
Evolutionary Generation of Primitive-Based Mesh
Abstractions

Markus Friedrich, Felip Guimerà Cuevas, Andreas Sedlmeier, André Ebert
Institute for Computer Science

LMU Munich
Oettingenstr. 67

80538 Munich, Germany
{markus.friedrich|andreas.sedlmeier|andre.ebert}@ifi.lmu.de, felip.guimera@campus.lmu.de

ABSTRACT
The procedural generation of data sets for empirical algorithm validation and deep learning tasks in the area of
primitive-based geometry is cumbersome and time-consuming while ready-to-use data sets are rare. We propose
a new and highly flexible framework based on Evolutionary Computing that is able to create primitive-based ab-
stractions of existing triangle meshes favoring fast running times and high geometric variation over reconstruction
precision. These abstractions are represented as CSG trees to widen the scope of possible applications. As part of
the evaluation, we show how we successfully used the generator to create a data set for the evaluation of neural
point cloud segmentation pipelines and additionally explain how to use the system to create artistic abstractions of
meshes provided by publicly available triangle mesh databases.

Keywords
Evolutionary Algorithms, Geometry Processing, CAD, CSG, Deep Learning

1 INTRODUCTION

A plethora of empirical algorithm validation and deep
learning tasks in the field of primitive-based 3D geom-
etry processing require a diverse and sufficiently large
set of 3D models as test or training input. For models
represented as triangle meshes, these data sets exist and
are available for free (e.g. ShapeNet [CFG+15], Mod-
elNet [WSK+14], ABC [KMJ+18], etc.). However, if
model representations based on a composition of geo-
metric primitives (eg. spheres, cylinders, cuboids, etc.
combined by Boolean set operations) are needed, data
sets are rare. For example, the ABC data set con-
tains 1000.000+ Computer Aided Design (CAD) mod-
els with primitive information but lacks cuboids as one
of the considered primitive types and also does not ac-
count for compositional information like the arrange-
ment of Boolean operators in a CSG tree.
An example use case where such data sets are needed
would be a CSG tree detection pipeline based on neural
networks (see [SGL+18] for example). It requires a 3D
point cloud as input and delivers a CSG tree that fits the
3D point cloud best, together with the parameters of
detected primitives. Traditionally, deep learning tasks
need huge training sets, which are in this case hard to
find or cumbersome to generate manually with off-the-
shelf CAD tools.
In order to fill this gap, we propose a CSG tree gener-
ator framework based on Evolutionary Computing that
transforms a triangle mesh model together with a set
of constraints (e.g. frequency distribution of primitive

types) into a CSG tree representation which combines a
set of fitted primitives with Boolean set operations (e.g.
union, intersection, difference). Note that the primary
goal here lies not in finding the CSG tree which matches
the input geometry as perfectly as possible but in gen-
erating a sufficiently accurate abstraction, allowing for
the generation of tens of thousands of models within an
acceptable time frame on currently available hardware.
Another, completely different use case worth to con-
sider is the artistic abstraction of geometry for visually
appealing renderings and animations appearing in en-
tertainment products and multimedia installations.
The proposed processing pipeline starts with sampling
the input model, resulting in a 3D point cloud that is
then clustered for better computational efficiency. For
each cluster, primitives are fitted. Which primitive
types to use for fitting is determined by sampling a user-
defined frequency distribution that specifies the desired
distribution of primitive types in the resulting CSG tree.
Then, per-cluster CSG trees are extracted using a spe-
cific variant of an Evolutionary Algorithm (EA). Fi-
nally, resulting CSG trees are merged to a combined
result.
In summary, this paper presents the following main
contributions:

• A highly flexible and configurable framework for
the generation of primitive-based mesh abstractions
that are represented as CSG trees.

ISSN 1213-6972
Journal of WSCG 
http://www.wscg.eu Vol.27, No.1, 2019

17https://doi.org/10.24132/JWSCG.2019.27.1.3



• An evaluation of three neural network architectures
considering the task of primitive detection from 3D
point clouds. Necessary training, validation and test
data sets were generated with our proposed frame-
work.

2 BACKGROUND
2.1 CSG Trees and Signed Distance Func-

tions
A CSG tree represents a 3D model as a hierarchical
combination of Boolean set operations and primitives
(e.g. cubes, spheres, cylinders, ...). Set operations are
thereby inner nodes of the tree whereas primitives are
always leaves. In our case, a primitive p is described by
a signed distance function fp, where the surface of p is
the zero set of fp:{x ∈ R3 : fp(x) = 0}.
The Boolean set operations are represented using min-
and max-functions [Ric73]:

• Intersection: p1∩ p2 := max( fp1 , fp2)

• Union: p1∪ p2 := min( fp1 , fp2)

• Complement: p :=− fp

• Subtraction: p1 \ p2 := p1∩ p2

The surface normal for a certain point x ∈ R3 can be
retrieved by ∇ fp(x).

2.2 Genetic Algorithms
A Genetic Algorithm is a population-based metaheuris-
tic for solving optimization problems and belongs to the
class of Evolutionary Algorithms. The concept is in-
spired by the biological phenomenon of natural selec-
tion. Initially, a randomly generated population of pos-
sible solutions is created and ranked using a problem-
specific objective function. In the following iteration,
the best solutions from the last iteration are selected
and changed using domain-dependent modification op-
erators (mutation and crossover). This procedure is re-
peated until a certain stop criterion is met (e.g. a certain
objective function value or maximum iteration count
has been reached). The extraction of a CSG tree from
a set of fitted primitives and a shape-describing point
cloud is a combinatorial optimization problem (see e.g.
[FFPF18]) which we solve using a Genetic Algorithm.

Permission to make digital or hard copies of all or part of
this work for personal or classroom use is granted without
fee provided that copies are not made or distributed for profit
or commercial advantage and that copies bear this notice and
the full citation on the first page. To copy otherwise, or re-
publish, to post on servers or to redistribute to lists, requires
prior specific permission and/or a fee.

3 RELATED WORK
3.1 Available Data Sets
Large model databases of triangle meshes exist
(ShapeNet [CFG+15], ModelNet [WSK+14]) but do
not describe distinct primitives. The data set introduced
in [KMJ+18] contains primitives but does not include
cuboids and CSG tree descriptions. For an exhaustive
overview of available data sets, see [KMJ+18].

3.2 Procedural Model Fitting & Modeling
Procedural Model Fitting (PMF) describes the task of
finding a geometric representation that fits a certain
input data set (e.g. a point cloud) as precisely as pos-
sible. The primitive generator proposed by Zou et al.
[ZYY+] takes point clouds as input and uses a variant
of the Iterative Closest Point method (ICP) [BM92]
to fit cuboids but is restricted to that single primitive
type. A constrained-based PMF technique employing
a Genetic Algorithm is proposed in [HSS17]. While
results look promising, all models are represented
using triangle meshes, which is not suitable for our
use case. Other approaches use Sequential [RMGH15]
or Markov Chain Monte Carlo [TLL+11] methods as
well as Reinforcement Learning [TKS+13, SGL+18].
Our approach is different in that we accept arbitrary
3D meshes (not just point clouds) as input and focus
on generation speed rather than precise fitting.
A related research field is Procedural Modeling
(PM). There, visual content (3D models, textures,
...) is generated based on specialized algorithms with
user-controlled parameters. In recent years, there has
been vivid research activity in the field of procedural
content generation using Machine Learning approaches
(PCGML). See [SSG+18] for a comprehensive survey.
For a survey on the procedural generation of complete
worlds (landscapes, buildings, creatures, ...), see
[FE17].

4 PROBLEM STATEMENT
The problem that is solved by our proposed generator
can be described as follows: Given a 3D model repre-
sented as a closed triangle mesh and a frequency dis-
tribution of primitive types initially defined by the user,
generate a CSG tree which matches the input mesh as
closely as possible while the set of primitives corre-
sponds to the selected distribution. Important to note is
that the computational effort of the generation process
should be kept low in order to allow for the creation of
large model data sets (> 10.000 objects) in a reasonable
time frame. Speed is therefore more important than vi-
sual quality.

5 CONCEPT
The proposed pipeline as depicted in Figure 1 starts
with a closed 3D triangle mesh together with a user-
defined primitive frequency distribution Hp as input and

ISSN 1213-6972
Journal of WSCG 
http://www.wscg.eu Vol.27, No.1, 2019

18



results in a CSG tree together with a set of primitives
and their parameters as output. Each of the following
sub sections is dedicated to a particular pipeline step.

Figure 1: Overview of the CSG tree extraction pipeline.
Parameters nt and mt are explained in Section 5.4.

5.1 Sampling
In this step, the input mesh is sampled resulting in a 3D
point cloud S. The sample points are later used to mea-
sure how well a CSG tree matches the mesh’s shape.
Each point in S receives a label that indicates whether
the point is located inside, outside or on the surface of
the mesh. See Figure 2 for an example.

Figure 2: Elephant mesh (left) and corresponding sam-
pling points with inside points in green, outside points
in red and on-surface points in white (right).

The points and their corresponding assigned labels are
retrieved using a special raycasting approach, in which
rays do not detect meshes for which the origin of the
raycast lies inside the mesh: First, random points within
the bounding box of the mesh are selected. These points
serve as origins for rays that are cast in random direc-
tions. If a ray hits the mesh, the hit point phit is added
to S with an "on-surface" label. If no mesh was hit dur-
ing the raycast, then any point along that cast outside
the bounding box can be marked as phit with an "out-
side" label. In addition, the ray’s origin porg is added to
S. Its corresponding label ("inside", "outside") is deter-
mined by casting a second ray back from phit through
porg and comparing the lengths of both rays. If the first
ray is longer, then the label "inside" is assigned, if it is
shorter, the label "outside". In case of equal ray lengths
the point is marked as "on-surface. If phit and porg are
the same, the origin is not added to S. The label of porg
is therefore always uniform regardless of the initial di-
rection of the raycast.

Figure 3: Explanation of the employed raycasting ap-
proach for label assignment by example: A torus is used
as mesh geometry. The two cases for an "inside" (bot-
tom) and an "outside" labeled point (top) are depicted.
The label "on-surface" is assigned in case of equal ray
lengths.

5.2 Clustering
In order to reduce the computational complexity of
primitive fitting and CSG tree extraction, a two-level
clustering approach is applied to the point cloud S ("in-
side", "outside" and "on-surface" points are consid-
ered). First, it is clustered into a set of nc clusters C us-
ing the k-means algorithm [Llo82]. Then, each cluster
is again clustered into mc sub-clusters using the same
technique. The method results in a set of nc ·mc sub-
clusters Csub, which is then the basis for primitive fit-
ting. Please note that mc and nc are user-controlled pa-
rameters.

5.3 Primitive Fitting
For each sub-cluster csub in Csub, a single primitive is
fitted. The primitive type is determined by sampling the
user-defined primitive frequency distribution Hp, which
assigns a probability to each supported primitive type
(sphere, box, cylinder, torus, cone, extruded pentagon
and triangle). This results in the primitive set Psub. See
Algorithm 1 for all details.
Important to note is that the primitive fitting method
does not strive for high matching precision but for fast
running times and high geometric variation.

5.4 Per-Cluster CSG Tree Extraction
For each cluster ci in C, all sub-clusters are merged re-
sulting in a set of primitives Pi and points Si. The CSG
tree extraction process is conducted for each cluster in

ISSN 1213-6972
Journal of WSCG 
http://www.wscg.eu Vol.27, No.1, 2019

19



Algorithm 1: The primitive fitting algorithm. The
method createP(·) generates a primitive instance
based on a primitive type (e.g. sphere or box), a
center position and a size value. The size value for
a sphere would be its radius. For primitives with
more than a single size dimension (e.g. boxes), each
dimension is set to the size value.
input : Set of sub-clusters Csub, primitive

frequency distribution Hp
output: Fitted primitive for each sub-cluster ∈Csub

Psub←{}
foreach csub ∈Csub do

dmin← minimum of the largest distances per
axes in csub

dmax← diameter(csub)
sizep← random(dmin,dmax ·0.5)
centerp← center(csub)
typep ∼ Hp
Psub← Psub∪ createP(typep,centerp,sizep)

return Psub

C and uses a Genetic Algorithm to solve the CSG tree
extraction problem.
Initialization. The GA initializes the CSG tree popula-
tion with randomly generated CSG trees that use prim-
itives from Pi. This is done exactly once while the fol-
lowing steps are executed repeatedly.
Ranking. All CSG trees in a population are ranked us-
ing the objective function

E(t)=σ(t)·
|Si|

∑
j=1


ft(si j) l(si j) = "on-surf."
|min( ft(si j),0)| l(si j) = "outside"
max( ft(si j),0) l(si j) = "inside"

,

(1)
where σ(t) = log2(size(t)) is a tree size penalty term,
ft(·) is the signed distance function of tree t and l(·)
assigns a label ∈ {"on-surface","outside","inside"} to
each point in Si. The GA-based CSG tree extraction
aims for minimizing Equation 1. See Figure 4 for get-
ting an intuition of the objective function.
Selection. After the whole population was ranked and
sorted in ascending order, the best (with respect to
their objective function value as defined in Equation
1) nt CSG trees are selected for the steps "Enhancing",
"Crossover" and "Mutation" (collectively referred to as
variation steps in the following). Variation steps are ap-
plied to each of the nt selected CSG trees mt times, re-
sulting in a constant population size of nt ·mt CSG trees
(see Figure 1).
Enhancing. The idea of the enhancement operator is
to improve the geometry score before the actual classic
variation operators (mutation, crossover) are applied. It
can be seen as a local hill-climbing strategy for faster
convergence.

Figure 4: The intuition behind the objective function
(CSG tree primitives in orange dotted lines, input mesh
in grey). The objective function measures the accumu-
lated absolute distance between the surface induced by
the CSG tree t and inside (green), outside (red) and on-
surface sampling points (white). Only those distances
from incorrectly classified points are added. This is the
case for points that are labeled as "outside" but are lo-
cated inside the CSG tree and vice-versa. Distances to
on-surface points are always added (added distances are
indicated by grey arrows).

It works as follows: Each CSG tree in the population
stores the sample point pw with the worst objective
function value. The enhancement operator modifies the
CSG tree in the following way: If l(pw) = "outside",
i.e., the sample point pw should be outside, but -as it
has a bad objective value- is wrongfully placed inside,
a randomly generated primitive is cut out by adding it
to the CSG tree together with a difference operation. If
l(pw) = "inside", then a randomly generated primitive
is added to the CSG tree together with a union opera-
tion. In case of l(pw) = "on surface", a randomly gen-
erated primitive is either cut out or added to the solid
induced by the CSG tree. In this case, operation choice
(cut out or add) is random with both operations having
a probability of 0.5.
Crossover & Mutation. The currently used crossover
and mutation operators for a particular CSG tree are
chosen randomly and applied to the CSG tree mt times
together with the enhancement operator. Each com-
bined enhancing, crossover and mutation operation re-
sults in a single new CSG tree. See Figure 5 and Figure
6 for an overview and description of used crossover and
mutation operators.
Termination. In order to determine whether or not the
GA should terminate, the average score of improvement
δE for GA iteration k

δ
k
E =

1
nb

[
min

0≤l<k

(
∑
t∈Tl

E(t)
)
− ∑

t∈Tk

E(t)
]

(2)

is evaluated, where Tk is the set of the nb best CSG trees
in the population of iteration k and min 0≤l<k(·) is the
best accumulated score reached so far in that particular
cluster. δ k

E is then compared to a pre-defined average
score threshold δ ts

E which is multiplied by the best av-
erage score reached. This checks whether δ k

E has im-
proved by a certain amount δ ts

E compared to the current

ISSN 1213-6972
Journal of WSCG 
http://www.wscg.eu Vol.27, No.1, 2019

20



(a) Crossover 1: Merges the first tree with a randomly chosen
sub-tree from the second tree.

(b) Crossover 2: Replaces a proper, randomly chosen sub-tree
from one tree with a randomly chosen, not necessarily proper
sub-tree (the sub-tree could also be the entire CSG tree), from
the second tree and adds a randomly chosen operation (union,
intersection or difference) to the parent of the sub-tree of the
first tree.

(c) Crossover 3: Selects a sub-tree randomly from both trees
and combines them arbitrarily using the union, intersection or
difference operator.

Figure 5: All used crossover operators.

best average score. If this is not the case, an iteration
counter is incremented. If the number of iterations sur-
passes a user-controlled upper bound, the algorithm ter-
minates.

5.5 Merge
The result of the steps described in Section 5.4 is a CSG
tree for each cluster in C. In order to combine these per-
cluster trees into a single one representing the complete
model, we apply a hierarchical merge scheme based on
the nearest neighbor information obtained by the clus-
tering mechanism. See Figure 7 for an explanation of

(a) Mutation 1: Replaces a randomly chosen primitive in the
tree with a new, randomly selected primitive.

(b) Mutation 2: Adds a new, randomly selected top-level oper-
ation to the tree. The old tree is one child, a randomly created
primitive the other one.

(c) Mutation 3: Replaces two primitives connected via union
with a single randomly created primitive.

Figure 6: All used mutation operators.

the algorithm by example. The proposed merge proce-

Figure 7: The hierarchical merge process explained by
example. Per-cluster trees are combined with close by
trees using the union operator. The process is repeated
until only a single tree is left.

dure combines per-cluster trees that are close by, which
has positive effects on tree editability and tree balance.

5.6 Blending
For certain use cases (e.g. artful model abstraction), ad-
ditional blending of neighboring per-cluster CSG trees
can be applied using the blending operator [Ric73]

b( ft1, ft2,x) = ft2(p) ·(1−h)+ ft1(p) ·h−α ·h ·(1−h),
(3)

where ft1 and ft2 are the signed distance functions
of the two trees that should be blended together,
h = min(1,max(0,0.5+ ft2(x)− ft1(x)

2·α )) and α is a user-
defined parameter controlling blending smoothness.

ISSN 1213-6972
Journal of WSCG 
http://www.wscg.eu Vol.27, No.1, 2019

21



See Figure 15 and 16 for a visualization of different
smoothness strengths. Note that a specific α-value is
not given since it depends on model size and thus is not
generalizable.

6 EVALUATION
The evaluation consists of two parts: The first part de-
scribes and explains the performance characteristics of
the generator framework and the second part details a
possible use case.

Parameter Name Value
nt 15
mt 70
nb 15
Hp uniform distribution
δ ts

E 0.2
Table 1: Parameters used throughout the evaluation.

6.1 Generator Framework
The generator framework was evaluated using a ma-
chine with an Intel(R) Core(TM) i7 CPU @ 3.06GHz
and 12GB of RAM. Experiments were conducted with
a varying number of clusters and different sample
point cloud sizes with seven 3D models taken from
the Google Poly data set [pol] (see Figure 14 for an
overview). See Table 1 for a list of parameter values
that were used throughout the evaluation and Figure 13
for an exemplary CSG tree result.
For a meaningful quality evaluation, an extra sampling
of the triangle mesh’s surface with a fixed number of
samples is conducted. This point set is then used to
evaluate the objective function for a specific CSG tree
resulting in its geometry score.

6.1.1 Number of Clusters
The impact of the total number of sub-clusters |Csub|=
nc ·mc for a fixed |S| ≈ 2000 on the running time is
shown in Figure 8 (nc = 5, mc ∈ {1,2, ...,7}). It is
clearly visible that running time and |Csub| have an ap-
proximate linear relationship. The number of fitted
primitives (which is equal to |Csub|) positively affects
the quality of the model approximation. As visible
in Figure 9, this effect weakens significantly starting
from |Csub| = 15. This is a good hint for a running
time/quality trade-off. Note that geometry scores are
not normalized and thus an inter-model comparison is
not possible. Figure 15 and 16 show results for models
Elephant and Giraffe for different values of |Csub|.

6.1.2 Point Cloud Size
We evaluated the impact of the size of the sampling
point cloud |S| on the running times and result qual-
ity using all seven models and 25 sub-clusters (nc = 5,

Figure 8: |Csub| and running times.

Figure 9: |Csub| and reached geometry score (smaller
score means better quality).

mc = 5). Results are depicted in Figure 10 and 11.
As expected, running times grow linearly with the num-
ber of sampling points. The results also show a sig-
nificant improvement of result quality until a sampling
point cloud size of ca. 1000−1500 points. This can be
explained by the geometric complexity of the input tri-
angle mesh: There is no positive effect if more samples
are used than are required for the representation of the
input mesh in all its details.

Figure 10: Sample point cloud size and running times.

ISSN 1213-6972
Journal of WSCG 
http://www.wscg.eu Vol.27, No.1, 2019

22



Figure 11: Sample point cloud size on the geometric
quality (smaller score means better quality).

6.2 Deep Primitive Segmentation
We tested the usability of our generator framework
in an evaluation of three different neural network
architectures for point cloud segmentation (PointNet
[QSMG16], PointNet++ [QYSG17] and PointCNN
[LBSC18]). Our main interest was their performance
(Accuracy and Intersection over Union (IoU)) in the
task of primitive segmentation (cuboids, spheres,
cylinders and cones) as well as their robustness to noise
and differences between training and test sets.
The training set consisted of 15.000 point clouds, each
representing 20− 80 primitives using 2048 points. In
order to evaluate the networks’ performance, its robust-
ness and ability to generalize, we used six different test
data sets, each containing 500 point clouds:

• No Rotation: Generated with the same parameters
as the training set.

• Rotation: Same as no rotation but with additional
random rotation.

• Reduced Points: Same as no rotation but contain-
ing only 50% of the points.

• Noise (low/high): Same as no rotation but with
added low (µ = 0,σ = 0.5, noise low) and high
(µ = 0,σ = 1.5, noise high) Gaussian noise.

• More Primitives: Same as no rotation but with an
increased minimum primitive count of 40.

The data generation was fully automated and took 5
days on the system described in Section 6.1. Please
note that instead of the usual generator output (a CSG
tree), a point cloud sampled from it was used here.
Table 2 lists the results. PointNet++ performs best by
far on all test data sets which makes it the preferred can-
didate for further research on enhanced primitive fitting
pipelines. Figure 12 shows the result of an exemplary
point cloud segmentation for all evaluated networks.

Figure 12: Segmentation results of example point
clouds. (left: PointNet, middle: PointNet++, right:
PointCNN). Red points indicate classification errors,
blue points denote correctly classified points.

Test set Metric PointNet PointNet++ PointCNN
No rotation Acc 42.91 99.46 36.32

IoU 18.66 98.73 15.28
Rotation Acc 39.15 93.41 34.41

IoU 16.27 80.38 14.55
Red. points Acc 42.83 99.45 34.25

IoU 18.59 98.34 13.51
Noise low Acc 42.88 99.47 35.23

IoU 18.70 98.65 14.80
Noise high Acc 42.72 99.30 35.23

IoU 18.67 97.54 15.06
More prim. Acc 43.21 99.60 42.16

IoU 19.32 99.43 19.88

Table 2: Results of PointNet, PointNet++ and
PointCNN on the different test sets (Accuracy/IoU).

A possible explanation for the very strong performance
of PointNet++ might be its approach of separating the
point cloud into local regions first. Using a density
adaptive layer, hierarchical features are then extracted
in a next step. This seems to be working especially well
for the task of classifying single, isolated primitives
which are located in regions of otherwise low point den-
sity. This is a task in which the other networks show
particularly low performance. The approach Point-
Net++ takes also proves to be robust against noise and
it shows good generalization performance when the test
set differs from the training set.

Figure 13: Extracted CSG tree for the giraffe model
with 5 clusters (see first column in Figure 16).

7 CONCLUSION & FUTURE WORK
In this paper, we described a flexible and fast genera-
tor framework for creating primitive-based abstractions
of triangle meshes. The proposed pipeline’s output is
a CSG tree which is extracted by a Genetic Algorithm.
As an intended use case, we presented an evaluation of
deep primitive segmentation networks which use train-
ing and test sets created by the generator.

ISSN 1213-6972
Journal of WSCG 
http://www.wscg.eu Vol.27, No.1, 2019

23



Next steps include the integration of PointNet++ as a
semantic clustering tool, replacing the currently used k-
means approach. In addition, more sophisticated meth-
ods for primitive fitting like RANSAC [SWK07] could
further improve resulting visual quality.

8 REFERENCES
[BM92] P. J. Besl and N. D. McKay. A method for

registration of 3-d shapes. IEEE Trans-
actions on Pattern Analysis and Machine
Intelligence, 14(2):239–256, Feb 1992.

[CFG+15] Angel X. Chang, Thomas A. Funkhouser,
Leonidas J. Guibas, Pat Hanrahan, Qi-
Xing Huang, Zimo Li, Silvio Savarese,
Manolis Savva, Shuran Song, Hao Su,
Jianxiong Xiao, Li Yi, and Fisher Yu.
Shapenet: An information-rich 3d model
repository. CoRR, abs/1512.03012, 2015.

[FE17] Jonas Freiknecht and Wolfgang Effels-
berg. A survey on the procedural genera-
tion of virtual worlds. Multimodal Tech-
nologies and Interaction, 1(4):27, 2017.

[FFPF18] Markus Friedrich, Sebastian Feld, Thomy
Phan, and Pierre-Alain Fayolle. Accelerat-
ing evolutionary construction tree extrac-
tion via graph partitioning. In Proceed-
ings of WSCG International Conference
on Computer Graphics, Visualization and
Computer Vision, 2018.

[HSS17] Karl Haubenwallner, Hans Peter Seidel,
and Markus Steinberger. ShapeGenetics:
Using Genetic Algorithms for Procedu-
ral Modeling. Computer Graphics Forum,
36(2):213–223, May 2017.

[KMJ+18] Sebastian Koch, Albert Matveev, Zhong-
shi Jiang, Francis Williams, Alexey Arte-
mov, Evgeny Burnaev, Marc Alexa, Denis
Zorin, and Daniele Panozzo. ABC: A big
CAD model dataset for geometric deep
learning. CoRR, abs/1812.06216, 2018.

[LBSC18] Yangyan Li, Rui Bu, Mingchao Sun,
and Baoquan Chen. PointCNN: Convo-
lution on x-transformed points. CoRR,
abs/1801.07791, 2018.

[Llo82] Stuart P. Lloyd. Least squares quantization
in PCM. IEEE Transactions on Informa-
tion Theory, 28:129–137, 1982.

[pol] Poly. https://poly.google.com/. Accessed:
2019-02-01.

[QSMG16] Charles Ruizhongtai Qi, Hao Su, Kaichun
Mo, and Leonidas J. Guibas. Point-
net: Deep learning on point sets for 3d
classification and segmentation. CoRR,
abs/1612.00593, 2016.

[QYSG17] Charles Ruizhongtai Qi, Li Yi, Hao Su,
and Leonidas J. Guibas. Pointnet++: Deep
hierarchical feature learning on point sets
in a metric space. CoRR, abs/1706.02413,
2017.

[Ric73] A. Ricci. A constructive geometry for
computer graphics. The Computer Jour-
nal, 16(2):157–160, 1973.

[RMGH15] Daniel Ritchie, Ben Mildenhall, Noah D
Goodman, and Pat Hanrahan. Control-
ling procedural modeling programs with
stochastically-ordered sequential monte
carlo. ACM Transactions on Graphics
(TOG), 34(4):105, 2015.

[SGL+18] Gopal Sharma, Rishabh Goyal, Difan Liu,
Evangelos Kalogerakis, and Subhransu
Maji. CSGNet: Neural shape parser for
constructive solid geometry. 2018.

[SSG+18] Adam Summerville, Sam Snodgrass,
Matthew Guzdial, Christoffer Holmgård,
Amy K Hoover, Aaron Isaksen, Andy
Nealen, and Julian Togelius. Procedural
content generation via machine learning
(pcgml). IEEE Transactions on Games,
10(3):257–270, 2018.

[SWK07] Ruwen Schnabel, Roland Wahl, and Rein-
hard Klein. Efficient RANSAC for point-
cloud shape detection. Computer graphics
forum, 26(2):214–226, 2007.

[TKS+13] Olivier Teboul, Iasonas Kokkinos, Loic
Simon, Panagiotis Koutsourakis, and
Nikos Paragios. Parsing facades with
shape grammars and reinforcement learn-
ing. IEEE transactions on pattern analy-
sis and machine intelligence, 35(7):1744–
1756, 2013.

[TLL+11] Jerry O Talton, Yu Lou, Steve Lesser,
Jared Duke, Radomír Měch, and Vladlen
Koltun. Metropolis procedural modeling.
ACM Transactions on Graphics (TOG),
30(2):11, 2011.

[WSK+14] Zhirong Wu, Shuran Song, Aditya Khosla,
Xiaoou Tang, and Jianxiong Xiao. 3d
shapenets for 2.5d object recognition
and next-best-view prediction. CoRR,
abs/1406.5670, 2014.

[ZYY+] Chuhang Zou, Ersin Yumer, Jimei Yang,
Duygu Ceylan, and Derek Hoiem. 3D-
PRNN: Generating Shape Primitives with
Recurrent Neural Networks.

ISSN 1213-6972
Journal of WSCG 
http://www.wscg.eu Vol.27, No.1, 2019

24



(a) Elephant. (b) Giraffe. (c) Drill. (d) Wolf. (e) Cowboy. (f) Kettlebell. (g) Key.

Figure 14: All used models (©Poly by Google, CC-BY-License).

Figure 15: Extracted CSG tree models of the elephant model with different cluster sizes and blending strengths.

Figure 16: Extracted CSG tree models of the giraffe model with different cluster sizes and blending strengths.

ISSN 1213-6972
Journal of WSCG 
http://www.wscg.eu Vol.27, No.1, 2019

25



   

ISSN 1213-6972
Journal of WSCG 
http://www.wscg.eu Vol.27, No.1, 2019

26


	A37-full
	A41-full
	A61-full
	A73-full
	A89-full
	INTRODUCTION
	NONLINEAR ANISOTROPIC DIFFUSION FILTERS
	DIFFUSION STOPPING CRITERIA
	STOPPING CRITERION PROPOSED
	EXPERIMENTAL RESULTS
	2D Case
	Original Images

	3D Case

	CONCLUSIONS

	B05-full
	B17-full
	B67-full
	C02-full
	C17-full
	1 Introduction
	1.1 Problem Statement
	1.2 Approach and Contributions

	2 Related Work
	2.1 Reachability Maps
	2.2 Focus+Context for Map Visualization

	3 Visualization Approach
	3.1 Requirements and Preliminaries
	3.2 Conceptual Overview
	3.3 Image-based Isochrone Generation
	3.4 Mask Generation Stage
	3.5 Color Mapping and Compositing

	4 Results and Discussion
	4.1 Isochrone Evaluation
	4.2 Rendering Performance
	4.3 Limitations and Future Research

	5 Conclusions

	C37-full
	C43-full
	C61-full
	D02-full
	D07-full
	D13-full
	D17-full
	D61-full
	Introduction
	Related Work
	Backbone Architecture
	Triplet Loss

	Methodology
	Triplet Loss Background
	Dynamically Weighted Euclidean Distance
	Channel Attention Feature Embedding

	Experiments
	Evaluation Protocol
	Comparison with Baseline Methods
	Comparison with State of the Arts

	Conclusion
	REFERENCES

	2019-Journal-1-with-DOI.pdf
	A37-full
	A41-full
	A61-full
	A73-full
	A89-full
	INTRODUCTION
	NONLINEAR ANISOTROPIC DIFFUSION FILTERS
	DIFFUSION STOPPING CRITERIA
	STOPPING CRITERION PROPOSED
	EXPERIMENTAL RESULTS
	2D Case
	Original Images

	3D Case

	CONCLUSIONS

	B05-full
	B17-full
	B67-full
	C02-full
	C17-full
	1 Introduction
	1.1 Problem Statement
	1.2 Approach and Contributions

	2 Related Work
	2.1 Reachability Maps
	2.2 Focus+Context for Map Visualization

	3 Visualization Approach
	3.1 Requirements and Preliminaries
	3.2 Conceptual Overview
	3.3 Image-based Isochrone Generation
	3.4 Mask Generation Stage
	3.5 Color Mapping and Compositing

	4 Results and Discussion
	4.1 Isochrone Evaluation
	4.2 Rendering Performance
	4.3 Limitations and Future Research

	5 Conclusions

	C37-full
	C43-full
	C61-full
	D02-full
	D07-full
	D13-full
	D17-full
	D61-full
	Introduction
	Related Work
	Backbone Architecture
	Triplet Loss

	Methodology
	Triplet Loss Background
	Dynamically Weighted Euclidean Distance
	Channel Attention Feature Embedding

	Experiments
	Evaluation Protocol
	Comparison with Baseline Methods
	Comparison with State of the Arts

	Conclusion
	REFERENCES


	2019-Journal-2-with_DOI.pdf
	A37-full
	A41-full
	A61-full
	A73-full
	A89-full
	INTRODUCTION
	NONLINEAR ANISOTROPIC DIFFUSION FILTERS
	DIFFUSION STOPPING CRITERIA
	STOPPING CRITERION PROPOSED
	EXPERIMENTAL RESULTS
	2D Case
	Original Images

	3D Case

	CONCLUSIONS

	B05-full
	B17-full
	B67-full
	C02-full
	C17-full
	1 Introduction
	1.1 Problem Statement
	1.2 Approach and Contributions

	2 Related Work
	2.1 Reachability Maps
	2.2 Focus+Context for Map Visualization

	3 Visualization Approach
	3.1 Requirements and Preliminaries
	3.2 Conceptual Overview
	3.3 Image-based Isochrone Generation
	3.4 Mask Generation Stage
	3.5 Color Mapping and Compositing

	4 Results and Discussion
	4.1 Isochrone Evaluation
	4.2 Rendering Performance
	4.3 Limitations and Future Research

	5 Conclusions

	C37-full
	C43-full
	C61-full
	D02-full
	D07-full
	D13-full
	D17-full
	D61-full
	Introduction
	Related Work
	Backbone Architecture
	Triplet Loss

	Methodology
	Triplet Loss Background
	Dynamically Weighted Euclidean Distance
	Channel Attention Feature Embedding

	Experiments
	Evaluation Protocol
	Comparison with Baseline Methods
	Comparison with State of the Arts

	Conclusion
	REFERENCES


	Untitled



