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aNew Technologies Research Centre, University of West Bohemia, Univerzitnı́ 8, 301 00 Plzeň, Czech Republic
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The electronic structure calculations represent a rigorous tool for predicting and understand-
ing the properties of materials from first principles. In our research devoted to understanding
crack propagation in iron we have developed a new software [2] for electronic structure calcu-
lations that is based on the pseudopotential approach [5, 7] within the context of the density
functional theory [4]. A properly constructed pseudopotential can be used both to reduce nu-
merical difficulties by hiding the core singularity as well as to substantially reduce the number
of the electrons (degrees of freedom) required to calculate with by hiding non-valence electrons.
However, designing an accurate and efficient pseudopotential is a non-trivial task as there are
many, often contradictory, criteria on the pseudopotential optimality, such as smoothness, soft-
ness (no strongly oscillating pseudo-wavefunctions), transferability (validity in different neigh-
boring atom configurations, reproduction of scattering properties in a wide range of energies),
computational efficiency, etc.

Our approach to generating and optimizing pseudopotentials is based on the algorithm pro-
posed in the dissertation work [6], where so called environment-reflecting all-electron pseu-
dopotentials were introduced. The original fortran77 implementation, while still working very
well, started to be a maintenance burden over the years, which motivated us to begin with the
development of a new, easily maintainable and extensible implementation using Python as the
top-level programming language. In this contribution we describe the new implementation and
present preliminary numerical examples.

In our approach [6], a pseudopotential is generated for the given energy E and orbital quan-
tum number l, and is assumed to be a linear combination of basis functions Fi(r), i = 0, . . . , 4

V PS
E,l (r) =

4∑

j=0

ajFj(r) , (1)

where

F0(r) = 1 , F1(r) = e−(ρ1r)2 − 1 , F2(r) = (ρ2r)
2e−(ρ2r)2 ,

F3(r) = e−(ρ3r)2 − 1 , F4(r) = (ρ4r)
2e−(ρ4r)2 .

(2)

Pseudopotentials are generated for individual atoms by repeatedly solving the Schrödinger
equation numerically in spherical coordinates: for this purpose we can use either our test im-
plementation in Python (mainly for debugging), or a very fast and accurate implementation
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of dftatom [1]. We denote the resulting all-electron wavefunctions by ψAE
E,l (r) and the corre-

sponding energy by E, when solving with the original all-electron potential V AE(r), and the
pseudofunctions by ψPS

E,l(r) for the calculation with V PS
E,l (r). For a given cut-off radius Rc, the

following conditions have to hold

V PS
E,l (r) = V AE(r) , r ≥ Rc , (3)

∂i

∂ri
V PS
E,l (r) =

∂i

∂ri
V AE(r) , r = Rc , i = 1, 2 . (4)

Using normalization constants such that ψPS
E,l(Rc) = ψAE

E,l (Rc), the following conditions are
required to hold

∂
∂r
ψPS
E,l(r) = ∂

∂r
ψAE
E,l (r) , r = Rc , (5)

Rc∫
0

∣∣ψPS
E,l(r)

∣∣2 r2 dr =
Rc∫
0

∣∣ψAE
E,l (r)

∣∣2 r2 dr . (6)

The condition (6) corresponds to the charge conservation and makes the resulting pseudopoten-
tials “norm-conserving”, which implies transferability, i.e., use at different energies.

The pseudopotential basis functions Fj(r) in (2) have free parameters ρ ≡ [ρ1, ρ2, ρ3, ρ4]
T .

Those parameters can be chosen in a way that is optimal w.r.t. some selected criterion Θ —
an optimization problem is defined as follows: Find ρ̂ such that

[â, ρ̂] = argminρ{Θ(V PS
E,l (a,ρ, r))} , (7)

where the linear combination (1) parameters â ≡ [â0, . . . , â4]
T follow from (3) – (6). Many

optimization criteria are possible, for instance:

• minimizing the “length” of Fourier image of the pseudopotential;
• minimizing the integrated curvature;
• minimizing the depth of the pseudopotential.

As an example we show results of pseudopotential optimization for the nitrogen atom and min-
imize the initial pseudopotential curvature

Θ0(V
PS
E,l (a,ρ, r)) ≡ |

∂2

∂r2
(V PS

E,l )(a,ρ, 0))| . (8)

This atom has 7 electrons in three sub-shells 1s: 2, 2s: 2, 2p: 3, with energies E1s2 ≈ −14.01,
E2s2 ≈ −0.676, E2p3 ≈ −0.266 (in atomic units). The pseudopotentials were generated for the
valence states 2s (l = 0), 2p (l = 1) as well as for the first unoccupied state 3d (l = 2) with
E3d0 ≈ 0.018. The initial parameters were ρ = [0.5, 0.7, 1.4, 1.3]T . For the optimization, the
L-BFGS-B solver from SciPy [3] was used: it allowed specifying additional box constraints:
0.001 < {ρ1, ρ2} < 1.1, 1.11 < {ρ3, ρ4} < 2 to prevent linearly dependent basis functions.
The results are summarized in Fig. 1. Adhering (3) – (6), the pseudofunctions are equal to
the all-electron wavefunctions outside the cut-off radius Rc = 1.5 (Fig. 1a). The optimized
pseudopotentials (orange curves in Fig. 1b-d) are equal to all-electron potentials (green curves)
outside Rc and are shallower and smoother than the ones obtained for the initial setting of pa-
rameters (blue curves), and thus more numerically suitable for electronic structure calculations.
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Fig. 1. The pseudopotential optimization results: a) comparison of the all-electron wavefunctions (solid)
and the corresponding pseudofunctions (dashed); b) the initial (blue) and optimized (orange) pseudopo-
tentials compared with the all-electron potential (green) for the state 2s, c) for the state 2p and d) for the
state 3d. The cut-off radius Rc = 1.5 is denoted by the vertical line.
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