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ABSTRACT
With 360 imaging devices becoming widely accessible, omnidirectional content has gained popularity in multiple
fields. The ability to estimate depth from a single omnidirectional image can benefit applications such as robotics
navigation and virtual reality. However, existing depth estimation approaches produce sub-optimal results on
real-world omnidirectional images with dynamic foreground objects. On the one hand, capture-based methods
cannot obtain the foreground due to the limitations of the scanning and stitching schemes. On the other hand, it is
challenging for synthesis-based methods to generate highly-realistic virtual foreground objects that are comparable
to the real-world ones. In this paper, we propose to augment datasets with realistic foreground objects using an
image-based approach, which produces a foreground-aware photorealistic dataset for machine learning algorithms.
By exploiting a novel scale-invariant RGB-D correspondence in the spherical domain, we repurpose abundant
non-omnidirectional datasets to include realistic foreground objects with correct distortions. We further propose a
novel auxiliary deep neural network to estimate both the depth of the omnidirectional images and the mask of the
foreground objects, where the two tasks facilitate each other. A new local depth loss considers small regions of
interests and ensures that their depth estimations are not smoothed out during the global gradient’s optimization.
We demonstrate the system using human as the foreground due to its complexity and contextual importance,
while the framework can be generalized to any other foreground objects. Experimental results demonstrate more
consistent global estimations and more accurate local estimations compared with state-of-the-arts.
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Figure 1: A demonstration of incorrect representations
of dynamic objects (e.g. a running person) captured
with an omnidirectional RGB-D scanning device.

1 INTRODUCTION
As 360 cameras have become more popular and effi-
cient, the need for image processing algorithms applica-
ble to omnidirectional images increases. The ability to
estimate depth from a monocular omnidirectional im-
age can greatly benefit a wide range of applications in-
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Figure 2: The previous approach of inserting human
models introduces the problem of severe domain bias.
This is demonstrated by comparing synthetic data (left)
with captured data (right).

cluding navigation in robotics [7], stereoscopic render-
ing in graphics [10], augmenting virtual objects [14].

Existing omnidirectional approaches produce sub-
optimal estimations on real-world scenarios due to
their lack of consideration of dynamic foreground
objects. For captured-based approaches, using a stereo
setup of two 360 cameras will inevitably include the
other camera in the captured data [4]. While recent
360-capable scanning devices [3] can acquire paired
RGB and ground truth depth of scenes with improved
quality, they are incapable of including any dynamic
object as a result of scanning and stitching scheme
(Figure 1) [1]. For synthesis-based approaches [25],
although researchers attempt to solve this problem
by inserting 3D models into the scene to improve the
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Figure 3: The pipeline of the proposed data synthesizing system. The left section shows the input datasets, the
middle section shows the intermediate results, and the right section shows the output. We generate masks of the
interested region with mask R-CNN and corresponding RGB-D batches from the input 2D dataset. The batches
are then composited to the input 360 dataset with regard to the depth information.

prediction (Figure 2), it is challenging to efficiently
generate highly-realistic virtual foreground objects that
resemble real-world ones [2], and non-photorealistic
data often lead to undesirable and inaccurate outputs.
In this paper, we tackle the problem of foreground by
first augmenting datasets with realistic foreground rep-
resentations. We observe that given the same object
with a determined distance, its scale in spherical images
should remain consistent. Taking advantage of it, we
effectively composite color data of abundant and eas-
ily obtainable 2D datasets and rendered omnidirectional
images according to ground truth depth maps to ensure
correct occlusion representations. To preserve correct
distortions in equirectangular images, we project the
data to cube maps before and after compositions.
We then propose a novel auxiliary deep neural network
that estimates both the mask of the foreground objects
and regresses the depth of the omnidirectional images.
With the depth and segmentation estimations, we de-
sign a new local depth loss of dynamic foreground ob-
jects to achieve more consistent depth predictions. This
solves the problem that small areas with steep local gra-
dients often got minimized when regressing the global
gradient of the prediction, resulting in areas of interest
that are frequently smoothed out in existing work.
In this paper, we choose humans as the dynamic
foreground object to show the efficacy of our approach.
As a foreground object, human shares both a high com-
plexity in deformation and non-uniform depths, and
great importance being one of the most interested and
common subjects to deliver the context of the image.
By showcasing accurate estimations of human, we
demonstrate the ability of our method to be generalized
to other foreground objects.
Experimental results show that the proposed method
yields more consistent global estimations and more ac-
curate local estimations against contemporary state-of-

the-art models quantitatively and qualitatively. This
research is best applied in fields including occlusion-
aware augment reality, stereoscopic rendering.

Our contributions are summarized as follows:

1. We propose a method to synthesize an RGB-D
omidirectional dataset with dynamic foreground
objects to tackle the challenge of estimating the
depth of them in the context of spherical images.
The dataset is offered to promote future research.

2. We employ the proposed auxiliary network that es-
timates depth and segmentation masks to calculate a
new local depth loss of dynamic foreground objects.
This can resolve the issue of steep local gradient get-
ting smoothed out during optimization and improve
the estimation results of local regions. The source
code is publicly offered online.

The rest of the paper is organized as follows: we re-
visit learning-based monocular depth estimation meth-
ods and methods for synthesizing training data in Sec-
tion 2. In Section 3, we explain the novelty of our
dataset and describe the generation framework. In Sec-
tion 4, we describe the network architecture and the
proposed loss function to leverage the dataset. Details
of experiments are presented in Section 5 along with
qualitative and quantitative evaluations. Finally, Sec-
tion 6 concludes this work.

2 RELATED WORK
2.1 Learning-based Monocular Depth Es-

timation for Omnidirectional Images
Estimating the depth given a monocular RGB image is
one of the most fundamental capabilities in understand-
ing the 3D geometry of the scene [13]. A wide range
of applications in robotics, graphics, virtual reality, etc.
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can benefit from more accurate depth predictions. Ow-
ing to more established machine learning algorithms,
learning an implicit relation between color and depth
has seen significant progress recently.

A variety of algorithms [19] [17] have been proposed
by training a model with collected color and ground
truth depth images in a supervised fashion. Lately,
numerous strategies have been proposed to achieve a
more coherent and accurate monocular depth estima-
tion. Multi-scale networks [5] make coarse global depth
prediction and refine the local prediction. Multitask
learning [15] [23] with multiple regression and clas-
sification objectives is also prevalent in understanding
scene geometry and semantics due to their complemen-
tarity. A fully convolutional network architecture [17]
that endows novel up-sampling blocks achieved impres-
sive accuracy and efficiency.

Unsupervised methods focused on a stereo correspon-
dence framework to cope with the need for an expen-
sive secondary supervisory signal. This is either ac-
complished by synthesizing stereoviews with left/right
consistency [10] to produce intermediary disparity map
[6] [27], or multi-view consistency with structure-from-
motion (SfM) [28] to learn a dense disparity prediction.

To yield accurate estimations of both global and lo-
cal objects in the context of the omnidirectional do-
main, lacking paired data with dynamic foreground ob-
jects and distortion introduced by equirectangular pro-
jection will result in poor outputs for supervised ap-
proaches. On the other hand, while some unsupervised
approaches do not explicitly require paired datasets, is-
sues like distortions and occlusions still persists.

Therefore, predicting the depth of 360 contents with
the aforementioned 2D approaches often yields sub-
optimal results [29]. Failing to learn feature representa-
tions in the equirectangular domain inevitably leads to
inferior accuracy and coherency. To improve the per-
formance of prediction in 360 contents, cubemap pro-
jection is one of the most popular choices. By pro-
jecting spherical signals onto faces of a cube, six non-
distorted square patches can still be processed with ex-
isting convolution techniques. However, while such an
issue may not be critical in certain tasks such as styl-
ization and classification, the lack of consistency be-
tween the output of each patch is more pronounced
in depth regression. Recently, methods for enabling
rotation-equivariance in CNNs were proposed by Co-
hen [4]. However, since such equivariant architec-
tures provide a lower network capacity, only single
variable regression problems were demonstrated. In-
spired by [26], the state-of-the-art method [29] incorpo-
rated distorted CNN filters to improve the performance
of fully convolutional networks with skip connections
and showed impressive predictions of equirectangular
images. However, without any consideration on fore-

ground objects, the network will penalize small areas
with a steep local gradient when regressing the global
gradient of the prediction, resulting in areas of interest
such as humans are frequently missing in the output.

2.2 Synthesizing Omnidirectional
Datasets

Since the standard method to approach monocular
depth estimation is to train a model directly from
paired RGB images and ground truth depth, the
performance of such supervised approaches cannot
produce better results than the limits of its training
data. With advanced imaging devices and depth
sensors, high-quality datasets consisting of traditional
perspective images are easily obtainable, for instance,
KITTI [8], NYUv2 [24], Make3D [22], etc. However,
obtaining paired 360 data is not as straightforward
as using traditional imaging devices with calibrated
color and depth sensors such as Kinect to capture 2D
contents. Using a stereo setup of two 360 cameras to
calculate disparity is challenging due to the presence of
occluded regions [20]. In the case of omnidirectional
images, both cameras will inevitably include the other
camera in the captured data. Recent scanning devices
are capable of acquiring datasets that consist of paired
360 RGB and ground truth depth of static scenes with
improved quality, such as Stanford 2D-3D [1] and
Matterport3D [3].

However, existing methods fail to include any dynamic
object in the scene. As a result of a scanning and stitch-
ing scheme, trying to include dynamic foreground ob-
jects in the captured data [1] [3] will lead to distorted
and incorrectly composited images, as shown in Fig-
ure 1. [29] repurposed 3D model datasets, SunCG [25]
and SceneNet [11], to render 360 synthesis-based RGB-
D images with virtual cameras. However, a model
trained with synthetic data does not necessarily gener-
alize well to real-world scenarios, due to dataset bias.
As observable in Figure 2, a previous attempt to re-
solve this issue by inserting human models into the ex-
isting synthetic dataset suffers from a severe domain
bias from the real-world scenarios. However, because
of the inability to include realistic human representa-
tion in the existing omnidirectional RGB-D dataset, the
performance of all previous methods is greatly limited
when applied to real-world scenarios with humans.

3 FOREGROUND-AWARE PHOTORE-
ALISTIC 360 DATASET

To produce a foreground-aware photorealistic dataset
for machine learning algorithms, we explain our
method of augmenting datasets with realistic fore-
ground objects using an image-based approach in this
section. The pipeline of our method is visualized in
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Figure 4: Since traditional 2D images can be processed with perspective transformations, it is difficult to establish
a correspondence between color and depth information. In comparison, 360 images cannot be cropped or zoomed
and hence have a scale-invariant RGB-D correspondence. As shown on the right side, in the 2D plane, different
color representations map to the same depth map of interested regions. One the other hand, 360 images share a
one-to-one mapping between color and depth, and every object has a fixed scale.

Figure 3. As shown in Figure 4, based on the observa-
tion that 360 images can circumvent challenges brought
by perspective transformations in the traditional 2D
plane, we effectively composite color data of abundant
and easily obtainable 2D datasets and rendered omni-
directional images with z-buffer. We employ a Mask
R-CNN network to predict pixel-perfect masks of the
dynamic foreground objects. With the acquired masks
of interest, we can obtain perspective paired color and
depth batches. With cubemap projections done before
and after compositions, we can composite with correct
occlusions and distortions.

3.1 Scale-invariant RGB-D Correspon-
dence in 360 Images

In this section, we explain the novelty and feasibil-
ity of compositing existing 2D RGB-D datasets onto
equirectangular images.

We observe that it is difficult to establish a correspon-
dence between color and depth in the traditional 2D do-
main. We take perspective transformations as an exam-
ple and demonstrate with Figure 4. During the process
of "zooming in" onto the target region (dashed box), the
global color data changes continuously while the depth
of the target area stays the same, forming a many-to-one
mapping. It is particularly true in the real-world: when
we use binoculars to observe the same object, even
given the prior knowledge of an object’s average size,
it is inherently harder to estimate the distance without
knowing the magnification.

One the other hand, the relation between color and
depth in 360 images is scale-invariant. While some
perspective transformations such as cropping will make
360 images no longer spherical, rotation and zoom will
not affect the global color representation of the original

image after down-scaling. Therefore, given the same
object with a determined distance, the appearance of the
target region in 360 images should remain consistent.

Based on this observation, we exploit such an advan-
tage of omnidirectional images by inversely composite
local regions onto them with regard to the depth infor-
mation. In this work, we choose z-buffer to composite
owing to its simple implementation, high efficiency and
compatibility of occlusions.

3.2 Synthesizing RGB-D Foreground
Batches

3.2.1 General Foreground Synthesis

To automatically acquire paired color and depth maps
of a dynamic foreground object, we can either capture
with sophisticated RGB-D sensors or take advantage
of abundant and easily obtainable existing datasets in
the traditional 2D domain. In order to efficiently ac-
quire highly accurate segmentation masks of the input
data, we adopt a Mask R-CNN model with a back-
bone of ResNet-101, trained with the COCO dataset
to predict per-pixel label masks. The strengths of per-
instance prediction and less complex post-processing
are the main reason we choose Mask R-CNN over a
simpler U-Net network. During prediction, our imple-
mentation predicts per-person-instance masks in a near-
real-time speed (5 fps) with high accuracy. Some ex-
amples are shown in Figure 10 and Figure 11. With
acquired masks for areas of interest, we crop batches
from the input RGB-D data accordingly.

3.2.2 Human Batch Synthesis

Since human as a dynamic foreground object shares
both a high complexity in deformation and non-uniform
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Figure 5: Generated examples with the proposed method. From left to right: rendered color images with origi-
nal omnidirectional datasets, samples from an input human pose dataset, generated omnidirectional images with
humans, and corresponding depth maps.

depths, we choose humans to show the efficacy of our
approach. At the same time, humans have great im-
portance being one of the most interested and common
subjects to deliver the context of the image. By show-
casing accurate estimations of human, we demonstrate
the ability of our method to be generalized to other fore-
ground objects. In this work, we repurpose the PKU-
MMD dataset [18], which contains calibrated and syn-
chronized RGB-D video sequences. This large-scale
dataset includes motions of 51 categories performed by
66 distinct subjects. It contains different views, suffi-
cient intra-class variations and adequate classes of mo-
tions to ensure a robustness prediction result.

3.3 Synthesizing RGB-D Omnidirectional
Data with Foregrounds

3.3.1 Omnidirectional Background Synthesis
Since paired real-world 360 RGB-D datasets with hu-
mans are not available to our knowledge, to alleviate
the difficulty of evaluating the accuracy between ours
and the-state-of-the-art approaches, we use a similar
strategy matching with [29] to render paired and re-
alistic omnidirectional RGB-D images from the Stan-
ford 2D-3D dataset and the Matterport3D dataset cap-
tured with professional 360-capable scanning devices.
Specifically, a path tracing renderer with a virtual om-
nidirectional camera is used to generate the samples.
The light source is positioned identically with the vir-
tual camera. Omnidirectional depth maps with linear
distances of each pixel are generated with Z depth. To
show the effectiveness of our method across different
domains and to benchmark the accuracy with synthetic
360 datasets, identical processes are brought out with
the SunCG [26] and the SceneNet [11] as well.

3.3.2 Compositing Foregrounds and Back-
grounds

Since the RGB-D local batches are captured in the
traditional 2D domain, a direct composition will lead
to distorted and unrealistic appearances in the 360
context. To cope with this challenge, both RGB and
depth map of each rendered omnidirectional sample
is projected onto a cube map through cubic projec-
tion. With ground truth depth information of both
foreground batches and background faces, the com-
position is done through highly efficient and effective
Z-buffer, preserving correct depth annotations and
in-scene occlusions. To simulate real-world scenarios,
batches are randomly composited to lower halves of
4 surrounding cube faces, while faces of the ceiling
and the floor are not used during composition. Finally,
a reverse cubemap projection is done to generate
high-quality RGB-D equirectangular samples with
dynamic foreground objects.

In this work, our proposed dataset consists of 25,000
realistic and 25,000 synthetic equirectangular samples
with synchronized color information and depth anno-
tations. Abundant variation is achieved through a suf-
ficiently wide range of indoor scenes as backgrounds,
and a large human batch pool acquired in the previous
step as foregrounds.

4 DEPTH ESTIMATION FOR OMNIDI-
RECTIONAL IMAGES

This section presents our proposed end-to-end learning
model to estimate a depth map from an equirectangular
image. As shown in Figure 6, We use two fully-
convolutional encoder-decoder structured networks,
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Figure 6: An overview of the proposed depth estimation
network. The weight of the auxiliary MaskNet is fixed
when training the depth estimation model RectNet [29].

RectNet and MaskNet to regress depth and predict
masks of local regions respectively from a given RGB
input. The RectNet that resembles the design in the
literature can regress depth with changing filters in
an omnidirectional context. To take advantage of the
generated dataset with dynamic foreground objects,
we leverage the generated masks of interested areas
to train the auxiliary MaskNet. By calculating both
local depth loss and global loss, our network further
improves the consistency in local predictions.

4.1 Network Structure

Figure 7: The architecture of the fully convolutional
auxiliary MaskNet. The encoder of our network shares
the same structure of ResNet-101 [12], followed by a
decoding process with two upsampling layers to predict
the mask of the target object.

The proposed network approaches dense depth estima-
tion from monocular RGB images shares an encoder-
decoder design that progressively downscales and up-
scales to the target representation through regression.
Skip connections similar to ResNet structures can help
to preserve the information from a higher level during
regression while preventing vanishing gradient. When
applied to equirectangular images, inspired by [26], we
incorporate rectangular filters with changing sizes ac-
cording to rows of the input to cope with the character-
istic that the density of information, or namely the dis-
tortion level changes along the vertical axis but invari-
ant along the horizontal axis. In addition to L2 depth
loss to regress the prediction, a neighborhood smooth-
ness regularization term [29] is also calculated to im-
prove the global consistency of the output.

However, small regions with steep gradient changes
usually got smoothed out during the regression and
missing in the prediction. This can be observed in Fig-
ure 10. Predictions of human severely suffer from this
issue. To tackle this limitation, we introduce an auxil-
iary network, MaskNet, to calculate the local depth loss
of humans. The MaskNet network that predicts masks
of foreground objects from equirectangular RGB inputs
has the architecture shown in Figure 7. It is trained
with the COCO dataset and finetuned with generated
equirectangular RGB images with foreground objects
and corresponding segmentation masks to minimize a
cross-entropy loss. The weight is fixed during training
the depth estimation model.

4.2 Loss Function
We train the depth estimating network in a com-
peletly supervised fashion with input of the generated
foreground-aware RGB-D dataset. To address the
problem of vanishing local gradients for areas of
interest while keeping the desirable properties of the
original RectNet like consistent global predictions, the
total loss of our model consists of three different terms:

Ltotal = ∑
i
(αiLdepth +βiLsmooth + γLlocal),

while the α , β and γ are the weights for each loss term.
Since the loss is calculated under different scales i, the
estimations of lower scales are interpolated with near-
est neighbors are concatenated together to form the final
output. The depth loss Ldepth is regressed by minimiz-
ing the least square errors between the groudtruth depth
maps Dgt and the predicted depth maps Dpred :

Ldepth = ‖Dgt −Dpred‖2.

The smoothness loss is calculated by ‖∇Dpred‖2 to
minimize the gradient of the prediction. In order to
calculate the local depth loss, we pass the equirect-
angular color image Cinput through the trained auxil-
iary network M to obtain the mask of human instances
Mhuman =M(Cinput), so we can calculate the local depth
loss with

Llocal = ‖Dpred⊗Mhuman‖2.

By minimizing the local depth loss, we can ensure that
spatially closer pixels within the same area of interest
would have closer depth values.

5 EXPERIMENTS
In this section, we first evaluate our data augmenta-
tion method by presenting quantitative comparisons
between models trained with existing omnidirectional
datasets and our generated datasets. We then verify the
performance of the proposed network by comparing it
to the state-of-the-art omnidirectional depth estimation
algorithm. Finally, to evaluate the effectiveness of our
method in real-world scenarios with human objects,
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Table 1: Quantitative results of different training datasets. Error metrics are calculated on a global basis.

Dataset Abs Rel Sq Rel RMSE RMSE log δ < 1.25 δ < 1.252 δ < 1.253

Synthetic 0.4918 0.4133 0.8944 0.6550 0.4083 0.6806 0.8212
Proposed Synthetic 0.3789 0.2893 0.6878 0.5225 0.4245 0.7926 0.9257

Realistic 0.3765 0.3540 0.8864 0.5230 0.5907 0.7500 0.8926
Proposed Realistic 0.3190 0.2180 0.5993 0.4788 0.6988 0.8454 0.9150

For four error metrics, absolute relative difference (Abs Rel), squared relative difference (Sq Rel), root mean square error
(RMSE) and RMSE log, lower values are better. For percentage of inliers under threshold δ < 1.25, δ < 1.252 and δ < 1.253,
higher values are better. Same for tables below.

Table 2: Quantitative evaluation against other models. Error metrics are calculated on a global basis.

Model Training Set Abs Rel Sq Rel RMSE RMSE log δ < 1.25 δ < 1.252 δ < 1.253

RectNet [29] Proposed Syn 0.3789 0.2893 0.6878 0.5225 0.4245 0.7926 0.9257
Proposed Proposed Syn 0.2895 0.2354 0.5957 0.4272 0.7440 0.8805 0.9284

RectNet [29] Proposed Real 0.3190 0.2180 0.5993 0.4788 0.6988 0.8454 0.9150
Proposed Proposed Real 0.1984 0.0817 0.3286 0.2608 0.7298 0.8984 0.9727

we offer comparative qualitative results of estimating
unseen images by different methods.

5.1 Training Details

Figure 8: Learning curves of models respectively
trained with original synthetic, original realistic, pro-
posed synthetic and proposed realistic datasets.

For fair comparisons, we randomly acquired 25,000
samples from existing synthetic omnidirectional
datasets to train models as the existing synthetic
dataset, and then we acquired 25,000 samples from
existing realistic omnidirectional datasets to train
models as the existing realistic dataset. We respec-
tively generate 25,000 synthetic samples and realistic
samples augmented with human objects to train models
as our proposed datasets. Each 512 x 256 sample
has color information and corresponding ground truth
depth annotation. We randomly split samples from
each dataset into training and validation datasets with
a ratio of 80% and 20%. All networks in this paper

are implemented with PyTorch [21] on an Nvidia
RTX 2080Ti graphic card and trained with Adam
optimizer [16], Xavier initialization [9], and a learning
rate of 2e-4. Training parameters of our networks are
[α1,α2,β1,β2,γ] = [0.482,0.245,0.121,0.061,0.090],
while parameters of training previous RectNet models
are [α1,α2,β1,β2] = [0.535,0.272,0.134,0.068]. The
same quantitative metrics from the literature [10] [29]
are used for evaluation. During experiments, predicting
a single image approximately costs 100 ms with the
same setup.

Figure 9: Estimated depth information of local regions
with different configurations. An ablation study shows
that using our augmented dataset can improve the accu-
racy of local regions, and the proposed network shows
an improved consistency with clearer boundaries.

5.2 Quantitative Results
Table 1 presents the results of the state-of-the-art mod-
els respectively trained with existing synthetic and real-
istic datasets and our proposed datasets. We observe
that when tested on unseen samples with human ob-
jects, networks trained with our proposed datasets out-
perform the existing ones. The increased performance
in accuracy against previous methods attributes to more
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Figure 10: Qualitative comparison between each model when tested on synthetic images.

Figure 11: Qualitative comparison between each model when tested on realistic images.
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accurate estimations of local human regions, as can be
observed in Figure 9. By further quantitatively evalu-
ating the accuracy of estimations between our proposed
network and the state-of-the-art models, we can observe
the inferior performance of previous approaches as ex-
pected in Table 2. Depth estimations of local human
regions are further refined with our proposed network.

5.3 Qualitative Results
To qualitatively evaluate our models’ ability to general-
ize to unseen data, we further acquire and augment sam-
ples from the SunCG and the Matterport3D that come
from other locations different from training datasets. As
we can observe in Figure 10 and Figure 11, our models
perform better to estimate the depth of both synthetic
and realistic scenes with a human. While previous mod-
els yield human depth estimations that are blended with
the background and have a blurred edge, our models
can predict much clearer and human-shaped results. It
is worth mentioning that although all omnidirectional
samples used in the experiment only cover indoor set-
tings, our method works with outdoor cases as well.

After observing generated samples, we believe there
are many challenges left to overcome. First, even our
method can augment foreground objects, we do not take
lighting into consideration during the process. This un-
naturalness may lead to less robust estimation in certain
scenarios (e.g. scenes with very high brightness).

5.4 Ablation Study
In Figure 9, we compare the accuracy of depth estima-
tions for local regions under different configurations.
Specifically, we compare using original data and pro-
posed data to train only the depth estimation network
without the auxiliary MaskNet at first to validate the
effectiveness of our data generation method. We then
use augmented data to train depth estimation networks
with the auxiliary MaskNet, and verified that the local
depth loss can successfully improve the consistency of
estimated depth within areas of interest. As we can ob-
serve in Figure 9, our method significantly outperforms
the state-of-the-art in local depth estimation.

6 CONCLUSION
We have presented a data augmentation method to gen-
erate high-quality equirectangular datasets with paired
color and ground-truth depth annotations by repurpos-
ing abundant and easily obtainable 2D RGB-D datasets.
With this dataset, we further introduced and imple-
mented an auxiliary network that calculates local depth
loss to resolve an issue that small regions of interest are
frequently smoothed out during optimizing global gra-
dients. We take human, a crucial subject in 360-degree
contents, as an example to show the efficacy of our ap-
proach. We showed improved accuracy of our approach

compared to the state-of-the-art technique. We believe
that the ability to estimate depth for foreground objects
in 360 images can benefit a wide range of applications
such as navigation in robotics and augmenting virtual
objects with occlusions.
Currently, our data augmentation method is based on
the premise that both 2D and 360 data are captured with
similar extrinsic parameters (e.g. cameras are aligned
horizontally, positioned at average eye-level height) and
lighting conditions, while it is true for most data cap-
tured in lab conditions, its application for in-the-wild
images is limited. Furthermore, our approach works
for both indoor and outdoor settings. Nevertheless, for
outdoor settings, a higher dynamic range of luminosity
and sunlight’s ambient IR will render capturing RGB
and depth information inherently difficult. For future
work, we aim to explore generating samples with dif-
ferent lighting conditions with GANs to improve the
robustness of depth estimation.
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