleys or canyons.

Hydraulic erosion methods can be subdivided into two categories: physically inspired
methods and physically based methods.

26

(a) Ripple marks in desert (b) A series of tranverse dunes

(¢) Aeolian sand flow in desert (d) Aeolian sand flow on dunes

Figure 2.8: Example desert scenes [WH12]

2.3.1 Physically Inspired Solutions

The physically inspired methods take inspiration in natural processes but do not try
to simulate them exactly. Their main purpose is to mimic the erosion impacts with
as little computational effort as possible, so that the results looked good without
the need to simulate the exact physical erosion processes.

Musgrave et al. proposed a simple hydraulic erosion algorithm simulating
rain effects on the terrain. The method starts by the deposition of water (rain)
on the vertices of the height field. The water erodes the terrain and moves the
sediment to lower locations. The implementation is done by associating the volume
of the water and the amount of sediment with each of the vertices in the height field.

Chiba et al. introduced a method based on velocity fields of the water flow.
They use particles to approximate the water volume, the erosion is evaluated when
a particle collides with the terrain. The algorithm is designed to simulate natural
ridges and valleys.

Benes and Forsbach describe a model for hydraulic erosion caused by running
water. The process consists of four independent steps that can be repeatedly applied
to achieve the desired visual effect. At first, the water appears at some locations,
simulating rain or water sources. Then the water erodes or dissolves the material
and captures the sediment which is transported in the third phase. The final step
representing the deposition process is affected by two factors. The water slows down
and the sediment settles on the ground as the water flow is not strong enough to
carry it anymore. The second factor affecting deposition is evaporation of the water

27

Figure 2.9: Rain simulation [BF02)

Figure 2.10: An example of generated landscapes: (1) default parameters, (2) a high
altitude rocky region, (3) a dense forest on a fertile ground, and (4) a sand-filled
desert with drought-adapted vegetation |Cor+17|

which causes the excess sediment in the particles to be deposited. An example
of simulation of fictive rain on the martial volcano Olympus Mons is captured in
Figure [2.9

Cordonnier et al. used a simple erosion method similar to the method
proposed by Musgrave et al. to create a complex framework for interactive
authoring of large-scale terrains. Their algorithm works on a layered height field
and allows the simulation of the mutual interaction between vegetation and erosion
processes. Their solution offers a great deal of user control; the user can influence
the scene and the simulation parameters during the modeling process. Figure [2.10)
shows an example of a landscape generated using their approach.

2.3.2 Physically Based Solutions

The physically based methods use hydrodynamics in order to simulate the erosion
processes more exactly. However, even methods from this category usually introduce
some simplifications of the fluid dynamics in order to speed up the simulation.

Fluid Dynamics A real fluid can change its volume but the changes are so small
that it is not possible to visually perceive them. The volume changes have such a tiny
effect on how the fluid moves that it is practically irrelevant in the field of computer
animation. This is a very import fact leading to a simplification and allowing us to
treat the fluids as being incompressible.

The fluid dynamics can be then described by the Navier-Stokes equations for the
incompressible Newtonian fluids, a set of partial differential equations that are sup-
posed to hold throughout the fluid. The equations are as follows [Ach90]:

28

Figure 2.11: Water flow eroding a river bed [MDHO07]

p(%—‘t[—l—v-Vv) = —Vp+ uV>v + pf, (2.1)
dp B
2t V-(pv)=0 (2.2)

The symbol v [m - s71] is used for the velocity of an infinitesimal element of mass at
apoint in the space. The letter p[Pa] stands for the pressure at that point, p[kg-m ™3]
substitutes the density of the fluid and is assumed to be constant throughout the
whole volume of the fluid. f [NV - m™3] stands for the external forces. The constant
p [Pa - s] represents the viscosity of the fluid. Equation [2.1]is called the momentum
equation and describes the behavior of the fluid due to the forces acting on it.
Equation [2.2]is called the conservation of mass. [Dav1l], [Hib10]

Shallow Water Simulation Shallow water simulation is a simplification of
Navier-Stokes equations for the fluid dynamics. The shallow water model does not
allow overlaps such as breaking waves or splashes - the water surface is stored as
a height field resulting in only 2.5D water effects. Second simplification of the
method comes from the fact that the water is assumed to be shallow, allowing us
to ignore the vertical component of the velocity of the water. The last assumption
is that the horizontal component of the velocity is constant in the whole vertical
column. These simplifications limit the use of the method but it is satisfactory for

many simpler cases [KM90)|.

Benes used the shallow water model to create an interactive hydraulic erosion simu-
lation in [Ben07]. He proposed a method for the simulation of erosion and deposition
of the sediment. The deposition takes place when the water evaporates or the dis-
solved material in the water exceeds the critical level. Mei et al. implemented
a similar method for rapidly moving water on the GPU in [MDHO7]. Their results
can be seen in Figure 2.11]

St'ava et al. took inspiration in the two aforementioned approaches ([Ben07;
MDHO07]) and proposed a method for interactive physics-based terrain model-
ing [Sta+08]. They represent the terrain as a layered height field and provide a user
with a set of tools that can be used to control the evolution of the terrain. The

29

Figure 2.12: Water flow causing a meander break [Sta+08]

algorithm is implemented on the GPU which allows the algorithm to run at interac-
tive rates for terrains with resolution of 2048 x 1024 and four layers of material (on
an off-the-shelf computer at the time). An example of a scene generated by their
approach is shown in Figure [2.12

Later, Vanek et al. extended the method to be able to simulate erosion on
large-scale terrains. They divide the terrain into tiles of different resolution based
on the complexity of the terrain. Each of the tiles is stored as a mip-map texture
and different levels of detail are then used during the simulation according to the
dynamics of the scene evolution. Using this approach, they achieve a 50% speedup
over non-adaptive computation.

Recently, Ren et al. extended the standard shallow-water flow model to
work on general triangular meshes. They use a feature-based friction model and
derive formulations to represent a wide range of physical effects for real-world sur-
face flow phenomena. Their method is capable of capturing surface flow effects on
complex solid surfaces.

3D Water Simulation Methods presented in Section mostly represent earlier
and less realistic attempts to simulate hydraulic erosion. With the improvements in
the computational force of computers the effort to create physically based simula-
tions prevailed but even nowadays the simulations that work with fully 3D scenes are
far from being interactive. More realistic results can be achieved with more precise
simulation of the fluid physics and for that reason many algorithms are based on the
Navier-Stokes equations. The matter of fully 3D fluid simulations is so vast that it
is reasonable to dedicate a separate Chapter |3|to talk about it in more detail.

30

Chapter 3

3D Fluid Simulation

This chapter describes the two main approaches to solving the Navier-Stokes equa-
tions (see Section[2.3.2]for more details) that are commonly used in computer graph-
ics: the Lagrangian and the FEulerian approach. For a more detailed description of
the fluid simulation in computer graphics the reader can refer to [Bri08].

3.1 Eulerian Approach

Eulerian approach divides the volume of the scene and tracks the fluid quantities
at fixed points in the space. As the fluid moves, it goes through these fixed points,
causing the tracked quantities to change. This approach usually divides the space
into a uniform grid, making the necessary computations such as pressure gradients
somewhat easier. This approach leads to more accurate results (compared to the
Lagrangian approach) but the algorithms are computationally expensive. Another
disadvantage of this approach is the uniform space subdivision. The regular grid
representing a vast nonuniform scene will have the same resolution in flat regions as
in the most detailed regions. That will result in huge amounts of data and the re-
sulting algorithms will be very memory consuming. More advanced data structures,
such as an octree, can alleviate the problem of memory consumption at the cost of
more complicated algorithms.

This approach is used by Benes et al. [Ben406] to create a fully 3D simulation of
hydraulic erosion. Their solution requires a model of the environment represented
as a regular grid. Each voxel is classified into one of the following classes - FULL,
the voxel is full of water, it can contain dissolved material; EMPTY, an empty voxel
containing only air; MAT, a voxel containing material. A voxel can change its state
from FULL to MAT by depositing the material and from MAT to FULL by erosion.
The authors present solutions for both cohesive and cohesionless material capable
of fully 3D water effects. The main disadvantage of their application is that it is not
capable of running interactively. Figure [3.1] shows the results of their algorithm on
an example of a river meander being eroded by a huge wave.

31

Figure 3.2: Crashing waves erode a sand castle [Woj+07]

A 3D Eulerian approach is used in a paper by Wojtan et al. to simulate
corrosion and erosion of solid objects. They store the surface as a level set El and
simulate the erosion by advecting it inward and the deposition by advecting the level
set outward. Figure |3.2| demonstrates the results of the method on a scenario where
waves erode a sand castle.

3.2 Lagrangian Approach

Lagrangian approach represents the fluid as a particle system. The fluid volume
is treated as a set of separate particles, each of them has its own position, velocity
and other properties. This representation makes some things much simpler, e.g., the
mass conservation condition (Equation is automatically satisfied, provided the

!Level-Set Method is a numerical algorithm for approximating the dynamics of moving curves

and surfaces |[Phi99]

32

particles do not disappear. It also addresses the memory consumption disadvantage
of the Eulerian approach when working with nonuniform scenes, as the calculations
are performed only in the regions where the fluid is present. Generally, the particle-
based methods are less accurate than the Eulerian grid-based methods due to the
difficulties in dealing with the spatial derivatives on an unstructured particle cloud
but they are much faster which allows their use in real-time applications. [BS09)

3.2.1 Smoothed Particle Hydrodynamics

Smoothed particle hydrodynamics (SPH) is an approximate numeric solution of the
Navier-Stokes equations for the fluid dynamics (Equation2.1]and [2.2)). It was devel-
oped in 1977 by Gingold and Monaghan |[GM77] and independently by Lucy [Luc77].
Initially it was designed for the use in astrophysics but later it found its way into
many other fields of research, such as ballistics, oceanography and, more recently,
computer animation.

It represents the fluid with a set of independent particles and thus it ranks among
the methods of the Lagrangian viewpoint. The particles have a smoothing radius
assigned, a distance over which their quantities are smoothed by a kernel function.
Put in another way, the attributes of the particle can be calculated only with the use
of all the neighboring particles within the distance defined by the smoothing radius.
The contributions of each particle are weighted by their distance and their density,
the weights are given by the kernel function used. There is a wide variety of kernel
functions to use, including Gaussian function and the cubic spline. A more detailed
description of the SPH method can be found, e.g., in [Mon92] or [DG96].

Solenthaler et al. [SSP07| proposed a unified particle model for the simulation of
melting and solidification. They use SPH particles for both solid and fluid materials
and distinguish between these two types only by changing the attribute values of
the particles. The proposed model is then used to simulate a variety of fluid-solid
interaction processes.

Adams et al. [Ada+07] proposed an adaptive sampling algorithm for particle-based
fluid simulation. They introduce a sampling condition allowing them to change the
density of the particles so that they focus the computations in the complex regions
and reduce the number of particles inside the fluid or near flat surfaces.

SPH method is often used in fluid simulation ([KWO06], [MCGO3]) but to the best
of our knowledge, Kristof et al. in Hydraulic Erosion Using Smoothed Particle
Hydrodynamics [Kri4+-09] were the first ones to try to couple SPH with erosion. They
represent the water flow with the SPH particles that erode the terrain and transport
the sediment. They define a donor-acceptor scheme that describes the advection
between SPH particles and use it to simulate the diffusion of the sediment and
settling in the direction of the gravitation. For the terrain they use a height field data
structure which limits the use of this algorithm to 2.5D terrains. Boundary particles
are used as a means of communication between the terrain and the particles. First
the SPH particles interact with the boundary particles and exchange the sediment
and after that the terrain height is adjusted according to the change of sediment

33

u’.’i‘n i

(b) Red color highlights the eroded regions

Figure 3.3: Erosion of multi-level waterfalls |Kri+09)

Figure 3.4: An arch created by a stream of water |Cre+14]

in the boundary particles. Figure [3.3| shows an example of an erosion simulation of
multi-level waterfalls.

Later, Crespin et al. extended the method in |Cre+14|. They represent the ter-
rain as a 3D generalized map [Lie94]. This representation allows them to simulate
a fully 3D scene composed of multiple geological layers. The topological correctness
of the model is achieved via a collision detection system that handles the geomet-
ric simplices through generic operations. Boundary particles are used to mediate
the sediment exchange between the fluid particles and the terrain, similarly to the
approach used in [Kri+09]. Figure demonstrates the ability of the method to
simulate erosion of concave structures.

Jiang et al. used a particle-based approach for real-time dissolution sim-
ulation. They represent both the solid and the fluid by particles. They simulate
dissolution when the local excitation energy exceeds a user-specified threshold (ac-
tivation energy). Their model allows to simulate different types of materials by
modifying the activation energy of the particles. They demonstrate the capability
of their solution to simulate multiple phenomena, such as dissolution, melting and
hydraulic erosion. Figure |3.5| shows an example of their dissolution simulation on
a river bed where the running water dissolves the surface. Sediment carrying and
depositing are ignored in their simulations.

34

(a) Fluid simulation (b) Resulting terrain; red color marks the re-
moved particles

Figure 3.5: Hydraulic erosion using dissolution model |[JSZ18

Figure 3.6: Canyon deepened by a rlver ez+1

3.2.2 Other particle-based fluid models

Bézin et al. use a Lagrangian approach to achieve a hydraulic erosion simulation at
interactive rates in [Béz+10]. They represent the terrain by a triangular mesh and
use a particle-based model to simulate the fluid. When a particle collides with the
mesh, erosion is applied. The erosion amount is accumulated on the vertices of the
mesh over several iterations of the method before the mesh is actually adjusted. The
method is implemented on the GPU to get real-time response. However, the method
is not capable of working with different materials and cannot deal with complex
topological changes such as merging and splitting. Figure shows a simulation of
a canyon being eroded by a river.

35

3.3 Semi-Lagrangian Approach

Both Eulerian and Lagrangian approaches have their strengths and their weaknesses.
Hybrid Semi-Lagrangian methods try to combine the two approaches to reduce the
individual drawbacks.

Foster and Fedkiw used this combined approach in [FF01] for modeling and animat-
ing of liquids. They simulate the fluid with particles but they use a level set to track
the motion. The fluid system they designed is capable of interacting with graphics
primitives such as parametric curves and moving polygons. Fedkiw et al. [FSJO1]
use a similar approach to create a visual simulation of smoke.

Andrysco et al. [ABBOS8| use their modified Semi-Lagrangian approach to simulate
the interaction of fluids with permeable materials. In their work they propose equa-
tions which allow the simulation of permeable, porous and absorbent materials.

36

Chapter 4

Data Structures for Erosion
Modeling

In computer graphics, many types of representation of solid objects exist. However,
not all the representations are suitable for the use in erosion simulations. This
chapter describes the data structures which are the most common in the erosion
modeling.

4.1 Height Map

Height map is the most common data structure used for terrain modeling. It can be
described as a two-dimensional array, in which each element has its own properties.
Every element carries information about the height at the element, but it can also
contain other data describing the state or the characteristics of the material. The
most important simplification of the data structure is that it considers the whole
column to be made of the same material with the same properties (Figure .

This data structure is very often used in simulations that do not require great pre-
cision but need to work interactively. The simplicity of the data structure allows
to create very fast and efficient solutions and its memory requirements are signifi-
cantly better than those of the remaining data structures commonly used in terrain
modeling. Considering that each element stores n bytes of data, the representation
of the terrain as a grid of 1024 x 1024 elements will need only n MB to store the

Figure 4.1: An example of height map data structure

37

Air
Water <— Material Layer
Rocks
Sand
Bedrock

ICERD

Material Types Material Stack Array of Material Stacks

Figure 4.2: An example of layered height map [Pey+09|

terrain [BFO1]. The main disadvantage of the height fields is that their usage is
limited to simulation of 2.5D effects as the data structure does not support concave
structures such as caves or overhangs.

This data structure is used, e. g., in [MKMR89], [ON00] and [BRO4].

4.2 Layered Height Map

Benes and Forsbach in Layered Data Representation for Visual Simulation of Terrain
FErosion [BF01] suggested an improvement of the basic height map data structure.
They took inspiration in real geological measurements and extended the height map
by adding layers. In nature, terrain usually consists of several layers of materials with
different characteristics. The authors integrate this idea by changing the height map
structure - each element is now consisting of a one-dimensional array of elements,
each one containing the information of a layer (height of the layer and the information
about the material). They take advantage of the fact that the material layers are
usually very thick. The height of the layer can be measured and all the information
can be stored at once instead of describing every voxel. The memory requirements
are similar to the ones of the height field data structure, with the difference that for
each element in the 2D array £ elements representing £ layers are stored. To store
the terrain with 1024 x 1024 elements k - n MB will be needed.

Peytavie et al. [Pey+09| extended the approach and created a framework that offers
high level tools for authoring complex scenes. Later, Loftler et al. proposed a method
that allows to render the layered height maps at interactive frame rates |[LMS11].

The layered height map data structure is very useful for representing a layered
terrain. It is even capable of representing a terrain with concave features if the
air is considered to be another layer in the data structure (Figure . However,
representing an object of general geometry could quickly degenerate to a volumetric
representation.

This data structure is used, e. g., in [BF02], [MDHO07]| and [Cor+17].

38

Figure 4.3: Volumetric representatio of the Stanford bunny model |[Lev-+05]

4.3 Volume Grid

Volume grids are also very popular in the field of erosion modeling. The volume
representation divides the volume of the scene into voxels, 3D cubes of the same
size. Each voxel then contains the information about the corresponding part of the
scene. Figure shows an example of a voxelized 3D model.

The techniques using voxel grids have high precision and give good results. Voxel
grids are capable of describing any 3D structures and so they provide the means of
modeling features that cannot be modeled by the previous approaches. The main
drawback of this data structure is that it has high memory requirements. To model
a scene with resolution 1024 x 1024 x 1024 using a voxel technique, n GB of data will
be needed ([BF01]). The methods which work with voxel grids give precise results
but are not capable of running with a real-time response so they cannot be used if
an interactive application is desired.

This data structure is used, e. g., in [Jon+10], [Dor+99] and [Bea+07].

4.4 QOctree

An octree data structure is a volume grid with adaptive resolution. It is a hierarchical
data structure where each cell may be subdivided if higher resolution is needed in
the corresponding part of the scene. The cells are subdivided using a regular 2x2x2
subdivision scheme, dividing each cell into eight children nodes. A subdivided cell

!The volumetric model was created using Binvox (http://www.cs.princeton.edu/ min/
binvox/))

39

http://www.cs.princeton.edu/~min/binvox/
http://www.cs.princeton.edu/~min/binvox/

Figure 4.4: An octree representation of a 3D model |[LHNO5|

is called an internal node, a cell without children is called a leaf. Figure [£.4] shows
a 3D model surrounded by an octree. [LHNO5]

To represent an object with the same level of detail, an octree has lower memory
requirements than the regular volume grids as it can increase the grid resolution only
in the necessary regions. However, the increased complexity of the data structure
makes the erosion simulation computations more difficult. An octree has been used,
e.g., in mesh repair algorithms but to the best of our knowledge it has not
been used for erosion simulation. It is included in the overview of the data structures
for the sake of completeness.

4.5 Triangular Mesh

Another data structure which can be used for erosion modeling is a triangular mesh.
It represents an object as a set of vertices connected by edges. Three vertices con-
nected by edges represent a triangular face, the set of all faces represents the surface
of the object. An example of a triangular mesh model is captured in Figure [4.5

One of the advantages of this structure is that it does not have to be transformed
in order to render it, as this data structure is very often used in computer graphics
and the rendering pipeline is optimized to work with it. Another advantage of the

40

Figure 4.5: Stanford dragon triangular mesh model ||

triangular mesh is that its resolution can change throughout the scene, allowing the
creation of a very detailed mesh in the important areas while the flat unimportant
regions are modeled with lower resolution.

The use of the triangular meshes for the simulation of erosion also has disadvantages.
When an object is eroded, its surface changes. When simulating such a phenomena
using triangular meshes, the vertices of the mesh have to be moved to simulate the
surface change. By changing the position of a vertex, an inconsistency can be created
if the vertex penetrates the mesh. This inconsistency has to be dealt with before
the erosion simulation can continue. The topic of mesh repair will be discussed in
more detail in Section [Bl

Purchart in [Pur09] uses an adaptive triangular mesh to simulate a deformable sandy
terrain but the solution is designed to work only with the 2.5D terrains, formations
such as caves or overhangs are not supported.

4.6 Tetrahedral Mesh

Tetrahedral mesh is a volume variation of the triangular mesh data structure. The
model is not represented only by its surface, the whole volume is stored as a set of
tetrahedra. Figure shows an example of the Stanford dragon model
converted to a tetrahedra representation.

Tetrahedral mesh loses the rendering advantage of the triangular mesh as its surface
has to be extracted in order to render the tetrahedronized model. However, in some
applications the volume approach can be more desirable as it can give us additional
information about the topology of the object. The tetrahedral data structure is

used, e.g., in [TJ10].

41

42

Figure 4.6:

Tetrahedral representation of the Stanford dragon model]\

Chapter 5

Repair of Intersecting Meshes

Erosion simulation of geometric objects represented as triangular meshes can lead
to the creation of a mesh inconsistency. If the mesh is heavily eroded, it is possible
for two distinct parts of the mesh to overlap, creating a mesh self-intersection. The
self-intersection corrupts the topology correctness of the mesh and has to be repaired
before the erosion simulation can continue.

Self-intersections and mesh-to-mesh intersections are mesh defects that are very
common and as such many methods exist that address the problem. The approaches
can be divided into two main categories: global (volumetric) and local (surface
oriented) approaches [ACK13].

5.1 Global Approaches

Global approaches convert the polygonal mesh to an intermediate representation
which is then used to generate a new valid mesh. Early methods utilize volumetric
representation [ABA02]. They convert the mesh to a regular voxel grid where each
voxel either describes the signed distance from the surface or contains a binary
(solid /empty) classification. The output polygon mesh is generated using a surface
extraction method. A representative of this approach is the method proposed by
Nooruddin and Turk [NTO03|. They use parity count to decide whether a voxel
is interior or exterior (Figure , . The parity count may fail if the mesh
contains self-intersections (Figure or thin features (Figure [5.1d)). The authors
propose a ray stabbing method to address this issue. The method casts a ray through
the mesh and looks for the closest and the farthest intersection. The voxel is then
classified as an interior if it lies between the two intersection points, otherwise it is
classified as an exterior. For a single ray, some voxels may be misclassified as interior
voxels. Using multiple rays in different directions decreases the risk of a mistake.
Marching cubes algorithm is then used to extract the valid explicit surface.

While being effective at repairing the defects, this approach is sensitive to the res-
olution of the intermediate structure. Low resolution in detailed areas can cause
excessive smoothing and a loss of details. The alteration of the mesh can also lead

43

/N LN 7=
\ L A8) \
. S : /D) I £ £0)
| (. U/ T N/ 7T] J
H 888! (0 e st L/ {

(a) A closed model (b) A model with (c) A model with in- (d) A double-walled
a hole tersecting parts model

Figure 5.1: Classification of voxels as interior or exterior [NT03]

N AL L
A L arnine L
:IIIIIII: :T-”””-: feleiis

(a) Original model (b) Intersection edges (c) Signs generation (d) Model recon-
struction

Figure 5.2: Octree-based model repair [Ju04]

to a mass loss. Adaptive approaches exist that change the resolution of the interme-
diate structure according to the required detail. Ju [Ju04] proposed a technique with
the use of an adaptive octree. He takes the original model (Figure and marks
the edges of the grid that intersect the mesh polygons (Figure . Afterward he
uses this information to generate signs at the grid points, so that each intersect-
ing edge exhibits a sign change (Figure @ A contouring method is then used
to reconstruct the output mesh (Figure @ The method is capable of preserv-
ing details and sharp features, however, thin features are removed by the method.
A similar approach is used by Bischoff et al. [BPKO05|, where morphological closing
operations are used to repair holes and gaps present in the input.

Binary space partition (BSP) trees have been also used to solve this problem [MF97].
An input polygon mesh is converted to a BSP tree by using the supporting planes
of the input polygons as the splitting planes (Figure @ . The leaves of the tree
correspond to closed convex spatial regions (Figure @ . Cell adjacency graph
(Figure is constructed and used to determine whether a cell is solid or not.
However, the output mesh may contain singular edges and vertices.

Level set methods [OF02] represent the interface as the zero level of an implicit
function. A typical function used is the signed distance from the surface mesh
discretized over the volume. The new intersection-free explicit surface is then found
as the zero level set of the function. Level set methods may cause an excessive
smoothing and a loss of features. These problems can partially be solved by using
tracker particles to rebuild the level set in under-resolved regions [Enr+02].

44

B 7 A 6\C

(a) Spatial subdivision of the input (b) Binary space partition
model

(c) Cell adjacency graph

Figure 5.3: Binary space partition example [MF97]

Deformable simplicial complexes (DSC) [MB12] method addresses the problems of
the level set method. It represents the interface explicitly as a triangular mesh in 2D
or a tetrahedral mesh in 3D. The surface is evolved by moving the mesh vertices. If
the vertex displacement causes the creation of a degenerate triangle or tetrahedron,
the vertex is moved as far as possible and mesh improvement operations are applied

(Figure [5.4)). The topology changes are handled automatically [Chr+14].

The use of the global approaches is appropriate if the mesh is highly inconsistent.
It typically allows to create very robust methods at the cost of lower accuracy and
efficiency.

5.2 Local Approaches

Local approaches work directly with the input mesh and identify individual self-
intersections which are then repaired locally, usually one at a time, and leave the
rest of the mesh unchanged. These approaches change the input mesh as little as
possible which is desirable in applications where the accuracy of the solution is the
main interest. The local approaches are more suitable when the intersections are
located only at isolated parts of the mesh.

Some of the local approaches take a global method and apply it only in the local scale.
Bischoff and Kobbelt [BK05] use a local voxel grid to repair the mesh. They locate
the voxels containing the defects and only those voxels are modified. They subdivide
the triangles intersecting the critical voxels so that each triangle lies completely
outside or completely inside (Figure [5.5D] [5.5¢). Then the interior triangles are
discarded (Figure and the resulting holes are filled. Attene uses a similar
approach but restricts the set of input meshes to raw digitized meshes in |Att10].
The self-intersecting faces are assumed to be small, so they are discarded and the

45

(a) Before topology change (b) After topology change

Figure 5.4: 2D example of deformable simplicial complexes, exterior triangles are

light grey, interior blue [MB12]

(a) Inmitial configura- (b) 1-to-3 triangle (c¢) 2-to-4 triangle (d) Interior triangles
tion splits splits are discarded

Figure 5.5: Mesh repair using a local voxel grid |BKO5|

generated holes are fixed. The method can fail in some cases but for the selected class
of models it usually succeeds. Wojtan creates a signed distance field around the mesh
and checks for possible intersections in [Woj+09]. New parts of the mesh are then
generated using the marching cubes method in the cells containing the intersections.
Afterward, the original mesh and the newly generated parts are stitched together.
These methods depend highly on the grid resolution and can also lead to changes in
the volume encompassed by the mesh.

The problem of solving an intersecting geometry is complicated due to the finite pre-
cision of calculations which can cause an incorrect result of a predicate test, leading
to unpredicted behavior. Campen and Kobbelt avoid this problem by using an adap-
tive octree data structure combined with a plane-based BSP representation [CK10].
The computations of the intersections are restricted only to those cells of the octree
where intersections actually occur. Within these cells, the input polygons are con-
verted to a plane-based BSP representation (Figure [5.6)). The actual calculations of
the intersections are performed during the generation of the resulting mesh.

Other group of methods does not rely on the use of an intermediate data structure
but works directly with the geometry of the mesh. Zaharescu et al. search the mesh

46

D

/
(a) Two input inter- (b) BSP-rep of the (c) BSP-rep of the (d) Merged BSP
secting surfaces first surface second surface

Figure 5.6: 2D example of BSP-based local mesh repair [CK10]

(a) Input meshes (b) Triangle intersections (¢) Output manifold mesh

Figure 5.7: Local geometric mesh repair [ZBH11]

for valid and partially valid faces in [ZBH11]. Valid faces do not contain intersections
and should be preserved, while partially valid faces contain intersections and only
a part of them should be kept in the resulting intersection-free mesh. An example
of the method is shown in Figure Two spheres (Figure intersect at the
intersection boundary captured in Figure [5.7b] These partially valid triangles are
triangulated using constrained 2D Delaunay and the interior triangles are discarded
(Figure .7d). Finally, the two parts of the mesh are stitched together. Exact
arithmetic is used to achieve numerical stability of the intersection calculations,
boundary cases are avoided by using virtual perturbation method.

Brochu and Bridson also use a local stitching method to avoid expensive
computations. They restrict the input data to dynamic polygon meshes and take
advantage of the motion data. A possible collision is detected before it actually
takes place, when the two parts of the mesh get close together. The proximate faces

are identified and discarded and the resulting holes are stitched together. A similar
approach is used in |[Cla+13] to simulate interactions between solids and liquids.

5.2.1 Neighbor Tracing Method

Lo and Wang use neighbor tracing method (tracing the neighbors of intersecting
triangles - TNOIT) to speed up the process of finding the intersection boundary and

47

S5

(a) Intersecting models (b) Intersection boundary

Figure 5.8: Two low polygon models and their common intersection boundary

to achieve reliable results in [LWO04]. The intersection boundary is the boundary
where the two meshes meet and an inconsistency is created. The boundary is formed
by a set of connected line segments and each pair of intersecting triangles adds one
segment to this set. The intersection boundary does not have to be planar, as it
precisely follows the shape of the intersecting meshes. Figure |5.8| captures two low
polygon sphere models and their common intersection boundary.

To find the intersection boundary, they first identify the intersecting triangles.
A naive approach would check each pair of triangles for a possible intersection,
leading to quadratic complexity with respect to the number of mesh faces. This
can be alleviated by adding an additional spatial subdivision technique. A regular
grid is used, where each cell contains information about triangles which are located
inside. The search for possible intersections is then performed only in the cells the
tested triangle intersects.

Once the first intersected triangle is located, the evaluation can be sped up by tracing
over its neighbors. The TNOIT algorithm takes advantage of the mesh connectivity
and traces the intersection boundary across the intersected edges of the intersecting
triangles. Considering intersecting triangles 77 and R;, the intersection between
them forms a polygonal region if the triangles are coplanar, otherwise it forms a line
segment [1[5 where I} and [, are the segment endpoints. To trace the boundary
correctly, the relative position of the segment endpoint I inside the triangle T}
has to be determined. The segment endpoint [; is coincident with the segment
endpoint I} from the preceding step of the algorithm and so it is irrelevant for the
neighbor tracing. There are four cases how the triangle 77 can intersect the triangle

Ry [LW04]:

1. the intersection segment ends inside the triangle Ty (Figure [5.9),
2. the intersection segment ends on an edge of the triangle 77 (Figure [5.10)),
3. the intersection segment ends at a vertex of the triangle T; (Figure [5.11)), and

4. both 77 and R, lie in the same plane, the intersection is a polygonal region

(Figure |5.12)).

48

(a) Intersection between T} and R (b) Next step in boundary tracing

Figure 5.9: Intersection inside a triangle

(a) Intersection between T; and R; (b) Next step in boundary tracing

Figure 5.10: Intersection on an edge

An appropriate action has to be taken for each case so that the boundary is traced
correctly.

Intersection inside a triangle If the intersection segment between 77 and R;
lies within the triangle T}, the neighbor tracing is not needed. The endpoint I5 is
located inside the triangle T} (Figure , so the next intersection segment has to
start inside Ty (Figure [5.9D).

Intersection on an edge If the intersection segment between 7 and R; ends on
the edge e; of the triangle T} (Figure [5.10a)), the neighbor has to be traced across
the edge e; to the triangle T, as shown in Figure [5.10b|

Intersection at a vertex In the rare case when the intersection segment ends
at a vertex V) of the triangle Ty (Figure [p.11al), all triangles that share the vertex
V1 need to be considered as possible neighbors for the intersection search. This
situation is captured in Figure where all triangles from 75 to Tg have to be
checked for intersection with the triangle R; in order to find the next intersection
segment. No specific order of the search is required and the boundary tracing can
be reinstated as soon as the intersected triangle (7} in Figure is found.

49

(a) Intersection between T) and R (b) Next step in boundary tracing

Figure 5.11: Intersection at a vertex

Figure 5.12: Intersection of triangles lying in the same plane

Intersecting triangles in the same plane If the triangles 7} and R; lie in
the same plane, in most cases their intersection does not have to be calculated
unless we are working with open surfaces and the boundary edge participates in
the intersection (Figure . An example of the intersection of planar surfaces is
shown in Figure A planar surface with a hole (Figure intersects with
a cylindrical surface with a closed bottom (Figure as in Figure , the
intersection forms two closed loops (Figure [5.13d)).

(a) Planar surface with (b) Cylindrical (c¢) Intersecting meshes (d) Intersection
a hole surface loops

Figure 5.13: Intersection of planar surfaces [LW04]

20

Chapter 6

Materials

Materials are an important part of the erosion simulation. Real-life erosion scenes
are usually formed of multiple materials and so a reliable means of material definition
is needed.

Most of the work on domains with multiple materials focus on extracting a correct
and consistent mesh for each of the materials present in the volumetric data ob-
tained, e.g., from a medical scan. Wu and Sullivan enhanced the marching
cubes algorithm to reconstruct multiple material meshes. Their algorithm extracts
boundary surfaces between different materials in a single sweep of the input data.
They ensure the continuity and integrity of the resulting surfaces. An example of
the reconstructed surface mesh is shown in Figure [6.1

Zhang et al. generate unstructured tetrahedral and hexahedral meshes using
an octree-based isocontouring method. They introduce the notion of a material
change edge which is used to identify the interface between two or several different
materials. They propose a method to calculate the minimizer point for a cell shared
by more than two different materials. They improve the quality of the resulting
meshes in the postprocessing step.

Wang |[Wanll] generates the mesh surfaces using a ray representation of a solid
as an intermediate structure. At first, the algorithm converts the multi-material
volumetric data to a ray representation. Then a filtering algorithm is used to be able

(a) Extracted material surface (b) Smoothed material surface

Figure 6.1: An example of reconstructed surface mesh of kidney region [WSO03|

o1

7
|

;

7])

A

|

(a) Input multi-material volumetric data (b) Generated ray representation

Figure 6.2: An example of surface mesh generation from a ray representa-

tion

to process the rays using a parallel approach. Lastly, mesh surfaces are generated
using a method based on dual-contouring.

Bronson et al. propose a method for generating multi-material tetrahedral
meshes from input volumetric data. Their method can support any number of
materials and produces tetrahedral meshes with guarantees on geometric fidelity
and upper and lower bounds of dihedral angles. Figure [6.3] shows a tetrahedral
mesh generated by their approach from a segmented MRI scan of a human head.

Faraj et al. work with multi-material tetrahedral meshes and propose
a method for iterative remeshing. Their feature-aware approach is based on simple
local topological operations. They are capable of generating high quality meshes at
a user-defined resolution with the important model features preserved.

These approaches are suitable for static scenes, where the domains are strictly sepa-
rated. For dynamic scenes or scenes, where the individual domains are blending into
each other, the aforementioned approaches are often inappropriate. An example of
such a scene could be an erosion scenario, where sand and pebbles of various size mix
up to form a river bank that is being eroded by flowing water. Such a scene could
be described using a volumetric approach similar to the one used by Benes et al.
in [Ben+06]. The volumetric representation is very memory consuming, a layered
data representation introduced by Benes and Forsbach can be used instead
to alleviate the problem. The layered data structure is a sufficient description of
a terrain scene consisting of several layers of material, but for a general scene with
gradually changing material, it converges back to the volumetric representation.

A different approach is used by Tychonievich and Jones in [TJ10], where a Delau-
nay deformable model is used to represent the eroded terrain and the material is
defined for each cell of the Delaunay triangulation. A new mesh is generated every
iteration of the method and the material properties have to be reconstructed using
the resemblance of the two meshes.

52

dﬁ";;s

Figure 6.3:

oo 4

Figure 6.4: Alternating steps of normal flow and curl noise applied to four

spheres [DBG14]

Da et al. propose a method for tracking the evolution of multi-material interfaces
represented by non-manifold triangular meshes . The material labels are
assigned to each half-face to be able to distinguish volumetric regions. They build
on previous work in the area and address the non-manifold mesh operations, such
as merging of similar materials, splitting, mesh improvement and merging of differ-
ent materials. Their approach deforms the meshes and produces watertight non-
intersecting outputs. Figure [6.4] shows the results of a simulation where alternating
steps of outward normal flow and the curl noise were applied to four spheres com-
posed of different materials.

Jiang et al. represent an object by particles in their method for dissolution simula-
tion . Different types of material can be simulated by lowering or increasing
the activation energy of the particles. The activation energy affects the forces that
are keeping the particles representing the solid object together; the lower the ac-
tivation energy, the faster the dissolution will be. Figure 6.5 shows an example of
a dissolution-based erosion on a layered terrain represented by particles with varying
activation energy.

23

Figure 6.5: Dissolution simulation on layered terrain with three different material
layers, each with different activation energy |JSZ1§|

54

Chapter 7

Contributions

We propose a novel solution to the hydraulic erosion and weathering simulation
problem. We represent the eroded object as a triangular mesh. This representation
is particularly useful as it can describe fully 3D scenes, such as terrains with caves
and tunnels, with lower memory requirements than the commonly used volumetric
approaches. However, the use of a triangular mesh data structure brings certain
pitfalls. During erosion simulation, an inconsistency can be created in the mesh
if two parts of the mesh intersect as a result of the mesh alteration. The mesh
inconsistency has to be repaired before the erosion simulation can proceed. Another
important aspect of erosion simulation is the modeling of different materials, allowing
us to simulate erosion of a non-homogenous scene.

The remainder of the thesis describes our contribution in more detail:

Chapter [§| describes our solution to the hydraulic erosion problem. The proposed
solution [SKB15| represents the terrain using a triangular mesh and simulates the
fluid using a particle-based approach. The solution allows for adaptive changes of
the mesh resolution according to the local complexity of the terrain, which leads
to lower memory requirements when compared to volumetric approaches. The use
of triangular mesh data structure also supports the visualization of concave 3D
features, allowing the simulation and visualization of erosion on terrain elements
such as tunnels or caves.

Chapter [9] elaborates on this topic further and describes a more advanced erosion
simulation approach [SKV19] that can be used to simulate erosion on terrains as
well as on smaller individual objects. The method extends the erosion simulation
by taking into account the local shape of the eroded object using mean curvature
values. The method represents a simple unified approach for both weathering and
hydraulic erosion simulation on triangular meshes.

Chapter [10] addresses the problem of repair of self-intersections and mesh-to-mesh
intersections that can be created during the erosion simulation. The proposed
method [SKB1§| uses a local geometry-based approach to repair intersecting meshes
accurately without the need to manipulate the input data or to employ arbitrary
precision arithmetic. The solution is obtained through a careful classification of the
cases that could result from a numerical imprecision of the floating point arithmetic.

25

Chapter presents several possible approaches to multiple material modeling for
the use in erosion simulation. The proposed approach [SK16] uses binary space
partitioning (BSP) to simulate complex multi-material scenes. The approach allows
the definition of a nontrivial scene composed of several materials, including the
definition of a gradually changing material. A method for an automated creation
of the BSP tree from input volumetric data is proposed to simplify the use of the
method in complex scenarios.

Chapter [12] shows that the erosion principles can be applied to other real-life prob-
lems. The proposed approach [Sko+-17] takes inspiration in the erosion processes and
applies them to the problem of aging simulation. The proposed method simulates
aging of models created by deformation-based modeling and requires no training
data. A user defines the position of wrinkles by selecting the position of endpoints
of the desired wrinkles and the wrinkles are then generated using an erosion-inspired
approach.

26

Chapter 8

Hydraulic Erosion Modeling on
a Triangular Mesh

We propose a novel method for hydraulic erosion simulation that is using a com-
bination of particle system fluid simulation coupled with terrains represented as
triangular meshes. We simulate the fluid with the Smoothed particle hydrodynam-
ics (SPH) particles [GMT77], using an approach similar to the one used by Kristof
et al. [Kri+09]. The SPH defines the way the properties of the particles, such as
pressure, speed and direction, are computed. The pressure is calculated based on
the density of the particles and determines the speed and direction of the movement
of the particles. The main advantage of the method lies in its adaptability - the
particles are restricted to the areas containing the fluid. The computation is then
performed only in the regions where the fluid is present.

The terrain is represented as a surface triangular mesh in order to simulate the
erosion of elements such as tunnels or caves. An example is shown in Figure [8.1]
The model of a river bed has higher resolution in the areas where the erosion will

be applied (Figure |8.1al).

(a) The original model has higher resolu- (b) The fluid represented by the SPH par-
tion in the erosion areas ticles

Figure 8.1: An example of the triangular mesh model in erosion simulation

57

Every iteration of the proposed method consists of the following steps:

1. The properties of the SPH particles, such as pressure, speed and direction, are
calculated.

2. The fluid-terrain interaction is computed.
3. Each particle moves in the calculated direction.

4. The erosion/deposition sediment exchange is calculated for the particles col-
liding with the terrain.

5. The triangular mesh is updated according to the amount of sediment
eroded/deposited at the vertices.

8.1 Fluid-Terrain Interaction

The motion of a particle is defined by the particle properties, by gravity, and by
the surrounding terrain. The fluid-terrain interaction is a vital part of the erosion
simulation. A particle is influenced by all the mesh faces within the reach of its
radius. To speed up the search for the nearby faces, a regular spatial subdivision is
used. Using this auxiliary data structure, we do not have to search for the faces in
the whole mesh, but only in the cells that fall into the radius of the particle. Each
face f in the selected cells is checked for an interaction with the particle p as follows:

1. Line [is constructed that goes through the position of the particle with the
direction of the normal vector of the face f.

2. If the line [intersects the face f, the orthogonal distance d between the face f
and the particle p is calculated.

3. If the distance d is smaller than the radius of the particle, the face f influences
the motion of the particle p.

The face f contributes to the force affecting the particle with a force f,[Pa] calculated
using the penalty-force method [Ama06]:

f, = (ksd + kq(v - n))n, (8.1)
where k, [Pa - m™!] is the penalty force stiffness, kq [Pa - s - m™'] is the damping

coefficient, d [m] is the penetrated distance, v [m - s71] is the velocity of the particle
and n is the normal vector of the face.

o8

8.2 Erosion and Deposition

When a particle collides with the terrain, we simulate the erosion of the surface or
the deposition of the sediment, depending on the velocity and the direction of the
particle. We calculate the erosion rate using a method similar to the one presented
in the work of Wojtan et al. [Woj+07]. The erosion rate & [m - s7!] is calculated
using the equation by [Par65|:

e=k(r—m1.)", (8.2)

where k [m?- N~ . s71 is the erosion coefficient, 7 [Pa] is the shear stress, 7. [Pa] is
the critical shear stress and a is a constant usually set to 1. The critical shear stress
T. is a threshold value that has to be exceeded for the erosion to take place. The

shear stress 7 is a force applied to the solid boundary and is defined via a power-law
model [Woj-+07]:

T =Ko", (8.3)

where K [Pa - s] is a constant usually set to 1, @ [s7!] is the shear rate and m is the
power-law index, a constant determined by the material. The shear rate @ can be
approximated from the fluid velocity relative to the surface:

Vel
0=—"" 8.4
d 7 ()
where v, [m - s71] is the relative fluid velocity and d [m] is the distance between the
particle and the face in the triangular mesh.

If the shear stress 7 exceeds the value of the critical shear stress 7., the erosion rate
0 has a positive value, and erosion takes place. The eroded sediment is assigned to
the particle and is carried by the particle until the conditions for the deposition are
fulfilled.

The deposition occurs when the shear stress 7 does not exceed the value of the
critical shear stress 7.. The erosion rate 6 is negative and the sediment carried by
the particle is deposited onto the vertices of the face f.

8.3 Mesh Modification

When erosion or deposition takes place, the change of the mass has to be reflected
in the mesh. The sediment is removed (or added in the case of deposition) uniformly
from the vertices of the face f. Each vertex has a parameter assigned to store the
amount of eroded (deposited) sediment. The contributions from individual particles
are summed up and the mesh is only updated once in each iteration of the algorithm.

Each affected vertex needs to be moved in the direction of the normal vector ac-
cording to the amount of associated sediment. However, we cannot use the amount

29

(a) The total volume change (b) The volume change for a single face

Figure 8.2: The volume change caused by the displacement of a single vertex

of sediment to directly determine the vertex displacement. Each vertex belongs to
several faces and these faces can generally differ greatly in size and shape. The same
vertex displacement could thus lead to different volume changes in two parts of the
mesh with different resolution.

As we need to control the volume changes regardless of the local resolution of the
scene, we have to calculate the vertex displacement based on the exact volume
change. The total volume change caused by the displacement of a vertex is a sum
of contributions of all the affected faces. Figure shows an example of sediment
deposition onto a vertex. The deposition caused the vertex to move from the position
D to the position A, with the vertex displacement a. The volume change for one of
the faces equals to the volume of the area bounded by the original face and the face
created by displacing the vertex, this area always forms a tetrahedron (Figure [3.2D).

The volume of a tetrahedron V; can be calculated as follows:

la - (bxc)

Vi -)
6

(8.5)

where a, b and ¢ are the edges of the tetrahedron sharing the vertex D. The total
volume change V for the vertex displacement |a| can be then computed as

V=>"V, (8.6)

where n is the number of faces sharing the displaced vertex. It can be derived that
for a’ = ax, where x is a constant, the total volume V' = V.

To compute the correct vertex displacement a’, we first calculate the volume change
V' for the vertex displacement |a| = 1 in the direction of the normal vector. The
vertex displacement a needs to be adjusted so that the volume change is equal to
the amount of eroded/deposited sediment s:

60

Figure 8.3: An example of an erosion simulation of an overfilling lake

a = a%, (8.7)

where a’ is the required vertex displacement.

8.4 Results

We have developed our framework in C++ and run it on an Intel Core 2 Duo clocked
at 2 GHz. We use the library Fluids v.2 for the SPH fluid simulation that
provides the necessary functionality and computes the particle properties during the
simulation. The Navier-Stokes equations are scale-sensitive and the actual simula-
tion scale of the fluid in the used implementation is approximately up to tens cm?®.
As the terrain represents a large-scale scene, this inconsistency of scales can lead to

less realistic behavior of the fluid.

We have verified the proposed algorithm by simulating several different erosion sce-
narios. Erosion is a long term process and a comparison with real-world data would
be necessary to verify our algorithm. We rely the correctness on the computational
fluid dynamics and we verified our solution visually.

We created a simple scenery of a lake being filled by water to validate the erosion
process and to compare our solution to the results of the reference method by Kristof
et al. [Kri+09]. The scene is shown in Figure 8.3 The lake represents a local
depression, which is being filled with water particles. The lake eventually fills up
and the fluid flows over the edge and erodes the underlying terrain surface. We
use a simple particle-based visualization for the fluid, as we are interested in the
resulting eroded terrain itself, not in the realistic image of the water.

Figure [8.4] captures the alteration of the terrain during the simulation. Figure
shows the original terrain before the erosion was applied. The final eroded scene is
depicted in Figure [8.4bf with the eroded regions highlighted in red color. The results
of the reference method are shown in Figure It can be seen that our approach is
capable of generating similar erosion effects as the reference method while working

61

(a) The original terrain (b) The eroded terrain; red color highlights
the eroded regions

Figure 8.4: An example of an erosion simulation

W
(a) The fluid eroding the terrain (b)) The eroded terrain; red color high-
lights the eroded regions

Figure 8.5: The results of the reference method ||

directly on the triangular mesh. We do not use textures to enhance the visual quality
of the generated scene in order to emphasize the geometry change.

Unlike the reference method, our method can also simulate fully 3D scenes with
concave features. We modeled the demonstration scene captured in Figure[8.6al The
scene consists of a block of material with a tube-like cavity. The water runs through
it and erodes its surface (Figure . The fluid has the largest momentum before
it collides with the mesh for the first time, hence the erosion is the strongest at that
point. The fluid flow is affected by the changed surface of the mesh (Figure [8.6D)).

Computational requirements were measured for the presented simulations. For the
lake scene (Figure, consisting of 12,528 particles and 9,068 faces, we measured an
execution time of one iteration of approximately 2.9 s. Each iteration of the concave
scene simulation (Figure , consisting of 12,528 particles and 4,706 faces, took
approximately 0.7 s. The goal of our implementation was to verify the applicability
of our approach, without the emphasis on the speed of the simulation.

62

Il
I

<R

y
AN N

(a) The original scene (b) The water erodes the mesh, leading
to change of the flow of the fluid

Figure 8.6: Erosion simulation of concave features

8.5 Method Summary and Future Work

This Chapter describes a novel solution to hydraulic erosion simulation using a com-
bination of terrains represented as triangular meshes with a fluid simulated as a par-
ticle system. This approach is capable of simulating fully 3D scenes containing fea-
tures such as caves or overhangs with lower memory requirements than the existing
volumetric solutions. The solution allows to adaptively change the resolution of the
scene according to the shape and complexity of the terrain. The resolution can be
increased in the regions that require more attention while it can be preserved in
other parts of the mesh.

However, the use of the triangular meshes brings new challenges during the erosion
simulation. The erosion can cause a creation of an inconsistency in the mesh, which
would cause an incorrect behavior of the simulation and has to be resolved before
the erosion simulation can continue. It is also more challenging to simulate erosion
of a scene consisting of multiple materials when working with triangular meshes.

The following Chapters will present further improvements to the method introduced
in this Chapter, as well as possible solutions to the challenges brought by the use of
triangular mesh data structure as the eroded object representation.

63

Chapter 9

A Unified Curvature-Driven
Approach for Weathering and
Hydraulic Erosion Simulation on
Triangular Meshes

This Chapter presents an extension of the hydraulic erosion simulation method that
was presented in the previous Chapter. The method presented in this Chapter
extends the base method by using curvature to control the degree of erosion at
different parts of the eroded object. The erosion is then simulated by using vertex
displacement in the direction given by the vertex normal and the discrete Laplace-
Beltrami operator. The method can also be used to simulate weathering by simply
applying the erosion globally to all vertices of the mesh, instead of limiting the
erosion processes to regions that are in contact with the fluid particles.

9.1 Curvature estimation

Curvature is a surface property that describes how bent a surface is at a given point.
As the proposed method works on discrete triangular meshes, the curvature cannot
be calculated exactly and has to be estimated. There are many methods that can be
used to estimate curvature on triangular meshes; for a thorough survey, the reader
can refer to the paper by Vésa et al. [Vas+16]. We have used the curvature esti-
mation as proposed by Rusinkiewicz [Rus04] due to its simplicity and performance.
However, any other curvature estimator could be used in its place as we only need
the curvature to capture the rough shape of the eroded object.

We use mean curvature H in our simulation as its values correspond to the region
types important for erosion; the mean curvature is negative in concave regions (val-
leys, gaps), zero in flat areas and positive in convex areas (hills). Throughout this
Chapter, we will use the curvature color coding as depicted in Figure negative
mean curvature is represented by blue color, zero mean curvature by green color and

65

H<O H=0 H>0

Figure 9.1: Curvature color coding. Negative mean curvature is represented by blue
color, zero mean curvature by green color and positive mean curvature by red color

positive mean curvature by red color. As the curvature value is scale-dependent, we
downscale the curvature value interval for each eroded object to fit in the interval
< —1,1 >. To preserve the zero curvature areas, we find value

H = max(|Hpinl, | Hmaz|) (9.1)

and scale interval < —H, H > to interval < —1,1 >.

We do not alter the curvature values for scenes where the curvature interval already
fits inside the interval < —1,1 >, as it could cause problems in scenes with almost
no curvature.

9.2 Vertex displacement

We use the mean curvature value to estimate the desired magnitude of the erosion at
the given vertex of the mesh. To estimate the direction of the vertex displacement,
we use the vertex normal direction and the discretization of the Laplace-Beltrami
operator.

We use the uniform discretization of the Laplace-Beltrami operator, which assigns
a vector 1; to each vertex V;, such that

1
L= o S0 (V- V), 92)

66

Figure 9.2: Uniform discretization of Laplace-Beltrami operator

where N(7) is the set of vertices in the one-ring neighborhood of the i-th vertex.
The resulting vectors 1; capture the tangential and normal offset of the vertex V;
from the average of its neighbors. In Figure the vector 1; represents the uniform
discretization of the Laplace-Beltrami operator, the vector n; represents the normal
offset and the vector t; represents the tangential offset.

As the uniform discretization of the Laplace-Beltrami operator captures also the
tangential offset, it tends to regularize the distribution of the mesh vertices. While
this behavior can be undesirable in many applications, it very well suits the needs
of the erosion simulation on triangular meshes in the regions of high positive or
negative curvature.

The vertex displacement can generally cause the creation of small and badly shaped
triangles if the direction of the displacement is not chosen carefully. The uniform dis-
cretization of the Laplace-Beltrami operator and its ability to regularize the vertex
distribution alleviates the problem and results in formation of more even triangles.
Figure[9.3| captures the difference between results of the erosion simulation of a cube
when uniform discretization of the Laplace-Beltrami operator and the opposite di-
rection of the vertex normal is used for the vertex displacement direction. The left
image shows the original mesh, the center image shows the results of the simulation
after 100 steps if the Laplace-Beltrami operator is used for the vertex displacement
direction, and the right image shows the corresponding results if vertex normal is
used instead. It can be seen that the use of the uniform discretization of the Laplace-
Beltrami operator results in more regular and nicely shaped triangles.

On the other hand, the displacement direction based on the uniform discretization of
the Laplace-Beltrami operator can cause problematic artifacts in the regions where
the mean curvature is close to zero, as the tangential shift can potentially damage
the mesh. For this reason, we use the direction of the uniform discretization of
the Laplace-Beltrami operator for weathering simulation where we erode only mesh
regions with positive mean curvature, while for the hydraulic erosion simulation we
use a combination of the two aforementioned approaches.

67

(a) Original mesh (b) Mesh after 100 steps (c) Mesh after 100 steps (ver-
(Laplace-Beltrami operator) tex normal)

Figure 9.3: Influence of the direction of vertex displacement on the quality of the
resulting mesh. Using curvature color coding as described in Figure

Figure 9.4: Small displacement step results in the desired smoothing effect (left),
while too big displacement can damage the mesh (right)

9.3 Weathering

We simulate the weathering processes by displacing the vertices in the areas with
positive mean curvature in the direction given by the uniform discretization of the
Laplace-Beltrami operator. The displacement magnitude has to be chosen carefully
in order to assure that each step of the simulation ends with a valid mesh. If the
displacement is too big, inconsistencies can be created in the mesh. Figure
demonstrates the problem. If a small displacement step is applied, we achieve the
desired smoothing effect of erosion. If the applied displacement is too big, the mesh
can become tangled as a result.

To estimate a reasonable length of the displacement, we take into account the average
length of the edges of the eroded mesh. The smaller the triangles of the mesh, the
shorter the displacement has to be in order not to damage the mesh. We have
experimentally confirmed that 1/10 of the average edge length is a good threshold
for the maximum displacement length in a single step of the simulation. However, for
some highly irregular meshes this approach can still fail and create inconsistencies
in the highly detailed parts of the meshes; in such a case we detect the problem
by finding the mesh self-intersections and we restart the simulation with shorter
displacements per step.

For each vertex V; we calculate the corresponding displacement length d; as follows:

68

(a) Input model (b) After 30 steps (c) After 100 steps (d) After 200 steps

Figure 9.5: Validation of the weathering approach. After 200 steps of the simulation,
the input cube model has been eroded into a sphere. Using curvature color coding
as described in Figure

d; = Hy=, (9-3)

where H; is the mean curvature at the vertex V;, e, is the average edge length and
x is the modifier that limits the maximum length of the displacement to be 1/x of
the average edge length e,,,. The position of the vertex V; at the time step ¢ is then
calculated as

V=V +dil, (9.4)

where 1; represents the uniform discretization of the Laplace-Beltrami operator at
the vertex V.

To enhance the erosion effect in the protruding regions even more, we can use a power
of the mean curvature to calculate the erosion strength. As we still want to keep the
relation between the maximum vertex displacement and the average edge length,
the formula for the calculation of the vertex displacement length will become

d; = HMS e Ry, (9.5)

T

where n is the power modifier of the mean curvature value.

To validate the correctness of the weathering effect of the presented approach, we
have applied the erosion simulation to a cube model. Figure [9.5[shows the original
cube model and the model after 30, 100 and 200 steps. The power modifier n was
set to 1 for this simulation. As can be seen in Figure[9.5] the algorithm converts the
cube to a sphere as expected.

9.4 Hydraulic Erosion

We propose a similar approach to simulate hydraulic erosion. We use the particle-
based simulation library Flex by Nvidia [NVI] to simulate the fluid. However, as we

69

do not rely on any specific features of the library, it could be easily exchanged for
any other particle-based fluid simulation system.

To simulate the hydraulic erosion, we limit the erosion processes to the regions of
the mesh that are in contact with the fluid particles. For each fluid particle that
collides with the mesh, we search for all the vertices that are within the region of
influence d;y fryence Of the particle. In our simulations, we set the region of influence
din fluence to be equal to the average length of the edge of the mesh, as it results in
including most of the vertices of the affected triangles while excluding any vertices
that are too distant from the fluid particles. To speed up the search for the close
vertices, we use a simple auxiliary grid structure which stores the information about
the spatial subdivision of the mesh.

As we want to have a smooth transition between the eroded and the still parts of
the mesh, we calculate the distance factor fgistance; 0f the vertex V; as follows:

dinfluence - dpart (96)

9

fdistancei -

dinfluence

where dp,,+ is the distance between the vertex V; and the closest particle. The
distance factor fgistance; 15 then used to influence the hydraulic erosion speed as
follows:

V}Z = Vhti_l + difdistancei ln“ (97)

where 1,,, is the vertex displacement direction. For the displacement direction, we use
a combination of the vertex normal and the uniform discretization of the Laplace-
Beltrami operator. For vertices with original mean curvature value of zero we use
only the vertex normal, while for the vertices with mean curvature of H,,;, or H,,q.
we use only the Laplace-Beltrami operator. For the remaining values, we use a linear
interpolation of the vectors.

Unlike in the case of weathering, in hydraulic erosion simulation we have to be
able to erode all vertices in the affected areas, regardless of their mean curvature
value. The stream of water erodes flat areas as well as gaps and protrusions, but
the speed of the erosion will differ. The strength of erosion in protruded areas is the
highest, followed by flat areas and gaps. To mimic this behavior, we use a different
approach for scaling the mean curvature. We scale the mean curvature value interval
< Hpin, Hnae > to fit in the interval < 0,1 >. That way, the gaps are eroded more
slowly and protrusions faster, resulting in a visually plausible simulation of erosion.

9.5 Results

We have performed extensive testing to demonstrate the visual quality of the results
of our approach. This section presents the results of our weathering and hydraulic
erosion simulation algorithms.

70

6666
26666
A A

Figure 9.6: Influence of the power modifier n. Top to bottom: power modifier n = 1,
n = 2 and n = 3. Left to right: original model, simulation after 20, 50, 100, and
200 iterations. Using curvature color coding as described in Figure

9.5.1 Weathering

Figure [9.6] shows the results of the weathering method applied on the model of
the Stanford bunny . The figure demonstrates the influence of the power
modifier n as introduced in Eq. For the first row of images, the power modifier
n = 1, for the second row n = 2 and for the last row n = 3. Each row then represents
the state of the simulation after increasing number of iterations. It can be seen that
the increase of power modifier n results in slower erosion rate in flatter regions.

The effect of the power modifier n is the most significant on models with distinct
protruded regions, such as the hand model in Figure 9.7 The figure shows the
original model and the result of the simulation after 50 iterations with increasing
power modifier. The figure demonstrates a possible problem in weathering highly
protruded models if using low power modifier n. It can result in the creation of very
thin features composed of very small triangles and ultimately it can cause a mesh
to self-intersect.

To prevent such undesirable behavior, we improve the mesh by removing small trian-
gles after every iteration. We used a tenth of the average edge length as a threshold
for the face removal and the power modifier n = 5 in the simulation captured in
Figure[9.8] The simulation erodes the protruded finger regions in a visually plausible
way.

71

Yy ¥y
Lo & 4

Figure 9.7: Influence of the power modifier n on a highly protruded model. Top
to bottom, left to right: original model, simulation after 50 iterations with power
modifier n =1, n=2,n=3, n=4,n=>5,n=10 and n = 20. Using curvature
color coding as described in Figure

\ 22312}

Figure 9.8: Weathering of a highly protruded model. Small faces are removed to
prevent damaging the mesh. Left to right: simulation after 20, 50, 100, 200, 300,
and 400 iterations. Power modifier n = 5; using curvature color coding as described

in Figure

9.5.2 Hydraulic erosion

As mentioned before, we use particle-based simulation library Flex by Nvidia
for the fluid simulation. Figure 0.9 shows our hydraulic erosion method applied
on the model of the Stanford bunny [Lev+05]. We pour the water over the bunny
and simulate the hydraulic erosion using the algorithm presented in Section only
in the mesh regions affected by the water flow. This simple example shows the
capability of the method to restrain the erosion to the parts of the mesh where the
fluid particles collide.

We show a more realistic scene in Figure [9.10f The model represents a narrow
canyon through which the water is poured. The simulation results in the generation
of undercut cliffs around the flow of the fluid. Figure [9.11] compares our results

72

Figure 9.9: Hydraulic erosion simulation. Top: scene with simulated fluid; bottom:
isolated model. Left to right: model after 40, 200, 400, and 700 iterations. Using
curvature color coding as described in Figure

to the results of Tychonievich and Jones who demonstrate their approach
on a scene of similar settings. To emphasize the effect of the hydraulic erosion
simulation, we do not apply any deformation to the regions of the mesh that are not
in direct contact with the fluid. This results in unnaturally flat looking side walls
of the model; this could be improved by adding small amount of noise to the mesh
vertices.

Our next example shows the hydraulic erosion simulation on real data of a river in
the Northern Moravia in the Czech Republic; the region is showed on the map cut-
out in Figure [0.12] The data were acquired by Lidar scanning and preprocessed by
removing the vegetation and performing point reduction and afterwards triangulated
using Delaunay triangulation. However, the data have very bad quality especially in
the river region that is of our interest, as the Lidar scanning is incapable of scanning
surfaces under water. For that reason, we performed further preprocessing using
the MeshLab software [Cig+08]. We lowered the triangles representing the bottom
of the river to create the river bed. Afterwards we used uniform mesh resampling
followed by quadric edge collapse decimation. Figure[9.13|captures both the original
triangulation and the data after preprocessing.

We simulated the process of creation of the undercuts in the river banks in the hy-
draulic erosion scenario captured in Figure We simulated the erosion using
the approach described in Section [9.4, The scene was set up with the following
parameters: the power modifier n = 1 and the region of influence d;;, fiyence of a par-
ticle was set to the average edge length. The simulation results in the creation of
undermined river banks with distinct overhangs especially in the river bend regions,
as demonstrated in Figure and Figure

We used the same data to simulate the flooding of the area due to high amount of
fast flowing water in the river. The scene was set up with the following parameters:

73

(a) Scene with water after 100 iterations (b) Scene with water after 150 iterations

) Isolated model after 100 iterations) Isolated model after 150 iterations

Figure 9.10: Pouring water through a narrow canyon. Using curvature color coding
as described in Figure

..

) Our approach (b) Approach by Tychonievich and
Jones |TJ10]

Figure 9.11: Pouring water through a narrow canyon

74

Figure 9.12: The river Odra in the Northern Moravia in the Czech Republic. Source:
www.Mapy.cz

e 5
SARRE KK kK RIS
A Ty, PRV NV
iV e I AN
R SORGRE

S
S|

/Yy

ok

A%A%‘?ﬂ

i)

i

A

KA

A

RIS
A

KT
A

A

A
Vi

PN
SR
T,

<7

L
L
L
T

ok
4

0
A

SOE

AR
N RO
LG
NA\V‘”QFP‘LVAV
el st g s
o "'él#‘vg"mﬂw

Y
25

VA Tzan

oK
i A

(a) Triangulated Lidar data (b) Data after preprocessing

Figure 9.13: Triangulated data of a river region captured in Figure

75

(a) Original model (b) Scene after 200 iterations

Figure 9.14: Running water creates undercuts on the river banks; front view

(a) Original model (b) Scene after 200 iterations

Figure 9.15: Running water creates undercuts on the river banks; top view

the power modifier n = 1 and the region of influence d;yfiyence Of a particle was
set to triple the average edge length. The increased region of influence diyfiuence
results in smoothing the edges of the river bed and creating more convincing results.
Figure [9.16| shows the original scene and the result of the simulation after 100, 200
and 300 iterations. Figure [0.17] captures the mean curvature of the original scene
and the final scene after 300 iterations.

9.5.3 Execution time

We have measured the execution time for the scenarios presented in this Section on
a computer equipped by Intel i7-4770 3.4GHz, Intel HD Graphics 4600 and 16 GB
RAM. We have measured the time required per iteration of the method, as well as
the execution time of the most important substeps. The measured data is shown in
Tables 9.2 and Tables 0.1 and [0.3] show the number of vertices and faces of the
corresponding scenes. For hydraulic erosion scenarios captured in Tables[9.3]and [9.4]
we also record the average number of particles. Even though we did not dedicate
any special effort to speed up the simulation, the simulation times are very close
to real-time frame rates. The real-time simulation could be achieved by using more
sophisticated auxiliary structures or by implementing the method on the GPU.

76

(a) Top view; original scene (b) Front view; original scene

(c) Top view; after 100 steps (d) Front view; after 100 steps

A\ W

(g) Top view; after 300 steps (h) Front view; after 300 steps

Figure 9.16: Fast water in the river erodes the river banks

7

(a) Original scene; simple rendering (b) Original scene; curvature

(c) Scene after 300 iterations; simple (d) Scene after 300 iterations; curva-
rendering ture

Figure 9.17: Simple rendering and mean curvature values visualization for the sim-
ulation in Figure[9.16] Using curvature color coding as described in Figure 0.]]

Table 9.1: Size of the scenes for the weathering simulations

| vertices faces

Bunny (Fig. 34,835 69,666

Hand, n=1 (Fig. [0.7) 2,518 5,000
Hand, n=10 (Fig. 0.7) | 2,518 5,000

Table 9.2: Execution time of steps of the algorithm (in ms) for the weathering
simulations

curvature Laplacian vertex
iteration [ms] calculation calculation displacement
[ms] [ms] [ms]
Bunny (Fig. 182.705 144.571 16.167 0.354
Hand, n=1 (Fig. 9. 27.464 9.907 1.234 0.028
Hand, n=10 (Fig. [9.7] 27.556 9.855 1.218 0.034

78

Table 9.3: Size of the scenes for the hydraulic erosion simulations

‘ vertices faces particles

Bunny (Fig. 0.9) | 34,835 69,666 17,673
Canyon (Fig. [0.10) | 17,130 34,256 67,561

River 1 (Fig. [9.15 7,806 14,782 72,569
River 2 (Fig. 9.16 7,806 14,782 72,193

Table 9.4: Execution time of steps of the algorithm (in ms) for the hydraulic erosion
simulations

calculate)
iteration affected curvature Laplacian vertex
fms] vertices calculation calculation displacement
- ms| ms] ms|
Bunny (Fig. m) 291.520 34.601 150.006 15.528 1.713
Canyon (Fig. 9.10) | 309.441 116.228 63.749 6.069 0.834
River 1 (Fig. [9.15 271.863 117.651 28.374 3.171 0.528
River 2 (Fig. [9.16 478.560 370.570 28.346 3.220 0.524

9.6 Method Summary and Future Work

The method proposed in this Chapter presents a novel unified approach for the two
most prevalent erosion processes that can be observed in nature, i. e., weathering
and hydraulic erosion. Our approach works directly with models represented as
triangular meshes and simulates the erosion by vertex displacement in the direction
of the vertex normal or the uniform discretization of the Laplace-Beltrami operator,
while the magnitude of the displacement is calculated based on the local mean
curvature value.

The main advantage of this approach is that it offers a unified way of simulating
weathering and hydraulic erosion on triangular meshes, without the need to employ
other auxiliary intermediate data structures. This allows us to use the simulation
method on a wide range of readily available triangular models. Triangular meshes
also permit to model complex scenes with detailed features with varying density of
vertices based on the local complexity of the scene.

The use of triangular meshes and the simplicity of the proposed method lead to very
fast erosion simulation. We achieved almost interactive rates without deploying any
special means to speed up the algorithm. As future work, it would be possible to

achieve interactive simulation rates by performing the erosion calculations on the
GPU.

We have demonstrated our approach on both artificial and real data and showed that
our method results in the creation of visually plausible eroded models despite the
use of very simple erosion simulation function. We have chosen to drive the erosion
speed only on the basis of the local mean curvature value to emphasize the effect of

79

the curvature on the simulations. To increase the plausibility of the simulation, the
erosion function could easily be replaced by more complex physically-based method,
e. g., by the erosion function described in Chapter [§ Also, the plausibility could
be improved by allowing the simulation of erosion of scenes composed of multiple
materials or by handling the topological changes, such as splitting the model in two
due to heavy erosion. In the following Chapters, we will propose possible solutions
to these problems that are compatible with the triangular meshes that we use to
represent the eroded objects.

80

Chapter 10

A Simple and Robust Approach to
Computation of Meshes
Intersection

Heavy erosion can cause a creation of an inconsistency in the mesh. If a part of
the mesh is heavily eroded, it is possible for two parts of the mesh to overlap,
creating a topology inconsistency. A simplified 2D example of such a case is shown
in Figure[10.1} Figure shows a simple valid scene, the red point represents the
vertex where the erosion will be applied. The eroded scene in Figure shows
an example of a created topology inconsistency. While erosion can cause creation of
holes or breaking the mesh into pieces, deposition can cause unwanted mesh merging.

Many methods exist that address the problem of repair of intersecting meshes, for
an overview the reader can refer to Chapter 5] The state-of-the-art methods usually
concentrate on either being robust, accurate, or efficient. To the best of our knowl-
edge, none of them satisfy all the three properties. We focus on the accuracy of the
solution as it is very often overlooked.

Figure shows an overview of our method. The input are two triangular meshes
(or two nonadjacent parts of a single mesh) which are examined for intersection. In
the first step we identify the intersection boundary (Figure , then cut both
parts of the mesh along the boundary (Figure[10.2b)), triangulate the newly generated

polygons (Figure [10.2¢)), and then we stitch the mesh together (Figure [10.2d)).

(a) Original scene (b) Scene with an inconsistency

Figure 10.1: A simple 2D example of an inconsistency in the scene with concave
features

81

invalid
parts

(a) Intersection boundary detection (b) Invalid parts elimination

(c) Polygon triangulation (d) Mesh stitching

Figure 10.2: Method overview

10.1 Intersection Boundary Detection

Our method for intersection boundary detection is based on the tracing the neighbors
of intersecting triangles (TNOIT) algorithm by Lo and Wang [LW04]. The TNOIT
algorithm repairs mesh (self-)intersections only if the intersection segments of the
boundary are calculated precisely enough to be correctly classified into one of the
cases discussed in Section (.27l It fails when the intersection is not determined
correctly due to the numerical imprecision of the calculation.

The problem can be alleviated by increasing the precision of the floating point arith-
metic as shown in [KLN91]. However, this decreases the algorithm performance and
may limit time-critical applications such as real-time simulations. Moreover, it only
shifts the problems to higher frequencies. Another way of solving the problem is to
use a virtual perturbation method (e.g., Simulation of Simplicity [EM90]) to slightly
displace the vertices of the mesh, avoiding the boundary cases altogether. However,
the vertex displacement can be unacceptable in applications where a precise solution
is needed.

We address this issue by a careful inspection of all the cases which can occur due to
the imprecise calculation of the intersection, while using only floating point arith-

82

Figure 10.3: Nonparallel planes containing triangles 77 and R; intersect at the line [

metic. Our solution represents a robust way of handling mesh (self-)intersections in
applications where the accuracy of the solution is the main concern.

Let us open the description of the proposed solution by an analysis of the case where
numerical imprecision could cause problems. Let p; and ps be two nonparallel planes
intersecting at line [. Triangles 77 and R; lying in these planes intersect only if
they intersect the line [and if the corresponding intersection segments overlap. An
example in Figure shows this case; triangle T} intersects the line [in the line
segment [/5, triangle R, intersects the line [in the segment I3/,. The line segments
overlap, i.e., the line segment 315 is the intersection of T} and R;.

To correctly determine the intersection of the triangles, we need to identify the
corresponding intersecting segments for each of them. Considering a triangle T
located in the plane p and a line [in the same plane, there are five ways the triangle T’
can intersect the line /.

1. Line [does not intersect the triangle T' (Figure [10.4al).
2. Line [intersects the triangle 7" at two of its edges (Figure [10.4b)).
3. Line [intersects the triangle T" at one of its vertices (Figure [10.4c]).

4. Line [intersects the triangle 7" at one vertex and the opposite edge (Figure

10.4d).

5. Line [intersects the triangle T" at two of its vertices and the edge formed by
these two vertices is in the line [(Figure [10.4¢)).

The cases 1-2 can be handled even in the context of floating point arithmetic, but
the situation is more difficult when we get closer to the boundary cases, because
even a small error can cause an incorrect classification of the intersection cases.

We suggest a solution to this problem based on a careful classification of all the
possible cases which can be caused by the incorrect calculation of the intersection.
For each pair of triangles, we first identify the intersection line [(Figure [10.3)).

83

. y K

(a) No intersection) Intersection at two edges (c) Intersection at a vertex
Vi
V, /\
(d) Intersection at a vertex) Intersection at two vertices

and an edge

Figure 10.4: Possible intersections between a triangle and a line lying in the same
plane

(a) An example situation (b) Vertices rotated counterclockwise

Figure 10.5: Intersections of line [and the edges of the triangle

Then we calculate the intersection segment for each triangle. The intersection line [
is guaranteed to lie in the same plane as the triangle, allowing us to compute the
intersections of the line [and all edges of the triangle. An example of the situation
is shown in Figure [I0.5al Line [can intersect the line containing an edge in three
ways: intersection lies outside the edge (I7), at a vertex, or inside the edge (Io, I3).

Based on the position of the intersection points I, I, I3, we classify the situation
into one of the cases depicted in Figure [10.4, The problem gets more complicated
when we take into consideration the fact that some (or all) of the intersection points
might not have been determined correctly due to the numerical imprecision of the
floating point arithmetic. We introduce the following substitute symbols for the
relative position of the intersection points:

e (- the intersection point lies outside the edge,
e 1 - the intersection point lies at a vertex, and

e 2 - the intersection point lies inside the edge.

84

The order of the points is not relevant for the classification and so we can sort the
symbolic representation in the ascending order. Using this notation, we can describe
the situation from Figure as 022 - I; lies outside the edge e, Iy and I3 lie inside
the edges e; and e3 respectively. Let us consider a similar situation where the vertices
of the triangle are rotated counterclockwise (Figure [L0.5b)). The description of the
situation using the substitute symbols would be 220. As mentioned above, we can
sort the symbolic representation without the loss of generality, getting the same
representation (022) for both cases. This simplification leaves us with 10 cases to
address:

e 000 - all intersections outside the edges — Figure [10.4a]

e 001 - an impossible case,

e (002 - an impossible case,

e (011 - one intersection outside, two intersections at vertices,

— two intersections at the same vertex — Figure
— intersections at different vertices — Figure [10.4€]

e (12 - an impossible case,

e 022 - one intersection outside, two intersections inside the edges — Fig-

e 111 - three intersections at vertices — Figure [10.4¢]
e 112 - one intersection inside, two intersections at vertices,

— two intersections at the same vertex, one intersection at the opposite edge
— Figure [[0.4d]
— intersections at two different vertices and on the edge between them —

Figure [10.4¢]
e 122 - an impossible case, and

e 222 - an impossible case.

The impossible cases cannot occur as a result of a correct calculation. For these
cases, no such straight line exists that all the intersection points would lie on it.
An example of this situation is in Figure [I0.6] where the line [intersects edges e
and ez close to vertex V;. However, the incorrect calculation of the intersection puts
the point I3 outside the edge e3 whereas the point I5 inside the edge e;, causing
a contradiction with the original assumption that all the intersection points lie on
the line [(points 1, I and I3 are not collinear).

If the classification of the intersection ends up as one of the impossible cases, we know
that the results must have been caused by numerical imprecision. In such a case we
need to correct the results before the neighbor tracing algorithm can continue.

85

Figure 10.6: Impossible case of the intersection points as a result of numerical im-
precision during the calculations

Figure 10.7: Incorrect intersection classification. The computed intersections Iy
and I3 lie inside the edges while the correct intersections I3 and I3 lie at the vertex
Vi

Even if the result of the classification is a valid option, some numerical error might
have been introduced. The numerical errors during the calculation can cause an
incorrect classification. Figure [10.7) shows an example of such a situation. Line [
intersects the edges e; and e3 at the vertex Vi but the computed intersection points I
and I3 are located inside the corresponding edges. This error causes an incorrect
classification as the case 022 instead of the correct case 011.

We cannot tell if the classification is valid if any of the intersection points lies
close to a vertex of the intersected triangle. However, if the mesh does not contain
any nearly degenerate faces with edges shorter than the maximum error £, we can
continue the neighbor tracing. In such a case we can never stray away from the
exact solution farther than to the direct neighbor. Figure [10.8| shows an example
of such a situation where several incorrect classifications took place in a row. The
green dashed line marks the exact intersection boundary while the red dotted line
represents the computed intersection boundary affected by the computational error.
The exact intersection is close to the vertex. The numerical imprecision causes an
incorrect classification of the intersection with triangle Tg, leads the intersection
boundary to 75 instead of T7. In an unlikely scenario it is possible for several
incorrect classifications to chain, e.g., as in Figure where the intersection is
incorrectly classified for triangles Tg, T5, Ty and T5. Triangles T3, T, and T should
not be a part of the intersection at all, but they are included as a result of the
numerical error of the calculation.

86

Il=I;_ T6

Figure 10.8: A chain of several incorrect classifications of the intersection. The green
dashed line represents the exact intersection boundary, the red dotted line represents
the computed intersection boundary

No intersection is found for triangle 75. The failure to identify the intersection
suggests that the previous segment or segments of the intersection boundary were
affected by the numerical imprecision. Yet thanks to the condition we put on the
input triangular mesh (no nearly degenerate triangles), we know the correct solution
is going through a neighboring triangle. In such a case we have to test other possible
classification solutions to find the right triangle where the intersection boundary
continues. We start with the original case that we got as a result of the classification
of the intersection of triangle 7" and look for the next closest option until we find
the pair of triangles where the intersection boundary of the two meshes continues.
The same approach is used if the original classification results in an impossible case.

10.2 Mesh Fixing

After the intersection boundary was found by using the algorithm from Section [10.1]
we can fix the mesh. We propose a novel method for repairing the mesh by using
the detected intersection boundary. For each intersection segment found during the
neighbor tracing, we store the pair of triangles which formed the intersection. This
information is used during the repair step to fix the connectivity and topology of
the mesh.

For each triangle participating in the intersection, a new valid polygon is created by
cutting off the inconsistent parts. To create the polygon, we first need to identify
all the polylines that intersect it. We insert the polylines into an auxiliary data
structure which helps to correctly trace the polygon as shown in Figure [10.9a] We
start with an empty list and insert the vertices of the triangle (Figure [10.10a). We
then insert the first point of each intersecting polyline into the list at the appropriate
position corresponding to the line segment where the point is located in the original
triangle (Figure . Finally, we connect the end points of the polylines with the
vertices that come after them in the polygon boundary (Figure [10.10d). Then we
trace the boundary of the polygon: starting with any polyline, we trace the boundary
following the pointers we set up in the auxiliary structure until we get back to the
starting point (Figure[10.10d). The points we visited form the boundary of the new

87

(a) The original triangle and the inter- (b) New polygons created by cutting off
secting polylines the inconsistent parts

Figure 10.9: Polygon reconstruction

polygon. If any polyline is left unvisited, the original triangle needs to be cut into
more pieces. We repeat this process until all the polygons are found (Figure [10.9b)).
The order of the processing does not affect the outcome of the algorithm.

Then we use the ear cutting algorithm [Mei75] to triangulate the polygons created in
the previous step. The algorithm searches the polygon for ears, triangles such that
two of its edges are consecutive edges of the polygon and the third lies completely
inside it (a diagonal of the polygon). It has been proven by Meisters [Mei75| that
each polygon with at least four vertices without holes has at least two ears, so the
algorithm must find an ear each step. Once an ear is located, it is removed from
the polygon and added to the triangulation. This process is repeated until there is
only one triangle left. Finally, correct connectivity is restored through the shared
intersection boundary.

10.3 Results

We tested our algorithm in various scenarios to demonstrate its robustness and
correctness. Our implementation is a single-threaded C++ code and it was tested
on an Intel Core i7 clocked at 3.07 GHz with 8 GB RAM.

Figure shows the results of our algorithm for two intersecting spheres of dif-
ferent sizes and resolutions. The two spheres meet at the boundary captured in
Figure [10.11b] The repaired mesh in Figure is intersection-free; however, it
contains many nearly degenerate faces along the boundary. This is a characteristic
feature of the ear cutting algorithm [Mei75] used for the mesh repair. As changing
the input mesh is generally not desirable, the nearly degenerate faces are created
every time the vertices on the boundary are located close to each other. If changes
of the mesh would be allowed, the mesh improvement methods could optionally be
used to repair the problematic faces (Figure . We used a combination of edge
contraction algorithm (to eliminate the needle-like triangles) and triangle splitting
(to repair the caps) in a way similar to [BKO01].

88

oxr

Tw

IO m

(a) The list is initiated with triangle ver- (b) The intersecting polylines are inserted
tices at the appropriate positions

(¢) The end points are linked to the ap- (d) Polygon tracing; two polygons are
propriate positions found - highlighted with red and blue

Figure 10.10: Data structure used in polygon reconstruction

(a) Two intersecting spheres (¢) Repaired mesh

(d) Repaired mesh (inside (e) Mesh improvement (op-
look) tional step)

Figure 10.11: Intersection of two spheres

89

=

\/\
\\
VAV
VYA
i
VAVAVAVAVAVA
VAVAVAVAVAVAYA
7]

777
’

LT

\/

27

VA

2 VAVAVAVAYA)
Vé

L
7

L7

rrlrr

(a) Two intersecting cuboids

(b) Intersection boundary

Figure 10.12: Intersection of two cuboids

Table 10.1: The number of occurrences of possible intersection cases for the scene
captured in Figure [10.12] with increasing resolution, using the notation introduced

in Section

faces 000 001 o002 011 012 022 111 112 122 222 ‘ valid impossible
336 | 11 8 0 0) 8 0 0 0 0 19 13
3072 33 1 55 0 1 38 0 0 0 0 71 57
49 152 | 116 0 201 0 5 188 0 0 0 0] 304 206
196 608 | 224 2 364 0 0 426 0 0 0 0] 650 366

Our algorithm addresses the problem of numerical inaccuracy of floating point cal-
culations which can affect the result of the neighbor tracing algorithm [LW04] when
operating near the boundary cases. We created a simple scene to demonstrate the
problem. A cuboid with edge ratio 2:2:2 intersects a cuboid with edge ratio 4:1:1 in
Figure The cuboids are aligned so that the intersection boundary is going
exactly along the edges of the faces. The cuboids are rotated one degree along the
x axis to magnify the problem of floating point arithmetic inaccuracy. The position
of some of the vertices cannot be represented exactly in floating point arithmetic
after the rotation, amplifying the inaccuracy of the subsequent calculations.

The scene was set up in such a way that we know the exact result of the intersection
of the two cuboids and can compare it with the results of our algorithm. The
intersection boundary is aligned with the edges, so we can assume that every triangle
participating in the intersection will have one of its vertices or edges lying on the
intersection boundary. Using the notation introduced in Section [10.1] the result for
each segment of the boundary should be 011, 111, or 112. However, the measured
results differ from these expected values due to the numerical imprecision of the
floating point arithmetic. Table [I0.1] summarizes the results measured for the two
cuboids with increasing resolution. For the example in Figure consisting of
3,072 faces, the calculation results in impossible cases in 57 out of 128 instances.
Furthermore, not even the valid results correspond to the expected outcome - none
of the intersections was correctly identified as the cases 011, 111 or 112. Using
the proposed method, we were able to repair the intersection despite the incorrect
identification of the intersection cases.

90

Table 10.2: The resolution of the scenes

faces vertices

Two spheres (Figure [10.11 1 360 686
Self-intersection (Figure | 5120 2 564
Boolean - union (Figure 13568 6790

Two cuboids (1) (Figure [10.12 49 152 24 582
Two cuboids (2) (Figure [10.12 196 608 98 310
Dragons & bunnies (Figure |10.13 76 716 38 372

Figure shows an example of a complex intersection scene. The scene consists of
six Stanford dragons and six Stanford bunnies [Lev-+05] placed at random positions
with random rotation. Figure captures the intersection boundaries in the
overlapped meshes that were identified by our algorithm and Figure depicts
the resulting output mesh that does not contain any intersections.

Our algorithm can detect and repair not only the intersection between separate
objects, but also the self-intersections of a single model. Figure captures such
a self-intersecting object. The middle ring in Figure represents an inconsistent
part of the mesh, where the normals are reversed as a result of the mesh overlap
- the normals are pointing inwards instead of outwards. We can detect the two
intersection boundaries captured in Figure [I0.14D] using our algorithm and repair
the mesh. As shown in Figure [I0.14d, the operation can cause the mesh to split up
into multiple pieces.

The algorithm can also be used to perform boolean operations on triangular meshes.
Having two triangular meshes A and B (Figure , we can perform boolean
operations on them by setting the orientation of the normals of the mesh faces which
are then used during the computation of the intersection boundary (Figure .
As we do not want to change the actual normals of the mesh, we use additional
temporary normals to obtain the desired behavior; these temporary normals are
used during the repair of the mesh to determine, which part of the mesh should
be discarded. To get the union AU B, the temporary normals are identical to the
actual normals (Figure . On the contrary, the boolean operation intersection
AN B can be defined by setting all the temporary normals pointing inward the mesh
(Figure . For the difference A\ B, the temporary normals of A are pointing
outwards, while the normals of B are pointing inwards (Figure . Similarly,
Figure shows the result of the difference B\ A.

Table contains the number of faces and vertices of the scenes presented in this
Chapter. Table[I0.3|shows the measured execution time. The measured data demon-
strate that we usually find all the intersection boundaries long before we search the
entire mesh, e.g., in the Two cuboids (2) example (Figure . Nevertheless, we
cannot stop the calculation early, because we do not know if all the boundaries have
been found until we finish searching the whole mesh. The Dragons & bunnies ex-
ample (Figure shows that for complex scenes with many separate intersection
boundaries we have to go through most of the mesh to find all the intersections.

91

ST
Lo

vz

K}

'Y
!,

]
e
K

AV
VAVl

i
rf:"éz‘%

7AVAN
\

v VAN

2K

KN

[
s

,,
5
o

4
e
ey
%

S
X
AW
\

V

N
0
Q\‘»
/

7% =
A L AT
l???%ﬁg’if =;~ <§i(
TN BAYY =g
A A RN N s
BO e)

AN
N AN

<

7)

P ATAY V)v)(/‘zgﬁ./ 4
TE

L7
%7/

(b) A single output mesh without the intersections

Figure 10.13: An example of randomly placed six Stanford dragons and six Stanford

bunnies [Lev+05]

92

“\‘wpﬂ”’) =
e
“

5
N\

!

>

N
o
558
5
N
N
S ,I

N
R,

7

i
8
588
S8
SRR
S8
S
5
r\\
'

— A P A)
S ‘ P -
NN -
e NN, R oLt s
o A N N N AT Y TN A A al mB‘ ﬂm“mmnmu.m‘muunmmmm%nwwmwn)
SeECcesass: | iz

R
5

AVAY
T

LE
S

v

-
o

t (optional

) Union AU B

R , —_ 2K K
LASSS SOAN < |l NSRRI
(L] WA & © AVAN 5y
[i i M= g = SRR
(< s o N S <Kl
R NGO 2 = RS s
BTN KX .=
g, thv N o)
st g 3]
W2 R= o)

wn

o

Q

+~

]

o=

(b) Intersection boundary

Mesh

o
AV
5
£
N
N

ion boundary

i
i
Yy

i
i

%
SRR
SRR

BN S

QAAAA — r.l_ N SESSSaaa =
TR ANNNVNVWY] N AV YAV AVAV VoY
a2 o o NSNS O RSOy
-8 & S SSSNSoN oy A
~ 0 NNNNNNNST ﬂ‘
3 vy
=
e e Lc m
«.‘,\...«%vmm.nunuﬁowﬂo‘h«%mﬂ,. \«wwwmv»mm,anu?z \ o Z
N (TN S\Y o) AN :
K VA AN [0 = s
AR 8! R g = 17
3 AR [— L5
fioy e = e
IR o0 R 0 .-} ¥ eSSt
O NN =] KIS (WA <t
OSSO AN\ ¢ S ()
SIS N = K] (
KA 2 = KEETS) iy —
KISy 7 (5 W
KT oA O e, 4 o] N
N avary 14V IS4 W
RSO # O D ek ol © —
I IYawza AYAVAY| I
(SR e i 2R K 01 —
I o RIS Ot =
RSKOONOS (PRTSN)
ey 2 R = o
el = g = -
NN - NS S
7) S
OO <\ A a0 e e
L . NN i ALY
R A 2 it — SSSSEESNES
\ 1 = 2 vavarataTsT) SRRRRER | Y\ ccoosshoten:
o ;mnﬁbﬂﬂﬂ“»“ 7 % TSNS
- 1 4%
e Q
~—
<
N

5 RRRERSEP
N R
L NS
Vs Y SN

L= Ll
SRR RO

RS RRSSNRRRAR

5 kR
SRRRRRIISSIIS

93

ifference B\ A

D
cube A and sphere B

(f)

(e) Difference A\ B
two triangular meshes

0ons on

ion AN B
Boolean operat

Intersect

(d)

Figure 10.15

Table 10.3: The execution time of individual steps of the algorithm (in ms)

Find

intersection Search Fix mesh
. whole mesh

boundaries
Two spheres (Figure [10.11 4 51 66
Self-intersection (Figure 5 72 15
Boolean - union (Figure 24 221 43
Two cuboids (1) (Figure [10.12 63 394 33
Two cuboids (2) (Figure [10.12 24 1 454 76
Dragons & Bunnies (Figure [10.13 7 358 7 631 476

The examples presented in this section demonstrate the ability of the method to find
the intersection boundary and repair the intersecting meshes even in the non-trivial
cases, such as a scene containing many separate intersection loops (Figure or
a scene with many boundary cases (Figure .

10.4 Method Summary and Future Work

In this Chapter, we have proposed an approach for the repair of intersecting meshes
based on the neighbor tracing algorithm [LW04; McL+13| with the emphasis on the
accuracy. Unlike the previous work, we do not use arbitrary precision arithmetic to
achieve the accuracy of the solution, nor do we use virtual perturbation to avoid the
undesirable boundary cases, as the change of input data can be unacceptable in some
applications. Our method does not introduce any alteration of the input, works with
floating point arithmetic and achieves accuracy through a careful classification of all
sub-cases that could be caused by numerical imprecision. The neighbor tracing can
be damaged by a numerical error near the boundary cases but for a mesh without
nearly degenerate triangles, the intersection boundary can be correctly traced and
repaired thanks to the classification of the intersection.

However, if this method is used to repair topology of dynamic meshes, such as
meshes being deformed due to the influence of erosion processes, it usually cannot
be guaranteed that no nearly degenerate triangles will be created in the mesh during
the evolution of the mesh. In such cases, we remove the almost degenerate triangles
from the mesh as a preprocessing step before the topology repair.

As the method works with single precision floating point arithmetic, it could be im-
plemented on the GPU, where the higher precision operations can be very expensive.
The transformation of the algorithm to be able to run it on the GPU is one of the
possible avenues for future work.

94

Chapter 11

Complex Multi-Material Approach
for Dynamic Simulations

A real-life scene is composed of objects made of different materials which are eroded
in a different way; hard and resistant materials are eroded slowly, while the erosion of
soft materials is usually happening much faster. To be able to simulate such phenom-
ena, we need means to consistently describe the material of an object. A common
way of representation is to have a separate mesh for each material present in the
scene. This approach is suitable for simulation of static scenes, where the materials
are strictly separated. If the scene is dynamically changing or contains objects made
of gradually changing material, a different approach is necessary.

We have tested several ways of material description that allow the definition of
multiple materials for a single mesh, ranging from a material definition for each
vertex of the mesh to a more sophisticated method of binary space partitions (BSP).
We describe the methods in the following text.

11.1 Material in a Vertex

The most simple way to define multiple materials for a single mesh is to assign ma-
terial properties to each individual vertex. This approach is very easy to implement;
however, it has disadvantages as well. This kind of material definition applies only
to the surface of the object, not to the volume. Using this approach, the result
of the erosion simulation will change according to the direction of the erosion. If
the erosion direction is parallel with the boundary of the individual materials, the
erosion will be simulated correctly. Figure shows an object made of two differ-
ent materials. The dark brown material is hard and sturdy, while the light brown
material is soft and easily erodible. Figure captures the result of the erosion
simulation.

The disadvantage of the approach is illustrated in Figure [11.2 The boundary be-
tween the materials is assumed to be straight and going through the middle of the
object, perpendicular to the direction of the erosion. Figure shows that the

95

YA

A
Y vy

(a) Original model (b) Eroded model

Figure 11.1: Material properties assigned to each vertex, correct case. Erosion force
is applied from the left

(a) Original model (b) Eroded model

Figure 11.2: Material properties assigned to each vertex, incorrect case. Erosion
force is applied from the left

soft vertices (light brown) have been incorrectly eroded beyond the boundary. How-
ever, if the boundary inside the object was curved, the result shown in Figure
could be correct. This ambiguity is the main downside of the method.

11.2 Division by a Plane

The problem of the previous approach can be reduced, if the material properties
are defined for the whole volume of the scene, using a plane to separate different
materials. Figure [I1.3] shows the situation from Figure [I1.2] but the material def-
inition is done by a dividing plane. Material is not assigned to each vertex, but is
dynamically determined based on the eroded vertex location during the simulation.
The simulation gives the expected result, as shown in Figure [I1.3D]

This approach allows the simulation of a simple terrain composed of several mate-
rials, imitating the layered nature of the terrain. Figure [11.4al captures a simple
terrain composed of two materials being eroded by a stream of water. The hy-
draulic erosion is simulated using Smooth particle hydrodynamics (SPH) [GMT77]
particles, which erode the upper layer of the soft material, exposing the underlying
hard one (Figure . The particle-based SPH approach is very common in fluid

96

(a) Original model (b) Eroded model

Figure 11.3: Material defined by a dividing plane. Erosion force is applied from the
left

=

S
VS
IS TRAWAN
= SooaNy =3
WA SS=eNuaaS
SSe S AN
eSS S oo
SSSoesS SSOSSS
SSosSo .
SSSCSSesS 2
eSS SoeS

i
)
4

Ik

Q(
(00 000

==

X/
/
4
7
i

)

Kk

=
_—s
s

—
S TS oSS oRs S
S CS oSS S oy
At e

==

il

i
i
o)
0«1«»" ‘

)

0
%g
il

(
0
|
i

()
el
09
il

ate

=

(a) Stream o

=

erodes the terrain (b) Eroded model

Figure 11.4: Hydraulic erosion simulation using SPH particles

simulation. In hydraulic erosion simulation, it allows to speed up the simulation
by concentrating the calculations to regions where the fluid is present. The erosion
approach is similar to the method used by Kristof et al. [Kri+09] and Skorkovska et
al. [SKB15], but any other erosion simulation could be easily used instead.

11.3 Division by a Function

The division by a plane can imitate the material distribution of a simple small-scale
scene; however, in bigger scale, the boundary between materials will usually not be
linear. To simulate a more complex boundary, an implicit division function can be
used. The function defined by Equation describes an implicit surface if d = 0.
A point Az, y, z] lies on the left of the surface for d < 0 and on the right for d > 0.

F(z,y,2)=d;x,y,z,d € R (11.1)

This approach allows the description of a nonlinear boundary analytically, without
the use of a memory-demanding data structure such as the volumetric approach.
Figure shows a demonstrative example of the function division approach. The
terrain starts as a plane and is eroded by water particles. The boundary between

97

(a) Division defined by Eq. (b) Division defined by Eq.

Figure 11.5: Material defined by a dividing function

materials is defined by Equation [I1.2] for Figure and by Equation [I1.3|for Fig-
ure[I1.5b] This approach can be used with little effort to represent a hilly landscape.
Unfortunately, a realistic boundary usually cannot be described by such a simple
function. Finding the appropriate complex function that follows the desired bound-
ary can be a troublesome task. Another downside of this approach is the need to
enumerate the function for each eroded vertex to determine the material.

cos(%—k%)—Sin<%)—§—2+9=0;%ya2€R (11.2)

sin(x/:vQ—i—yZ)—§+9—z:0;x,y,z€R (11.3)

A distance function can be associated with the division function to enhance the
capabilities of the approach. For a function defined by Equation [11.1] the absolute
value of d grows with the increasing distance from the implicit surface. Therefore it
can be used to simulate gradually changing materials if the material distribution is
defined as a function of d.

11.4 Binary Space Partitions

The methods of multiple material definition described in the previous sections can
be used to describe the material distribution of a simple scene containing only
two distinct materials. To simulate more complex distribution of the material,
a more sophisticated approach is needed. We are using a binary space partitioning
(BSP) [FKN80| approach that can be seen as an extension of the method described
in Section [I1.2] allowing the splitting up of the scene into more parts using multiple
division planes.

The BSP method recursively subdivides the space into convex regions by splitting
planes. The planes are stored in a binary tree as the inner nodes, while each leaf of

98

v
H
5
(a) Planar subdivision (b) BSP tree
Figure 11.6: A simplified 2D example of the BSP
A
2
v
H
5
(a) Location of the point z (b) Path to z in the BSP tree

Figure 11.7: Location of a point using a BSP tree

the tree represents a convex part of the space and contains the information about
the material of the subspace delimited by the corresponding planes. Figure [11.6]
shows a simplified 2D example of the BSP subdivision scheme. The upper half-
space delimited by each of the lines is marked by the direction of the arrow. 2D
examples will be used throughout this section as they are more comprehensible than
their 3D counterparts; however, the principles stay valid in the higher dimension.

To decide which material should be assigned to a vertex, we need to search the BSP
tree and determine, for each level of the tree, on which side of the division plane
the vertex lies. When a leaf of the tree is reached, the subspace the vertex belongs
to has been found. Figure shows an example of a point location using a BSP
tree. Figure shows the planar subdivision and the position of the point x. The
search process using the BSP tree is captured in Figure [I1.7D]

The binary space partitioning approach can be used to split the scene up into convex
regions of defined material properties. However, for some scenarios, the BSP tree
can degrade to a list, thus increasing the search complexity. Let us consider an
example captured in Figure [I1.8] Figure shows the material distribution in
the scene - a convex region made of a single material is surrounded by a different
type of material. Regardless of the order in which the edges of the polygon are

99

3

(a) Material distribution (b) Planar subdivision (c) BSP tree
Figure 11.8: Definition of a convex region using BSP

1

@

folc]

[A] [8] [c] [O]

(a) Planar subdivision (b) BSP tree

Figure 11.9: Planar subdivision using nonlinear splitting functions

inserted into the BSP tree, the region F will always lie on the left side of the splitting
line (Figure [L1.8b]), resulting in a degenerate tree (Figure |11.8c). However, these

scenarios are not very common in erosion simulations.

The idea of binary space partitioning can be extended to work with nonlinear el-
ements to simplify the definition of more complex scenes. Instead of using planes
to split the space up into two parts, any curved surface that can be expressed by
an implicit function can be used, following the approach introduced in Section [11.3]
The extended BSP data structure significantly simplifies the description of nonlinear
boundaries between materials. The scene in Figure [I1.9 would require many split-
ting planes to obtain an approximate space subdivision, while the extended approach
only needed three splitting functions to get the desired result.

11.5 Automated Generation of the BSP Tree

The binary space subdivision can be used as a memory efficient means of material
distribution description in a scene. However, for big and complex scenes, the manual
definition of splitting functions would be complicated and time-consuming.

100

We have proposed an automated method for the generation of the BSP tree. Typical
material distribution information comes in the form of volumetric data. To construct
the BSP tree, a triangular mesh needs to be extracted from the volumetric data
for each value that represents a significant boundary in the input data. We use
the marching cubes method [LC87] for the isosurface extraction with the threshold
parameter defined by the user.

The extracted triangular mesh (or triangular meshes) is then used to construct the
BSP tree. We construct the BSP tree incrementally, inserting a random face of
the mesh one at a time. We use the Durstenfeld’s [Dur64] optimized version of the
Fisher-Yates shuffle method [F'Y56] to randomize the order of the faces of the mesh.

Algorithm 1 Face insertion

1. procedure INSERTFACE(face)

2 plane < root of the BSP tree

3 center < center of the face

4: while plane '= NULL do

5: if face lies in plane then return false
6 if F'(center) > 0 then

7 plane < plane.rightChild

8

9

else
plane < plane.le ftChild
10: plane < plane containing face
11: return true

The insertion of a single face f is described by Algorithm [I} The algorithm searches
through the tree and, for each level of the tree, it determines the position of the face
f in relation to a splitting plane p. If the face f lies in the plane p, we can discard
it because the division plane with the same parameters is already included in the
corresponding branch of the tree. Otherwise, we move to the left subtree if F'(¢) < 0
and to the right subtree if F'(¢) > 0, where ¢ is the center of the face f. When we
reach an empty leaf, we can insert the plane that contains the face f.

Inserting a face into the tree based on the position of its center is a simplification
that leads to smaller and simpler BSP trees. The center is a better representation
of the face than its vertices, as each vertex is shared by multiple faces and so the
probability of a vertex lying in a plane defined by another face increases. We can
afford such a simplification thanks to the connectivity of the input mesh - the inserted
face has neighbors that will probably be inserted in the neighboring cells of the BSP
tree. However, if the inserted faces are big when compared to the size of the cells
of the BSP tree in the corresponding part of the scene, some of the cells may not
be correctly divided due to this simplification. This can cause small parts of the
scene to be misclassified as an incorrect type of material. We call this approach the
simplified BSP method (S-BSP).

To obtain an exact solution, the face f has to be inserted into all the subspaces it
intersects. Instead of the center of the face f, all its vertices have to be evaluated. If
all the vertices lie on the same side of the splitting plane p, the whole face lies on that

101

side and we can proceed with the search in the corresponding subtree. Otherwise,
we have to continue the search in both subtrees of the current node. That increases
the complexity of the insertion algorithm and also leads to the creation of bigger
BSP trees, as some of the faces cause the tree to grow by more than one node. This
approach will be referred to as the complete BSP method (C-BSP).

Another simplification of our algorithm applies to the way the material properties
are assigned to the leaves of the BSP tree when a new plane is inserted. In the close
proximity of the inserted plane, it is safe to assume that the space to the left of the
plane belongs to the inside of the region delimited by the input triangular mesh,
while the space to the right belongs to the outside. However, for nonconvex regions
this may not hold in the regions located farther away.

The introduced simplifications can cause an incorrect classification of the material
properties, but as we show in the following section, our approach gives satisfactory
results.

11.6 Results and Experiments

11.6.1 Splitting Planes

We have tested the proposed approach in various scenarios to test its applicability to
the problem of material spatial distribution. Figure [11.10] shows an example of the
basic BSP material definition. Figure shows an initial un-eroded model; the
same initial model was used in all the erosion simulations presented in Figure [11.10]
The scene has been divided into sixteen vertical spatial cells; each one has been
assigned a unique random material. The darker color of the mesh marks the regions
made of a tougher material; the lighter the color, the less durable the material is. As
can be seen in Figure [I1.10b] the parts of the mesh made of a less durable material
are being eroded much faster than the regions made of a tougher one.

The BSP material definition method can be extended to support the definition of
a gradually changing material. The simulation of gradually changing material is
very important in dynamic simulations such as erosion scenarios. It allows the
representation of materials blending into each other, such as sand and pebbles at
a river bank. We achieve the effect of gradually changing material by the addition
of a distance function. The material properties are computed based on the value of
d defined by Equation [11.1} Figure shows an example of gradually changing
material. The hardest material is assigned to the vertices lying on the division
planes, as we move farther from the planes, the material gets softer. The two
aforementioned approaches can be combined as seen in Figure [I1.10d] Each spatial
cell has been assigned a random unique material. With the growing distance from
the division plane, the material gets softer. Figure shows an example of BSP
using general planes combined with a distance function.

102

(a) Original un-eroded model (b) Unique material assigned to each cell

(c) Material distribution defined by a distance (d) Distance function combined with unique
function material in each cell

(e) Material defined by splitting planes in gen-
eral positions

Figure 11.10: Material definition via BSP approach. Dark brown marks regions
made of hard material; light brown marks soft material

11.6.2 Implicit Splitting Surfaces

The generalization of the proposed method to allow the use of implicit splitting
surfaces gives us a powerful tool for material definition. A single implicit surface
can replace many splitting planes that would be necessary to create the same spatial
subdivision. Similar to the base method, a distance function can be used to mimic
a gradually changing material.

Figure shows an example of the space partitioning by an implicit surface -
a sphere. Figure shows a scene with constant material properties in each
subspace. In Figure a distance function is defined to simulate the material
becoming softer farther from the boundary. As the 3D visualization of the space
partitioning could become unclear for more complex scenes, 2D slices of the volume
will be used to demonstrate the distribution of the material throughout this Section.

103

) Constant material properties b) Gradually changing material

Figure 11.11: 2D slice of a scene subdivided by an implicit surface - a sphere

a) Ellipsoid) Paraboloid (¢) Elliptic hyper-
boloid
d) Cylinder) Sin function) Sinc function

Figure 11.12: Examples of splitting functions combined with a distance function

The 2D slices are created by sampling the BSP tree at regular intervals. Figure[11.12]
shows other examples of implicit surfaces that can be used as splitting functions.
A simple example of a space partitioning consisting of three implicit splitting func-
tions is captured in Figure [I1.13] Figure illustrates the material distribution
in a 2D slice of the scene, while Figure shows the corresponding BSP tree.

An example of a more realistic scene is shown in Figure The scene simulates
the layered nature of a terrain - the bottom layers represent hard layers of bedrock,
while the upper layers are defined by a normalized sinc function and imitate a hilly
landscape. Figure [I1.14a] shows the material distribution in the middle slice of the
scene. Figure [I1.14D] shows a single mesh that was sculpted from an initial cube
model by an erosion simulation with the defined material properties.

Figure [11.15] captures the material distribution of a rocky scene where rocks and
pebbles of varying size and durability are covered with easily erodible sand. The sand

104

[\
i

(a) 2D slice of material distribution (b) BSP tree defined by implicit functions

Figure 11.13: BSP tree defined by implicit splitting surfaces

(a) Material distribution (b) Mesh sculpted from a cube by an ero-
sion simulation

Figure 11.14: Hills example. Dark brown marks regions made of hard material; light
brown marks soft material

is gradually eroded away and the underlying stones are being revealed (Figure.
However, this sort of material distribution is not very suitable for the BSP approach
using implicit splitting functions. As we generally do not need to subdivide the
space inside the individual spheres or ellipsoids that define the stones, the BSP tree
would often degenerate into a list.

11.6.3 Automated Generation of the BSP Tree

To examine the method for the automated generation of a BSP tree, we used a vol-
umetric model of a cave complexﬂ with the resolution of 120 x 120 x 60 voxels. The

!The volumetric model was adapted from a model distributed as a part of MagicaVoxel software
(https://voxel.codeplex.com/))

105

https://voxel.codeplex.com/

Figure 11.15: Material distribution of a rocky scene

(b) The sand gets eroded

(¢) The rocks are revealed

Figure 11.16: Rocky scene. Dark brown marks regions made of hard material; light
brown marks soft material

model is shown in Figure We expanded the model using dilation to represent
the changing material. The voxels that were full in the base model were assigned the
hardest material. The voxels created by the dilation were assigned a material based
on the distance from the full voxels; the farther the voxel, the softer the material,
as illustrated in Figure [I1.170]

The expanded volumetric model was used as an input for the marching cubes algo-
rithm . We selected four material thresholds and extracted the correspond-
ing isosurfaces. The triangular meshes representing the individual isosurfaces were
afterwards used to generate the BSP tree following the algorithm described in Sec-
tion [11.5] The four meshes combined consisted of 684,892 faces.

Two approaches were used to generate the BSP tree. Figure [I1.18a] shows the
outcome of the complete BSP (C-BSP) method where each face is inserted into all
the tree branches it intersects. Figure shows the outcome of the simplified
BSP (S-BSP) method where the faces are inserted into the BSP tree into a single
branch based on the position of the center of the face. As can be seen in the pictures,
the simplified method can cause misclassification of small regions of the scene. It
is up to the user to select the appropriate method for their simulation, depending

106

W%«

) Volumetric model of a cave complex) Volumetric model of a cave complex cre-
ated by dilation of the original model

Figure 11.17: Volumetric model of a cave complex. The lighter the color, the softer
the material

) The complete BSP method (C- BSP) The simplified BSP method (S- BSP

Figure 11.18: Material distribution of a single slice of a cave complex sampled from
the generated BSP tree. The lighter the color, the softer the material

on whether or not their algorithm can handle the small disturbances in the material
distribution.

We tested our approach on a medical CT-scanned data of a tooth to verify the appli-
cability of the approach. Such a dataset can be used, e.g., in a medical simulation to
study the erosion processes on the surface of the tooth and the subsequent creation
of dental caries. The Tooth dataset consists of 256 x 256 x 161 voxels, each
voxel is represented as a 16-bit value. Visualization of the original dataset is shown
in Figure [I1.1I9] A tooth consists of three different materials. The hardest material
forms the topmost part of a tooth and is called enamel. The part below enamel is
called dentin and consists of a softer material. The softest material can be found in
the middle of a tooth in the dental pulp.

We identified the thresholds that separated the aforementioned parts in the Tooth
dataset and used the marching cubes algorithm to extract the corresponding
isosurfaces. The extracted isosurfaces consisting of 325,704 faces were used to create
the BSP tree, similarly to the previous example. The results of the C-BSP method
are shown in Figure [[1.20a] the results of the S-BSP method are captured in Fig-

107

Figure 11.19: Visualization of the Tooth dataset |Eng00]

ure [11.20bl As can be seen in Figure [11.20b] the S-BSP method gives considerably
inferior results for this dataset.

The introduced simplifications have a big influence on the efficiency of the spatial
division. The removal of the faces lying in the planes that are already present
in the corresponding branch of the BSP tree reduces the number of inserted faces
by more than 80%. Furthermore, unlike the simplified generation of the BSP tree
based on the centers of the faces, it does not affect the quality of the resulting space
partitioning. Table summarizes the number of faces of the extracted meshes,
as well as the number of faces inserted in the BSP tree for both the S-BSP and the
C-BSP approach. The size of the BSP tree and its height are average values based
on multiple runs with random order of inserted faces. The difference in the number
of inserted faces for S-BSP and C-BSP is not very significant and so the C-BSP
method can be recommended for most scenarios.

Table 11.1: Properties of the BSP trees generated for the presented results. C-BSP:
complete BSP, S-BSP: simplified BSP

Cave (Fig.|11.18) Tooth (Fig.|11.20))

Extracted faces count 684,692 325,704
C-BSP face count 115,257 48,196
S-BSP face count 95,511 42,574
C-BSP tree height 63 60
S-BSP tree height 62 o8

The memory requirements of the original volumetric datasets and the generated
BSP trees are compared in Table Each node of the BSP tree takes 24 bytes:

108

) The complete BSP method (C-BSP)

) The simplified BSP method (S-BSP)

Figure 11.20: Material distribution of four slices of the Tooth dataset sampled from
the generated BSP tree. The lighter the color, the softer the material

4 floats (32-bit) for the coefficients of the dividing plane and 2 pointers (32-bit) to
children nodes. The material type is stored only in the leaves of the tree and so
its contribution to memory requirements is insignificant. Table insinuates the
kind of scenarios for which the proposed approach is suitable. The Cave complex
example (Figure consists of very thin layers of different materials. If we want
to represent the scene without loss of detail, we need to extract several isosurfaces
and the resulting BSP tree quickly grows in size. On the other hand, in the Tooth
dataset (Figure [11.19)) we can distinguish only three types of material. The BSP
approach reduces the memory requirements for this dataset to approximately 5% of
the requirements of the original volumetric data.

11.7 Method Summary and Future Work

In this Chapter, we have proposed a multiple material definition method based on
the use of binary space partitioning (BSP). A BSP tree subdivides the scene into cells
by splitting planes or general implicit surfaces and the material for each of the cells is

109

Table 11.2: Memory requirements of the presented results (in bytes). C-BSP: com-
plete BSP, S-BSP: simplified BSP

Cave (Fig. [11.18) Tooth (Fig.|11.20))

Volume data 864,000 B 21,102,592 B
C-BSP 2,766,168 B 1,204,900 B
S-BSP 2,292,264 B 1,064,350 B

defined separately. The approach also supports the definition of a gradually changing
material through the use of a distance function. To simplify the creation of the BSP
tree, a method for automated generation of the tree from input volumetric data
has been proposed. An isosurface extraction method is used to extract a triangular
mesh which is used to construct the BSP tree. Simplifications have been introduced
that have great impact on the size of the constructed tree, at the cost of some
regions possibly being misclassified as an incorrect type of material. A complete
BSP method with slightly higher memory requirements has also been proposed for
the sake of simulations that cannot handle the material disturbances the simplified
approach can cause.

The proposed solution is suitable for use in larger scenarios composed of several
types of material where the memory requirements of the volumetric approach would
be unacceptable. The memory consumption of the BSP approach depends on the
number and complexity of the blocks of different materials, not on the size or com-
plexity of the scene itself. However, if the material layers are too thin or too variable,
the memory requirements of the created BSP tree can exceed the requirements of the
volumetric approach. For future work, it could be possible to address this drawback
by a method for automated detection of general splitting surfaces.

110

Chapter 12

Erosion-Inspired Simulation of
Aging for Deformation-Based
Head Modeling

Erosion simulation is usually considered in relation with terrain evolution or simu-
lation of aging effects on individual natural or artificial objects. However, erosion
simulation can also be used to simulate other phenomena in other fields of research.
We have proposed a method that simulates aging of a human face using erosion-
inspired approach. The approach is very simple and requires no training data,
unlike most of the existing methods that focus on this problem (see [Sko+17| for
a short overview of related existing methods). The approach is particularly helpful
in scenarios where fast and simple aging simulation is required. An example of such
scenario can be, e.g., the creation of 3D identikit using deformation-based modeling,
such as the approach proposed by Martinek and Kolingerova [MK14].

The proposed method simulates aging of 3D triangular head models by creating
wrinkles using an erosion-inspired approach. The vertices of the model are assigned
an erosion factor that controls the deformation of the surface. A positive value
of the erosion factor is assigned to the regions that should be enlarged to mimic
a deposition process, while a zero erosion factor suggests that the given region should
be preserved. Negative values of the erosion factor could be used to mark the regions
that should be reduced, such as very deep wrinkles. However, negative values are
not used in the proposed solution as they could cause an unrealistic appearance of
the final model. After the values are assigned, the aging is simulated by moving the
mesh vertices in the normal direction to a distance defined by the erosion factor.

The proposed solution is designed to simulate aging processes on 3D head models
created using deformations. Deformation-based modeling uses a base input model
and creates derived models by specifying the deformations, without altering the
number of vertices or the mesh connectivity. As the mesh topology is the same for
all the derived models, it is only necessary to define the erosion values for the base
model and the same aging deformation can be afterwards used for all the derived
meshes.

111

The proposed solution consists of the following steps:

1. Remeshing of the input mesh (optional)

2. Detection of the affected areas based on user-defined wrinkle endpoints
3. Local subdivision of the mesh

4. Computation of the erosion factor

5. Mesh deformation

12.1 Remeshing

The wrinkles on the face usually follow the direction of one of the principal curva-
tures. If the initial triangulation of the base model does not follow the principal
curvatures, it may be reasonable to use an appropriate remeshing technique (e.g.,
a remeshing method proposed by Alliez et al. [All+03]) to create a new base model
that will yield better results in the aging simulation.

12.2 Detection of the Affected Regions

The affected regions are selected based on user-specified wrinkles. The user selects
the endpoints of each wrinkle that should be imprinted on the model. For longer
curved wrinkles, it is necessary to select also the vertices where the wrinkles sub-
stantially change direction. The user also influences the size of the region affected
by the wrinkle by specifying a wrinkle effect radius 7.

For each wrinkle, the remaining vertices that belong to the given wrinkle are detected
automatically. For each wrinkle segment, a plane p is created that passes through
the endpoints V4 and V5, and the average of the normals at the endpoints. To find
the path between the vertices V; and V5, the mesh is walked from the vertex V; in
the direction towards V5. At each step of the algorithm a vertex V; is added to the
path such that it is a neighbor of the last vertex in the path and is it the closest
vertex to the plane p.

12.3 Local Subdivision of the Mesh

The base head model is usually not detailed enough for modeling of such fine features
as the wrinkles and so a local subdivision of the mesh is used to refine the mesh
in the affected regions. To select all the faces that belong to the affected region,
the wrinkle paths detected in the previous step are used. For each vertex in the
wrinkle path, incident faces up to the wrinkle effect radius (specified by the user)

112

VAVAVAVAN
\VAVAVAVA
AN

(a) Selected faces (b) Selected faces are subdivided
into four new triangles

JAVAVAVAVAVAVAN JAVAVAVAVAVAY
NN NN VAVAVAVAVAVAVAVAY

\AANNNNN/ INANNNNINLY
\\NNNNNYN/ INNINONINININDY/
\ODAANNY/ JAVAVAVAVAVAY/
\VAVAVAVAY, \VAVAVAVAVAY,

(¢) Neighbors of the selected faces (d) Neighbors of the selected faces
are repaired: case 1 are repaired: case 2

Figure 12.1: An example of the local subdivision scheme

are selected. A set is constructed as a union of the subsets belonging to each vertex;
the set contains all the faces that can be affected by the aging simulation.

For the selected faces, a simple subdivision scheme is used (see Figure . For
each selected face (dark faces in Figure [12.1a), three new vertices are created at the
midpoints of its edges and four new faces are created (as captured in Figure [12.11)).
Afterwards, the faces that do not belong to the affected regions but are neighbors of
at least one of the affected faces have to be repaired, to preserve the topology of the
mesh. If a face neighbors with a single face from the selected set, it is split into two
(dotted lines in Figure mark the face splits); if a face neighbors with two faces
from the selected set, it has to be divided into three new faces (see Figure ,
dotted lines mark the face split).

12.4 Erosion Factor

Erosion factor describes the magnitude of the deformation at a given vertex of the
mesh. To locate the deformation only to the regions specified by the user, a positive
erosion factor is assigned to all the vertices in the affected regions while the rest of
the vertices is assigned a zero erosion factor. For each vertex V' in the wrinkle path,
incident vertices up to the wrinkle effect radius are selected and assigned a positive
erosion factor f; by a Gaussian function

113

_lv=vil?
e 202
fi = W: (12'1)

where ||V — V;]| is the distance of the point V; from the vertex V' in the wrinkle path
and o is the variance, which is calculated as

o=_ (12.2)

where 7 is the user-defined wrinkle radius. The same approach is used if the user
also specified the vertices around which the mesh should be enlarged to simulate the
effects of weight gain or sagging skin.

The final erosion factor fy; is then obtained by defining the position of the wrinkles.
For each vertex V; within the affected area, i.e., each vertex that was assigned
a positive erosion factor in the previous step, the erosion factor fy, is calculated as

fvi = fiv/ IIVe = Vill, (12.3)

where V, is the point from the wrinkle paths that is the closest to V; and ||V, — V||
is the distance between the points V. and V;.

12.5 Mesh deformation

Finally, new positions P; of vertices of the mesh are calculated as

p— v

(12.4)
where V; is the original position of the vertex, fy, is the erosion factor at the vertex
V; and n; is the normal at the vertex V;. Symbol a stands for a factor influencing the
strength of the deformation. In our simulations, we have set a to 10 based on our
experimental results. If a stronger wrinkle effect is required, the mesh deformation
can be used iteratively until the desired effect is achieved.

12.6 Results

In this section, the results of the proposed method are shown. A head model [MK14]
consisting of 10,925 vertices and 21,746 faces was used as the base model (see Fig-
ure . Figure shows the base model, Figure shows the wireframe of
the model and Figure captures the wrinkle control points that were defined by
the user (red squares), as well as the wrinkle lines (blue lines) detected automatically
by the algorithm described in Section [12.2]

114

(a) Base model (b) Wireframe (¢) Control points defined by
the user (red squares) and the
detected wrinkles (blue lines)

Figure 12.2: An example of a base head model

The base mesh is clearly not detailed enough in the affected regions, so it is nec-
essary to subdivide the mesh using the local subdivision approach as discussed in
Section [12.3, The mesh subdivision was applied twice to achieve better results. The
first subdivision (Figure was applied around the detected wrinkle lines with

a radius 7 defined by the user. The second subdivision (Figure [12.3b]) was applied
with a radius of /3.

The erosion factor was calculated for each vertex of the mesh following the algorithm
presented in Section[I12.4, Each vertex was then moved in the direction of the normal
to a distance defined by the erosion factor, as discussed in Section The results
of the aging simulation are shown in Figure [12.4]

As the deformation-based modeling does not change the mesh topology, the same
erosion factors can be used for any model obtained from the base model by a method,
such as the approach presented in [MK14]. The method was used to create
several models derived from the base model captured in Figure [12.2] Figure [12.5
shows the result of the aging simulation when the erosion factor calculated for the
base model was applied to the derived models.

To the best of our knowledge, there are no other approaches that would be tar-
geted at aging simulation for models created by deformation-based modeling. The
approach by Wang et al. is capable of deforming the model to imitate wrin-
kles, however, the results are not very visually plausible (see Figure . A more
recent approach by Kim et al. uses sketch-based modeling to simulate
aging. Their approach can create plausible aged models (see Figure but the
wrinkle sketches have to be drawn for each input model, unlike our approach that

115

(a) First iteration of subdivision (b) Second iteration of subdivision

Figure 12.3: Local subdivision of the model in the areas affected by the wrinkles

(a) Front view (b) Side view

Figure 12.4: Result of the aging simulation of the base model

116

Figure 12.5: Results of the aging simulation of models derived from the base model
using deformation-based modeling

Figure 12.6: Input head model and forehead wrinkles created by the approach by

Wang et al.

allows the replication of the computed erosion factors for models derived from a base
model. Furthermore, the approach by Kim et al. requires a wrinkled ex-
ample model and simulates the wrinkles using normal maps, while our approach
actually deforms the mesh to achieve better results when viewed from an angle.

12.7 Automatic Detection of Control Points

Our solution requires a manual definition of wrinkle endpoints. As our method is
targeted to be used on models created by deformation-based modeling, it is only
necessary to define the endpoints once for each base model. However, to be able to
use the method on any face model more easily, a method for automatic detection of
feature points would be helpful.

We have participated on the method proposed by Prantl et al. [Pra+17] that de-
tects feature points and regions automatically based on curvature values of the
input head model. The method is designed to detect feature points necessary

117

Input face User sketch Output face Example face

Figure 12.7: Sketch-based simulation of aging as proposed by Kim et al. [Kim+15]

N# ﬁ4 (Na
N5 ﬁ N,
ey
40> :
o
E1 E2 v
ES EG N,

Figure 12.8: Feature points of eye, nose, mouth and ear

for deformation-based modeling, such as the approach proposed by Martinek and
Kolingerova [MK14]. The feature points that the method is capable of detecting are
captured in Figure [12.8, The comparison of manually inserted feature points and
the points detected by the proposed approach are shown in Figure [12.9

It can be seen that the positions of the detected and the manually inserted points
slightly differ. However, as the intended use of the detected points is for the use in
the deformation-based modeling, the accuracy of the detection is sufficient.

12.8 Method Summary and Future Work

The method for the simulation of aging of 3D triangulated head models described in
this Chapter uses user-defined wrinkle endpoints to detect wrinkle lines and imprints
the wrinkles onto the mesh using an erosion-inspired deformation approach. The
method is especially useful for deformation-based head modeling approaches, where
new head models are created by applying deformations to a base mesh. These
deformations do not change the topology of the mesh and so the same erosion factors
can be used for the definition of the wrinkles as the ones that were used for the base
model.

The proposed solution concentrates on the creation of distinct wrinkles that alter
the shape of the head when viewed from an angle. The solution could be enhanced
by subtle wrinkles by applying an appropriate texture.

As future work, it would be possible to reduce the necessary user interaction by
detecting the wrinkle endpoints automatically. A possible approach is to use an

118

(a) Model 1; manually inserted fea- (b) Model 1; automatically detected
ture points feature points

(¢) Model 2; manually inserted fea- (d) Model 2; automatically detected
ture points feature points

Figure 12.9: Comparison of manually inserted and automatically detected feature
points

119

automatic detection of feature points, such as the approach mentioned in Section|12.7]
and to use the detected feature points to estimate the wrinkle positions.

120

Chapter 13

Summary of Contributions

This thesis presented our contributions to the solution of the problem of erosion
simulation in the field of computer graphics. We have proposed several approaches
for weathering and hydraulic erosion simulation. Our main focus was to create
methods that would be fast and simple to use and would produce visually plausible
models of both eroded terrains and also complex general objects. We chose to
represent the eroded objects as triangular meshes. This data structure meets our
requirements due to its adaptability and possibility to model any complex features
of the eroded object. Its use is also widespread in the field of computer graphics
and so the use of this data structure in the proposed methods simplifies the use of
the methods in wide range of scenarios.

In Chapter 8, we have explored the capabilities and disadvantages of hydraulic ero-
sion simulation using triangular meshes as the representation of the eroded object
and Smoothed particle hydrodynamics (SPH) for the fluid simulation [SKB15]. The
method focuses on the hydraulic erosion of simple terrains but also shows the ca-
pabilities of the method to work on fully 3D models that could not be represented
using simpler data structures, such as the height field.

In Chapter [9, we have improved the base method by taking into account the influence
of local shape of the eroded objects [SKV19|. The speed of the erosion is driven by
the local mean curvature value. This results in protruded regions of the object
being eroded faster while the gaps are eroded at much slower rate. This simple and
fast method is capable of producing visually plausible eroded scenes not only for
hydraulic erosion simulations but it is also capable of simulating weathering effects.
The method runs at almost interactive frame rates without any special effort being
put to optimization of the method.

The use of the triangular mesh data structure brings new problems to the ero-
sion simulation. Strong erosion or deposition can cause splitting or merging of two
parts of the mesh, creating a topology inconsistency. The inconsistency impedes the
correct erosion simulation and has to be repaired by a mesh repair technique. In
Chapter we have presented an accurate mesh repair method [SKB18| to solve
this problem. The proposed method uses a local geometry-based approach to repair
intersecting meshes directly through a careful classification of the cases that could

121

result from a numerical imprecision of the floating point arithmetic. The method
requires input meshes to be free of nearly degenerate triangles. This condition can-
not be satisfied directly when working with meshes changing due to erosion but can
be enforced by removing the nearly degenerate triangles during preprocessing step
before applying the repair method.

Another topic of our interest is the representation of multiple material erosion scenes,
as it is necessary for the simulation of a complex realistic landscape. We have
examined several possible approaches to efficient material description in [SK15] and
in [SK16] and we have described our findings in Chapter [11} Our approach is based
on binary space partitions (BSP). The BSP subdivides the space into convex regions
made of homogenous material. This data structure is then used during the erosion
simulation to dynamically assign the material properties to the eroded regions of
the mesh. As the definition of the BSP tree by hand would be troublesome, we
have proposed a method for the automated detection of the BSP splitting planes
from the input volumetric data. An isosurface extraction method is used to extract
a triangular mesh that is used in the BSP construction algorithm.

In Chapter we have shown a possible application of erosion principles to other
real-life problems. The proposed approach [Sko+17] uses a simple erosion-inspired
approach to simulate aging on 3D head models. The method requires no training
data and generates distinct wrinkles based on control points defined by the user. The
method is particularly useful for the use in deformation-based modeling, where new
models are created from the base model using deformations that do not damage the
mesh topology or connectivity. For such models, the control points for the wrinkle
generation only have to be manually selected for the base model and can be then
used for all the derived models without any additional effort from the user.

The proposed methods address the open problems in erosion simulation in computer
graphics. The methods are capable of simulating hydraulic erosion and weathering
on terrains with complex concave features, such as caves, tunnels or overhangs, as
well as on general objects, such as statues or other man-made objects. We have
proposed possible solutions to the problems that are caused due to the use of the
triangular mesh data structure. We have also shown an example of application of
erosion approaches in other fields of research.

For future work, an obvious goal would be to merge all the proposed approaches
into a complex unified framework that could be easily used to simulate weathering
and hydraulic erosion on objects represented as triangular meshes. Another possible
avenue could be to optimize the methods and to implement them on the GPU to
achieve better performance.

122

Chapter 14

Conclusion

Erosion simulation is a very important topic of the modern computer graphics.
Erosion simulation allows to create plausible terrains or eroded objects without the
need to employ exhaustive software modeling tools. The interactive state-of-the-art
approaches are not capable of simulating fully 3D phenomena, while the fully 3D
solutions cannot be run at interactive frame rates.

We have proposed several methods for the hydraulic erosion and weathering simu-
lation. Our solutions combine the eroded objects represented as a triangular mesh
with a fluid simulated as a particle system. This approach is capable of simulating
fully 3D scenes containing features such as caves or overhangs with lower mem-
ory requirements than the existing volumetric solutions, while running at almost
interactive rates.

This thesis supports the validity of our choice of the triangular mesh as the repre-
sentation of the eroded objects. The data structure allowed us to create fast and
simple methods for erosion simulations, however, the use of this data structure also
brought new challenges. The main challenges caused by the use of triangular meshes
were the correct handling of topology changes due to heavy erosion or deposition
and also the need to be able to represent an object composed of multiple materials.
We have proposed approaches that address these problems in the context of erosion
simulation.

The erosion simulation approach used in our experiments is not physically exact,
however, it gives satisfactory and visually plausible results. If more accurate solution
is needed, the physics calculations can be easily replaced with more physically-based
approaches.

123

Bibliography

[ABA02]

[ABBOS]

[Abd+14]

[Ach90]
[ACK13]

[Ada+07]

[Al14-03]

[Ama06]

[Att10]

[BAOS]

[BBOY]

[Bea+07]

C. Andujar, P. Brunet, and D. Ayala. “Topology-reducing Surface Simplifi-
cation Using a Discrete Solid Representation”. In: ACM Trans. Graph. 21.2
(Apr. 2002), pp. 88-105. 18sN: 0730-0301.

N. Andrysco, B. Benes, and M. Brisbin. Permeable and Absorbent Materials
in Fluid Simulations. ACM Siggraph /Eurographics Symposium on Computer
Animation, Posters and Demos. 2008.

X. Abdikerem, L. Wang, A. Jin, and M. Geni. “Numerical modeling and
simulation of wind blown sand morphology under complex wind-flow field”.
In: Journal of Applied Mathematics 2014 (2014).

D. J. Acheson. Elementary Fluid Dynamics. Oxford University Press, 1990.

M. Attene, M. Campen, and L. Kobbelt. “Polygon mesh repairing: An appli-
cation perspective”. In: ACM Comput. Surv. 45.2 (Mar. 2013), 15:1-15:33.
ISsN: 0360-0300.

B. Adams, M. Pauly, R. Keiser, and L. J. Guibas. “Adaptively sampled par-
ticle fluids”. In: ACM Trans. Graph. 26.3 (July 2007). 1SsN: 0730-0301.

P. Alliez, D. Cohen-Steiner, O. Devillers, B. Lévy, and M. Desbrun.
“Anisotropic polygonal remeshing”. In: ACM Transactions on Graphics
(TOG). Vol. 22. 3. ACM. 2003, pp. 485-493.

T. Amada. “Real-Time Particle-Based Fluid Simulation with Rigid Body
Interaction”. In: Game Programming Gems 6. Ed. by M. Dickheiser. Charles
River Media, 2006, pp. 189-205.

M. Attene. “A lightweight approach to repairing digitized polygon meshes”.
In: The Visual Computer 26.11 (2010), pp. 1393-1406. 1sSN: 0178-2789.

B. Benes and X. Arriaga. “Table Mountains by Virtual Erosion.” In: Pro-
ceedings of the Eurographics Workshop on Natural Phenomena, NPH 2005.
Ed. by P. Poulin and E. Galin. Eurographics Association, 2005, pp. 33-39.
ISBN: 3-905673-29-0.

T. Brochu and R. Bridson. “Robust Topological Operations for Dynamic
Explicit Surfaces”. In: SIAM Journal on Scientific Computing 31.4 (June
2009), pp. 2472-2493. 1SSN: 1064-8275.

M. Beardall, M. Farley, D. Ouderkirk, C. Reimschussel, J. Smith, M. Jones,
and P. Egbert. “Goblins by Spheroidal Weathering”. In: Proceedings of the
Third Eurographics Conference on Natural Phenomena. NPH07. Aire-la-
Ville, Switzerland, Switzerland: Eurographics Association, 2007, pp. 7-14.
ISBN: 978-3-905673-49-4.

125

[Ben+-06]

[Ben07]

[BFO1]

[BF02]

[BKO1]

[BKO5]

[BLW14]

[BPKOS5]

[BRO4]
[Brios]
[BS09]

[Béz+10]

[Chr+14]

[Cig+08]

[CK10]

[Cla+13]

126

B. Benes, V. Tésinsky, J. Hornys, and S. K. Bhatia. “Hydraulic erosion”.
In: Computer Animation and Virtual Worlds 17.2 (2006), pp. 99-108. 1SSN:
1546-427X.

B. Benes. “Real-Time Erosion Using Shallow Water Simulation.” In: VRI-
PHYS. Eurographics Association, 2007, pp. 43-50. 1SBN: 978-3-905673-65-4.

B. Benes and R. Forsbach. “Layered Data Representation for Visual Sim-
ulation of Terrain Erosion”. In: Proceedings of the 17th Spring conference
on Computer graphics. SCCG ’01. Washington, DC, USA: IEEE Computer
Society, 2001, pp. 80—. ISBN: 0-7695-1215-1.

B. Benes and R. Forsbach. “Visual simulation of hydraulic erosion”. In: Jour-
nal of WSCG (2002), pp. 79-86.

M. Botsch and L. Kobbelt. “A Robust Procedure to Eliminate Degenerate
Faces from Triangle Meshes.” In: VMV. 2001, pp. 283-290.

S. Bischoff and L. Kobbelt. “Structure Preserving CAD Model Repair”. In:
Computer Graphics Forum 24.3 (2005), pp. 527-536. 1SSN: 1467-8659.

J. Bronson, J. A. Levine, and R. Whitaker. “Lattice Cleaving: A Multima-
terial Tetrahedral Meshing Algorithm with Guarantees”. In: IEEE Transac-
tions on Visualization and Computer Graphics 20.2 (Feb. 2014), pp. 223-
237. 1sSN: 1077-2626.

S. Bischoff, D. Pavic, and L. Kobbelt. “Automatic Restoration of Polygon
Models”. In: ACM Trans. Graph. 24.4 (Oct. 2005), pp. 1332-1352. 1SsN: 0730-
0301.

B. Benes and T. Roa. “Simulating Desert Scenery”. In: WSCG (Short Pa-
pers). 2004, pp. 17-22.

R. Bridson. Fluid Simulation For Computer Graphics. Ak Peters Series.
A K Peters, 2008. 1SBN: 9781568813264.

C. Braley and A. Sandu. “Fluid Simulation For Computer Graphics: A Tu-
torial in Grid Based and Particle Based Methods”. In: Computer (2009).

R. Bézin, A. Peyrat, B. Crespin, O. Terraz, X. Skapin, and P. Meseure. “In-
teractive hydraulic erosion using cuda”. In: Computer Vision and Graphics.
Springer, 2010, pp. 225-232.

A. N. Christiansen, M. Nobel-Jgrgensen, N. Aage, O. Sigmund, and J. A.
Beerentzen. “Topology Optimization Using an Explicit Interface Representa-
tion”. In: Struct. Multidiscip. Optim. 49.3 (Mar. 2014), pp. 387-399. 1SSN:
1615-147X.

P. Cignoni, M. Callieri, M. Corsini, M. Dellepiane, F. Ganovelli, and G.
Ranzuglia. “MeshLab: an Open-Source Mesh Processing Tool”. In: FEuro-
graphics Italian Chapter Conference. Ed. by V. Scarano, R. D. Chiara, and
U. Erra. The Eurographics Association, 2008. 1SBN: 978-3-905673-68-5.

M. Campen and L. Kobbelt. “Exact and Robust (Self-)Intersections for
Polygonal Meshes”. In: Computer Graphics Forum 29.2 (2010), pp. 397-406.
ISSN: 1467-8659.

P. Clausen, M. Wicke, J. R. Shewchuk, and J. F. O’brien. “Simulating Liqg-
uids and Solid-liquid Interactions with Lagrangian Meshes”. In: ACM Trans.
Graph. 32.2 (Apr. 2013), 17:1-17:15. 18SN: 0730-0301.

[CMF93]

[Cor+16]

[Cor+17]

[Cre+14]

[Dav11]

[DBG14]

[DGY6]

[Dor+99]

[Dur64]

[EM90]

[Eng00]

[Enr-+02]

[FFO1]

N. Chiba, K. Muraoka, and K. Fujita. “An erosion model based on velocity
fields for the visual simulation of mountain scenery”. In: The Journal of
Visualization and Computer Animation 9.4 (1998), pp. 185-194. 1sSN: 1099-
1778.

G. Cordonnier, J. Braun, M.-P. Cani, B. Benes, E. Galin, A. Peytavie, and
E. Guérin. “Large Scale Terrain Generation from Tectonic Uplift and Fluvial
Erosion”. In: Proceedings of the 37th Annual Conference of the Furopean

Association for Computer Graphics. EG ’16. Lisbon, Portugal: Eurographics
Association, 2016, pp. 165-175.

G. Cordonnier, E. Galin, J. Gain, B. Benes, E. Guérin, A. Peytavie, and
M.-P. Cani. “Authoring Landscapes by Combining Ecosystem and Terrain
Erosion Simulation”. In: ACM Trans. Graph. 36.4 (July 2017), 134:1-134:12.
ISSN: 0730-0301.

B. Crespin, R. Bézin, X. Skapin, O. Terraz, and P. Meseure. “Generalized
maps for erosion and sedimentation simulation”. In: Computers & Graphics
45 (2014), pp. 1-16. 1SSN: 0097-8493.

C. M. Davenport. Incompressible Navier-Stokes equations reduce to
Bernoulli’s Law. 2011. URL: http://home.comcast.net/ cmdaven/navier.
htm (visited on 05/06/2012).

F. Da, C. Batty, and E. Grinspun. “Multimaterial Mesh-based Surface Track-
ing”. In: ACM Trans. Graph. 33.4 (July 2014), 112:1-112:11. 1sSN: 0730-0301.

M. Desbrun and M. Gascuel. “Smoothed Particles: A new paradigm for an-
imating highly deformable bodies”. In: In Computer Animation and Sim-
ulation ’96 (Proceedings of EG Workshop on Animation and Simulation.
Springer-Verlag, 1996, pp. 61-76.

J. Dorsey, A. Edelman, H. W. Jensen, J. Legakis, and H. K. Pedersen. “Mod-
eling and rendering of weathered stone”. In: Proceedings of the 26th annual
conference on Computer graphics and interactive techniques. SIGGRAPH
’99. New York, NY, USA: ACM Press/Addison-Wesley Publishing Co., 1999,
pp. 225-234. 1SBN: 0-201-48560-5.

R. Durstenfeld. “Algorithm 235: random permutation”. In: Communications
of the ACM 7.7 (1964), p. 420.

H. Edelsbrunner and E. P. Miicke. “Simulation of Simplicity: A Technique
to Cope with Degenerate Cases in Geometric Algorithms”. In: ACM Trans.
Graph. 9.1 (Jan. 1990), pp. 66—-104. 1sSN: 0730-0301.

G. A. Engines. The Volume Library - The Tooth Dataset. Accessed: 2016-01-
13. 2000.

D. Enright, R. Fedkiw, J. Ferziger, and 1. Mitchell. “A hybrid particle level
set method for improved interface capturing”. In: Journal of Computational
Physics 183.1 (2002), pp. 83-116.

N. Foster and R. Fedkiw. “Practical animation of liquids”. In: Proceedings of
the 28th annual conference on Computer graphics and interactive techniques.
SIGGRAPH ’01. New York, NY, USA: ACM, 2001, pp. 23-30. 1sBN: 1-58113-
374-X.

127

http://home.comcast.net/~cmdaven/navier.htm
http://home.comcast.net/~cmdaven/navier.htm

[FKNS0]

[FSJ01]

[FTB16]

[FY56]

[GM77]

[HHO1]
[Hib10]

[Hoe09]

[Jon+10]

78718

[Ju04]

[Kim+15]

[KLNO1]

[KM90]

[Kri+09]

128

H. Fuchs, Z. M. Kedem, and B. F. Naylor. “On Visible Surface Generation by
a Priori Tree Structures”. In: SIGGRAPH Comput. Graph. 14.3 (July 1980),
pp. 124-133. 18SN: 0097-8930.

R. Fedkiw, J. Stam, and H. W. Jensen. “Visual simulation of smoke”. In: Pro-
ceedings of the 28th annual conference on Computer graphics and interactive
techniques. SIGGRAPH ’01. New York, NY, USA: ACM, 2001, pp. 15-22.
ISBN: 1-58113-374-X.

N. Faraj, J.-M. Thiery, and T. Boubekeur. “Multi-material adaptive volume
remesher”. In: Computers & Graphics 58 (2016). Shape Modeling Interna-
tional 2016, pp. 150 —160. 1SSN: 0097-8493.

R. A. Fisher and F. Yates. “Statistical Tables for Biological, Agricultural and
Medical Research”. In: Vet. Rec 68.1015 (1956).

R. A. Gingold and J. J. Monaghan. “Smoothed particle hydrodynamics -
Theory and application to non-spherical stars”. In: Monthly Notices of the
Royal Astronomical Society 181 (Nov. 1977), pp. 375-389.

Y. Hatano and N. Hatano. “Dune Morphology and Sand Transport”. In:
Forma 16.1 (2001), pp. 65-75. 1sSN: 0911-6036.

A. Hibbs. Navier-Stokes Equation. 2010. URL: http://www2.warwick.ac.
uk/fac/sci/physics/pendulum/navierstokes/ (visited on 05/06/2012).

R. Hoetzlein. FLUIDS v.2 - A Fast, Open Source, Fluid Simulator. 2009.
URL: http://www.rchoetzlein.com/eng/graphics/fluids.htm (visited
on 04/30/2012).

M. D. Jones, M. Farley, J. Butler, and M. Beardall. “Directable Weathering
of Concave Rock Using Curvature Estimation”. In: IEEE Transactions on
Visualization and Computer Graphics 16 (2010), pp. 81-94. 1sSN: 1077-2626.

M. Jiang, R. Southern, and J. J. Zhang. “Energy-based dissolution simula-
tion using SPH sampling”. In: Computer Animation and Virtual Worlds 29.2
(2018). 1798 cav.1798, e1798. eprint: https://onlinelibrary.wiley.com/
doi/pdf/10.1002/cav.1798.

T. Ju. “Robust repair of polygonal models”. In: ACM Trans. Graph. 23.3
(Aug. 2004), pp. 888-895. 1sSN: 0730-0301.

H.-J. Kim, A. C. Oztireli, I.-K. Shin, M. Gross, and S.-M. Choi. “Interactive
Generation of Realistic Facial Wrinkles from Sketchy Drawings”. In: Com-
puter Graphics Forum. Vol. 34. 2. Wiley Online Library. 2015, pp. 179-191.

M. Karasick, D. Lieber, and L. R. Nackman. “Efficient Delaunay Triangula-
tion Using Rational Arithmetic”. In: ACM Trans. Graph. 10.1 (Jan. 1991),
pp. 71-91. 1ssN: 0730-0301.

M. Kass and G. Miller. “Rapid, Stable Fluid Dynamics for Computer Graph-
ics”. In: SIGGRAPH Comput. Graph. 24.4 (Sept. 1990), pp. 49-57. 1SSN:
0097-8930.

P. Kristof, B. Benes, J. Kiivanek, and O. St’ava. “Hydraulic erosion using
smoothed particle hydrodynamics”. In: Computer Graphics Forum. Vol. 28.
2. Wiley Online Library. 2009, pp. 219-228.

http://www2.warwick.ac.uk/fac/sci/physics/pendulum/navierstokes/
http://www2.warwick.ac.uk/fac/sci/physics/pendulum/navierstokes/
http://www.rchoetzlein.com/eng/graphics/fluids.htm
https://onlinelibrary.wiley.com/doi/pdf/10.1002/cav.1798
https://onlinelibrary.wiley.com/doi/pdf/10.1002/cav.1798

[KW06]

[LCS7]

[Lev+05]

[LHNO5]

[Lie94]

[LMS11]
[Luc77]

[LW04]

[Mang82]

IMB12]

[MCGO3]

[McL+13]

[MDHO7]

[Mei75]

IMF97]

P. Kipfer and R. Westermann. “Realistic and interactive simulation of rivers”.
In: Proceedings of Graphics Interface 2006. GI '06. Quebec, Canada: Cana-
dian Information Processing Society, 2006, pp. 41-48. 1SBN: 1-56881-308-2.

W. E. Lorensen and H. E. Cline. “Marching Cubes: A High Resolution
3D Surface Construction Algorithm”. In: SIGGRAPH Comput. Graph. 21.4
(Aug. 1987), pp. 163-169. 1SsN: 0097-8930.

M. Levoy, J Gerth, B Curless, and K Pull. The Stanford 3D Scanning Repos-
itory. 2005. URL: http://graphics . stanford . edu/data/ 3Dscanrep/
(visited on 07/20/2015).

S. Lefebvre, S. Hornus, and F. Neyret. GPU Gems 2. Chapter 37: Octree
Textures on the GPU. 2005.

P. Lienhardt. “N-dimensional generalized combinatorial maps and cellular
quasi-manifolds”. In: International Journal of Computational Geometry €&
Applications 4.03 (1994), pp. 275-324.

F. Loffler, A. Miiller, and H. Schumann. “Real-time Rendering of Stack-based
Terrains.” In: VMV. 2011, pp. 161-168.

L. B. Lucy. “A numerical approach to the testing of the fission hypothesis”.
In: Astronomical Journal 82 (Dec. 1977), pp. 1013-1024.

S. Lo and W. Wang. “A fast robust algorithm for the intersection of tri-
angulated surfaces”. English. In: Engineering with Computers 20.1 (2004),
pp. 11-21. 18sN: 0177-0667.

B. B. Mandelbrot. The Fractal Geometry of Nature. San Francisco: W.H.
Freeman, 1982. 1SBN: 0-7167-1186-9.

M. K. Misztal and J. A. Beerentzen. “Topology-adaptive Interface Tracking
Using the Deformable Simplicial Complex”. In: ACM Trans. Graph. 31.3
(June 2012), 24:1-24:12. 18sN: 0730-0301.

M. Miiller, D. Charypar, and M. Gross. “Particle-based fluid simulation for
interactive applications”. In: Proceedings of the 2003 ACM SIGGRAPH/Eu-
rographics symposium on Computer animation. SCA ’03. San Diego, Califor-
nia: Eurographics Association, 2003, pp. 154-159. 1SBN: 1-58113-659-5.

D. McLaurin, D. Marcum, M. Remotigue, and E. Blades. “Repairing unstruc-
tured triangular mesh intersections”. In: International Journal for Numerical
Methods in Engineering 93.3 (2013), pp. 266-275. 1SSN: 1097-0207.

X. Mei, P. Decaudin, and B. Hu. “Fast Hydraulic Erosion Simulation and
Visualization on GPU”. In: Proceedings of the 15th Pacific Conference on
Computer Graphics and Applications. PG ’07. Washington, DC, USA: IEEE
Computer Society, 2007, pp. 47-56. 1SBN: 0-7695-3009-5.

G. H. Meisters. “Polygons Have Ears”. In: The American Mathematical
Monthly 82.6 (1975), pp. 648-651. 1SSN: 00029890.

T. M. Murali and T. A. Funkhouser. “Consistent Solid and Boundary Rep-
resentations from Arbitrary Polygonal Data”. In: Proceedings of the 1997
Symposium on Interactive 3D Graphics. 13D ’97. Providence, Rhode Island,
USA: ACM, 1997, 155-ff. 1SBN: 0-89791-884-3.

129

http://graphics.stanford.edu/data/3Dscanrep/

[MK14]

[MKMB9]

IMMWO1]
[Mon92]

INTO3]

[NVI]

[OF02]

[ONOO]

[Par65]

[Pey+09]

[Phi99]

[Pra+17]

[Pur09)]

[Ren+18]

[Rus04]

130

P. Martinek and I. Kolingerové. “Deformation method for 3d identikit cre-
ation”. In: Computer Graphics Theory and Applications (GRAPP), 201/ In-
ternational Conference on. IEEE. 2014, pp. 1-8.

F. K. Musgrave, C. E. Kolb, and R. S. Mace. “The Synthesis and Rendering of
Eroded Fractal Terrains”. In: SIGGRAPH Comput. Graph. 23.3 (July 1989),
pp. 41-50. 18SN: 0097-8930.

T. Miao, Q. Mu, and S. Wu. “Computer simulation of aeolian sand ripples
and dunes”. In: Physics Letters A 288.1 (2001), pp. 16 —22. 1sSN: 0375-9601.

J. J. Monaghan. “Smoothed particle hydrodynamics”. In: Annual review of
astronomy and astrophysics 30 (1992), pp. 543-574.

F. S. Nooruddin and G. Turk. “Simplification and Repair of Polygonal Models
Using Volumetric Techniques”. In: IEEE Transactions on Visualization and
Computer Graphics 9 (2003), pp. 191-205.

NVIDIA. Nvidia FleX. http : / / docs . nvidia . com / gameworks /
content/gameworkslibrary/physx/flex/index.html. Online; Accessed:
01/04/2018.

S. Osher and R. Fedkiw. Level Set Methods and Dynamic Implicit Sur-
faces (Applied Mathematical Sciences). 2003rd ed. Springer, Nov. 2002. ISBN:
0387954821.

K. Onoue and T. Nishita. “A Method for Modeling and Rendering Dunes with
Wind-Ripples”. In: Proceedings of the 8th Pacific Conference on Computer
Graphics and Applications. PG ’00. Washington, DC, USA: IEEE Computer
Society, 2000, pp. 427—. 1SBN: 0-7695-0868-5.

E. Partheniades. “Erosion and deposition of cohesive soils”. In: Journal of
Hydraulics Division of the American Society of Agricultural Engineers 91
(1965), pp. 105-139.

A. Peytavie, E. Galin, J. Grosjean, and S. Merillou. “Arches: a framework
for modeling complex terrains”. In: Computer Graphics Forum. Vol. 28. 2.
Wiley Online Library. 2009, pp. 457-467.

C. L. Phillips. “The Level-Set Method”. In: The MIT Undergraduate Journal
of Mathematics 1 (1999), pp. 155-164.

M. Prantl, V. Skorkovska, P. Martinek, and I. Kolingerova. “Curvature-Based
Feature Detection for Head Modeling”. In: Procedia Computer Science 108
(2017). International Conference on Computational Science, ICCS 2017, 12-
14 June 2017, Zurich, Switzerland, pp. 2323 —2327. 1ssN: 1877-0509.

V. Purchart. “Modelovani pis¢itého terénu pro virtualni realitu”. MA thesis.
University of West Bohemia, Pilsen, Czech Republic, 2009.

B. Ren, T. Yuan, C. Li, K. Xu, and S. Hu. “Real-Time High-Fidelity Surface
Flow Simulation”. In: IEEE Transactions on Visualization and Computer
Graphics 24.8 (Aug. 2018), pp. 2411-2423. 1sSN: 1077-2626.

S. Rusinkiewicz. “Estimating Curvatures and Their Derivatives on Trian-
gle Meshes”. In: Proceedings of the 8D Data Processing, Visualization, and
Transmission, 2Nd International Symposium. 3SDPVT ’04. Washington, DC,
USA: IEEE Computer Society, 2004, pp. 486—493. 1SBN: 0-7695-2223-8.

http://docs.nvidia.com/gameworks/content/gameworkslibrary/physx/flex/index.html
http://docs.nvidia.com/gameworks/content/gameworkslibrary/physx/flex/index.html

[Si14]

[SK15]

[SK16]

[SKB15]

[SKB18]

[Sko+17]

[Sko12a]
[Sko12b]

[SKV19]

[SSPO7]

[Sta+08]

[TJ10]

H. Si. TetGen example: Dragon. 2014. URL: http: //wias-berlin . de/
software/tetgen/examples.dragon.html (visited on 07/20/2015).

V. Skorkovska and I. Kolingerova. “Multiple Material Meshes for Erosion
Simulation”. In: Proceedings of SIGRAD 2015, June 1st and 2nd, Stockholm,
Sweden. Selected as one of the three best papers of the conference. Linkoping
University Electronic Press, Linkopings universitet, 2015, pp. 5—8. ISBN: 978-
91-7685-855-4.

V. Skorkovskd and I. Kolingerova. “Complex multi-material approach for
dynamic simulations”. In: Computers & Graphics 56 (2016), pp. 11 —19. 1SSN:
0097-8493.

V. Skorkovskd, I. Kolingerovd, and B. Benes. “Hydraulic Erosion Model-
ing on a Triangular Mesh”. In: Surface Models for Geosciences. Ed. by K.
Ruzickovéa and T. Inspektor. Lecture Notes in Geoinformation and Cartogra-
phy. Springer International Publishing, 2015, pp. 237-247. 1sBN: 978-3-319-
18406-7.

V. Skorkovské, I. Kolingerovd, and B. Benes. “A Simple and Robust Ap-
proach to Computation of Meshes Intersection”. In: Proceedings of the 13th
International Joint Conference on Computer Vision, Imaging and Com-
puter Graphics Theory and Applications - Volume 1: GRAPP. INSTICC.
SciTePress, 2018, pp. 175-182. 1SBN: 978-989-758-287-5.

V. Skorkovska, M. Prantl, P. Martinek, and I. Kolingerova. “Erosion-Inspired
Simulation of Aging for Deformation-Based Head Modeling”. In: Procedia
Computer Science 108 (2017). International Conference on Computational
Science, ICCS 2017, 12-14 June 2017, Zurich, Switzerland, pp. 425 —434. 1SSN:
1877-0509.

V. Skorkovskd. “Modeling of Erosion Impacts on the Terrain”. Master thesis.
Pilsen, Czech Republic: University of West Bohemia, 2012.

V. Skorkovskd. “Modeling of Erosion Impacts on the Terrain”. In: Studenskd
védeckd konference (2012).

V. Skorkovské, I. Kolingerova, and P. Vanécek. “A Unified Curvature-Driven
Approach for Weathering and Hydraulic Erosion Simulation on Triangular
Meshes”. In: Proceedings of the 14th International Joint Conference on Com-
puter Vision, Imaging and Computer Graphics Theory and Applications -
Volume 1: GRAPP. Selected as the best student paper of the conference.
INSTICC. SciTePress, 2019, pp. 122-133. 1SBN: 978-989-758-354-4.

B. Solenthaler, J. Schléfli, and R. Pajarola. “A unified particle model for fluid-
solid interactions: Research Articles”. In: Comput. Animat. Virtual Worlds
18.1 (Feb. 2007), pp. 69-82. ISSN: 1546-4261.

O. Stava, B. Benes, M. Brisbin, and J. Kfivanek. “Interactive Terrain Mod-
eling Using Hydraulic Erosion”. In: Proceedings of the 2008 ACM SIG-
GRAPH /Eurographics Symposium on Computer Animation. SCA '08. Aire-
la-Ville, Switzerland, Switzerland: Eurographics Association, 2008, pp. 201—
210. 1SBN: 978-3-905674-10-1.

L. A. Tychonievich and M. D. Jones. “Delaunay deformable mesh for the
weathering and erosion of 3D terrain”. In: Vis. Comput. 26.12 (Dec. 2010),
pp. 1485-1495. 18SN: 0178-2789.

131

http://wias-berlin.de/software/tetgen/examples.dragon.html
http://wias-berlin.de/software/tetgen/examples.dragon.html

[Vés+16]

[Van+11]

[Wan11]

[Wei+16]

[WH12|

[WN14]

[Woj+07]

[Woj+09]

[WS03]

[WWY06]

[ZBH11]

[ZHB10]

132

L. Vasa, P. Vanécek, M. Prantl, V. Skorkovska, P. Martinek, and I.
Kolingerova. “Mesh Statistics for Robust Curvature Estimation”. In: Com-
puter Graphics Forum 35.5 (2016), pp. 271-280. eprint: https : / /
onlinelibrary.wiley.com/doi/pdf/10.1111/cgf.12982.

J. Vanek, B. Benes, A. Herout, and O. Stava. “Large-Scale Physics-Based
Terrain Editing Using Adaptive Tiles on the GPU”. In: IEEE Computer
Graphics and Applications 31.6 (Nov. 2011), pp. 35—44. 1SSN: 0272-1716.

C. C. Wang. “Computing on rays: A parallel approach for surface mesh mod-
eling from multi-material volumetric data”. In: Computers in Industry 62.7
(2011), pp. 660-671.

P. Wei, M. Zhang, W. Jiang, and D. Nie. “A New Model for Sand-Ripple
Scattering Based on SSA Method and Practical Ripple Profiles”. In: IFEFE
Transactions on Geoscience and Remote Sensing 54.4 (Apr. 2016), pp. 2450~
2459. 18sN: 0196-2892.

N. Wang and B.-G. Hu. “Real-Time Simulation of Aeolian Sand Move-
ment and Sand Ripple Evolution: A Method Based on the Physics of Blown
Sand”. English. In: Journal of Computer Science and Technology 27.1 (2012),
pp. 135-146. 1ssN: 1000-9000.

K. K. Warszawski and S. S. Nikiel. “A proposition of erosion algorithm for
terrain models with hardness layer”. In: Journal of Theoretical and Applied
Computer Science 8 (1 2014), pp. 76-84. 1SSN: 2299-2634.

C. Wojtan, M. Carlson, P. J. Mucha, and G. Turk. “Animating Corrosion
and Erosion”. In: Proceedings of the Eurographics Workshop on Natural Phe-
nomena, NPH 2007. Eurographics Association, 2007, pp. 15-22.

C. Wojtan, N. Thiirey, M. Gross, and G. Turk. “Deforming meshes that
split and merge”. In: ACM Trans. Graph. 28.3 (July 2009), 76:1-76:10. 1SSN:
0730-0301.

Z. Wu and J. M. Sullivan. “Multiple material marching cubes algorithm”.
In: International Journal for Numerical Methods in Engineering 58.2 (2003),
pp. 189-207. 1sSN: 1097-0207.

Y. Wang, C. C. Wang, and M. M. Yuen. “Fast energy-based surface wrinkle
modeling”. In: Computers & Graphics 30.1 (2006), pp. 111-125.

A. Zaharescu, E. Boyer, and R. Horaud. “Topology-Adaptive Mesh Defor-
mation for Surface Evolution, Morphing, and Multiview Reconstruction”.
In: Pattern Analysis and Machine Intelligence, IEEE Transactions on 33.4
(2011), pp. 823-837. 1SSN: 0162-8828.

Y. Zhang, T. J. Hughes, and C. L. Bajaj. “An automatic 3D mesh genera-
tion method for domains with multiple materials”. In: Computer methods in
applied mechanics and engineering 199.5 (2010), pp. 405-415.

https://onlinelibrary.wiley.com/doi/pdf/10.1111/cgf.12982
https://onlinelibrary.wiley.com/doi/pdf/10.1111/cgf.12982

Appendix A

Professional Activities

Publications

Impacted Journals

[SK16]

[Vés+16]

V. Skorkovskd and I. Kolingerova. “Complex multi-material approach for
dynamic simulations”. In: Computers & Graphics 56 (2016), pp. 11 —19. 1SSN:
0097-8493.

L. Vasa, P. Vanécek, M. Prantl, V. Skorkovskd, P. Martinek, and I.
Kolingerova. “Mesh Statistics for Robust Curvature Estimation”. In: Com-
puter Graphics Forum 35.5 (2016), pp. 271-280. eprint: https : / /
onlinelibrary.wiley.com/doi/pdf/10.1111/cgf.12982.

International Conferences (WoS and Scopus)

[SKB15]

[SKB18§]

[Sko+17]

[SKV19]

V. Skorkovskd, I. Kolingerovd, and B. Benes. “Hydraulic Erosion Model-
ing on a Triangular Mesh”. In: Surface Models for Geosciences. Ed. by K.
Ruzickovéa and T. Inspektor. Lecture Notes in Geoinformation and Cartogra-
phy. Springer International Publishing, 2015, pp. 237-247. 1sBN: 978-3-319-
18406-7.

V. Skorkovskd, I. Kolingerova, and B. Benes. “A Simple and Robust Ap-
proach to Computation of Meshes Intersection”. In: Proceedings of the 13th
International Joint Conference on Computer Vision, Imaging and Com-
puter Graphics Theory and Applications - Volume 1: GRAPP. INSTICC.
SciTePress, 2018, pp. 175-182. 1SBN: 978-989-758-287-5.

V. Skorkovska, M. Prantl, P. Martinek, and I. Kolingerova. “Erosion-Inspired
Simulation of Aging for Deformation-Based Head Modeling”. In: Procedia
Computer Science 108 (2017). International Conference on Computational
Science, ICCS 2017, 12-14 June 2017, Zurich, Switzerland, pp. 425 —434. 1SSN:
1877-0509.

V. Skorkovskd, I. Kolingerova, and P. Vanécek. “A Unified Curvature-Driven
Approach for Weathering and Hydraulic Erosion Simulation on Triangular
Meshes”. In: Proceedings of the 14th International Joint Conference on Com-
puter Vision, Imaging and Computer Graphics Theory and Applications -

133

https://onlinelibrary.wiley.com/doi/pdf/10.1111/cgf.12982
https://onlinelibrary.wiley.com/doi/pdf/10.1111/cgf.12982

Volume 1: GRAPP. Selected as the best student paper of the conference.
INSTICC. SciTePress, 2019, pp. 122-133. 1SBN: 978-989-758-354-4.

[Pra+17] M. Prantl, V. Skorkovskd, P. Martinek, and I. Kolingerové. “Curvature-Based
Feature Detection for Head Modeling”. In: Procedia Computer Science 108
(2017). International Conference on Computational Science, ICCS 2017, 12-
14 June 2017, Zurich, Switzerland, pp. 2323 —2327. 1SSN: 1877-0509.

International Conferences (other)

[SK15] V. Skorkovska and I. Kolingerova. “Multiple Material Meshes for Erosion
Simulation”. In: Proceedings of SIGRAD 2015, June 1st and 2nd, Stockholm,
Sweden. Selected as one of the three best papers of the conference. Linkdping
University Electronic Press, Linkdpings universitet, 2015, pp. 5-8. ISBN: 978-
91-7685-855-4.

Student Publications

[Sko12a] V. Skorkovska. “Modeling of Erosion Impacts on the Terrain”. Master thesis.
Pilsen, Czech Republic: University of West Bohemia, 2012.

[Sko12b] V. Skorkovska. “Modeling of Erosion Impacts on the Terrain”. In: Studenskd
védeckd konference (2012).

Stays Abroad

e Universidad de Las Palmas de Gran Canaria, Spain, February-June 2011

e Purdue University, Indiana, USA, October 2011 (1 week), October 2012 (1 week),
October 2013 (2 weeks)

Participation in Scientific Projects

e Interactive Geometrical Models for Simulation of Natural Phenomena and Crowds.
Project leader Ivana Kolingerovd. Funded by The Ministry of Education, Youth
and Sports, project code LH11006. (2011 - 2013)

e Project NTIS (New Technologies for Information Society), European Center of Ex-
cellence. Funded by The European Regional Development Fund (ERDF), project
code CZ.1.05/1.1.00/0.2.0090. (2013 - 2014)

e Advanced Computing and Information Systems. Project code SGS-2013-029. (2013
- 2015)

e Advanced Graphical and Computing Systems. Project code SGS-2016-013. (2016 -
2018)

134

	Introduction
	Aim of the Thesis
	Thesis Structure

	Erosion
	Weathering
	Wind Erosion
	Hydraulic Erosion
	Physically Inspired Solutions
	Physically Based Solutions

	3D Fluid Simulation
	Eulerian Approach
	Lagrangian Approach
	Smoothed Particle Hydrodynamics
	Other particle-based fluid models

	Semi-Lagrangian Approach

	Data Structures for Erosion Modeling
	Height Map
	Layered Height Map
	Volume Grid
	Octree
	Triangular Mesh
	Tetrahedral Mesh

	Repair of Intersecting Meshes
	Global Approaches
	Local Approaches
	Neighbor Tracing Method

	Materials
	Contributions
	Hydraulic Erosion Modeling on a Triangular Mesh
	Fluid-Terrain Interaction
	Erosion and Deposition
	Mesh Modification
	Results
	Method Summary and Future Work

	A Unified Curvature-Driven Approach for Weathering and Hydraulic Erosion Simulation on Triangular Meshes
	Curvature estimation
	Vertex displacement
	Weathering
	Hydraulic Erosion
	Results
	Weathering
	Hydraulic erosion
	Execution time

	Method Summary and Future Work

	A Simple and Robust Approach to Computation of Meshes Intersection
	Intersection Boundary Detection
	Mesh Fixing
	Results
	Method Summary and Future Work

	Complex Multi-Material Approach for Dynamic Simulations
	Material in a Vertex
	Division by a Plane
	Division by a Function
	Binary Space Partitions
	Automated Generation of the BSP Tree
	Results and Experiments
	Splitting Planes
	Implicit Splitting Surfaces
	Automated Generation of the BSP Tree

	Method Summary and Future Work

	Erosion-Inspired Simulation of Aging for Deformation-Based Head Modeling
	Remeshing
	Detection of the Affected Regions
	Local Subdivision of the Mesh
	Erosion Factor
	Mesh deformation
	Results
	Automatic Detection of Control Points
	Method Summary and Future Work

	Summary of Contributions
	Conclusion
	Professional Activities

