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Introduction
The statistical process control (SPC) is widely 
used in industry. Its aim is to achieve process 
stability and improve capability through the 
reduction of variability and it is included for 
example in the Six Sigma or Lean Six Sigma 
methodologies. The control of attribute data 
represents a considerable part of it. Until 
recently, the same approach was used to 
monitor variables or attributes data. In this 
approach, subgroups of items are taken 
from a process and sample characteristics 
are plotted in a control chart to see whether 
their variation is only random or whether it is 
affected by an assignable cause. The presence 
of such cause is indicated by exceeding the 
control limits that are based on the sample 
characteristic distribution.

When items are classifi ed as conforming 
or nonconforming, the proportion or the count 
of nonconforming units in a process (fraction 
nonconforming) is traditionally monitored by 
a p chart or np chart. Due to new manufacturing 
technologies and concepts, many processes 
are of such a high quality that the fraction 
nonconforming or the probability of observing 
a nonconforming unit is very small. This 
probability is a parameter of the background 
binomial distribution and the size of the 
subgroups would have to be enormously large 
to enable the normal approximation, on which 
the computation of control limits is based.

The impossibility to accomplish such 
conditions has the following consequences: 
real properties of a chart such as the average 
run length (ARL) or the risk of false signal  
differ from those assuming a normal distribution 
and the lower control limit of a p chart is located 
at zero and does not enable the recognition 
of the process improvement. Moreover, the 
appearance of a p chart containing most zero 
points is inappropriate. Consequently, the 

concept based on the sample characteristics is 
no longer useful for high-quality processes.

Several alternatives based on the Bernoulli 
process rather than on the normal approximation 
have been recently presented. These methods 
assume continuous inspection. But not 
necessarily 100% items must be inspected. For 
example Reynolds and Stoumbos (1999) admit 
a situation when “the production rate is higher 
than the inspection rate”, Szarka and Woodall 
(2011) also mention an interval sampling 
when the items are inspected at scheduled 
periods. Bourke (2001) emphasizes that “the 
pattern of the sampling inspection can be quite 
haphazard without causing any diffi culty” for the 
performance of the control chart he had studied.

In the Bernoulli process, random values 
xi = 0 or xi = 1, i = 1, 2, …, express whether an 
inspected item is conforming or nonconforming, 
respectively. The in-control state of a process 
is defi ned by a constant probability p0 of an 
occurrence of a nonconforming item. Usually 
a sustained shift to the out-of-control state is 
considered; the process repetitively produces 
units at level p0 until it suddenly shifts to an 
unacceptable level p and remains at this level 
until a remedial measure is taken. Especially 
the situation p > p0 must be detected as 
soon as possible and sometimes a minimum 
unacceptable value for p is given. Sometimes 
the inverse inequality p < p0 may be of 
interest, too, because it indicates a process 
improvement.

In the new approach, the number of units 
Yi being inspected until the r-th nonconforming 
one has been observed is followed, where 
r ≥ 1. Either the geometric (for r = 1) or the more 
general negative binomial distribution of Yi are 
assumed. Apart from the Shewhart-type charts 
based on these two distributions (often called 
CCC or CCC-r charts) the CUSUM or EWMA 
charts can be constructed.
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The control limits of the CCC and CCC-r 
charts are the probability limits; they are 
constructed directly as percentiles for a given 
risk of false signal .

Cumulative sum (CUSUM) charts use 
information from all the prior observations (in 
this case the run lengths Yi defi ned above) and 
they are considered to be an effi cient alternative 
to the Shewhart chart when small process shifts 
are of interest. Usually r = 1 is considered and 
the corresponding CUSUM chart is called 
a geometric (or CCC) CUSUM.

Exponentially weighted moving average 
(EWMA) charts are also based on all the prior 
observations and have a similar effi ciency as 
the CUSUM charts. 

Numerous authors studied effi ciency of 
these control charts (see further) but only few 
case studies have been published, see (Chang 
& Gan, 2001) or (Di Bucchianico et al., 2005)

In this paper the CCC-r charts and the 
geometric CUSUM chart are analyzed. The 
aim of the paper is to compare the CCC-r 
and geometric CUSUM charts by their speed 
of detecting an upward shift in the fraction 
nonconforming when they are applied to a 
process with the target fraction nonconforming 
of the order of 100 ppm. Both types of charts are 
then applied to a real process of the electronic 
assembly that has become a basis for the 
study. To our best knowledge no study dealing 
with such a small fraction nonconforming 
together with the low risk of false alarm has 
been published yet.

1. Control Charts Description
For our comparative analysis we have chosen 
three types of the control charts based on 
the Bernoulli process: the CCC, CCC-r and 
CCC-CUSUM charts. Their theoretical basis 
will be described in this section.

1.1 CCC Chart
The CCC chart was designed by Calvin (1983) 
and further studied and expanded by Goh 
(1987), Bourke (1991) or Xie et al. (1995). The 
name CCC stands for the cumulative count 
of conforming units, but more frequently, the 
variable Y that is monitored includes also the 
immediately following nonconforming unit. 
Other names such as the conforming run length 
CRL in (Wu, 2000) or run-length RL1 in (Bourke, 
1991) can be met in literature. We consider the 
latter case but we will use the inaccurate but 

more known name CCC in our paper.
Variable Y follows the geometric distribution 

G(p) with the probability function

1( ) (1 )   yf y p p , y = 1, 2, ..., (1)

where p is the probability of observing 
a nonconforming unit in any inspection. The 
centreline of the CCC chart corresponds to the 
median of the geometric distribution

, (2)

and the two-sided probability control limits (the 
upper control limit UCL and the lower control 
limit LCL) are based on the chosen risk of false 
alarm α (Xie et al., 2002):
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As these limits are highly asymmetric, a log-
scale is sometimes used (see for instance Xie 
et al., 2002).

As soon as a nonconforming unit is observed, 
the value Yi is plotted on the chart and counting 
starts again from zero. The interpretation of 
this control chart is quite different from the 
interpretation of the conventional Shewhart 
p chart: the point above UCL indicates the 
probable process improvement while the 
point below LCL shows the probable process 
deterioration.

When only an upward shift in the process 
fraction nonconforming is of interest, the one-
sided lower control limit is given by

 ln 1
ln(1 )





LCL

p  
. (4)

For the conventional Shewhart or CUSUM 
charts, when both the sample sizes and the 
sampling intervals are equal, the average run 
length ARL can be used to assess the effi ciency 
of a chart. It represents the expected number 
of samples before the fi rst signal occurs. This 
measure is inappropriate with charts based 
on the Bernoulli process. The observations Yi 
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correspond to different numbers of inspected 
units and this fact must be taken into 
consideration. That is why another measure 
has been introduced. Reynolds and Stoumbos 
(1999) use the average number of observations 
to signal ANOS that represents the expected 
number of inspected items to the signal. 
The average time to signal ATS, the average 
number inspected ANI, the average number 
of items sampled ANIS are different names for 
the same measure used in Wu et al. (2000), 
Bourke (1991) and Chang and Gan (2001), 
respectively. In our paper we use the acronym 
ANOS, or ANOS0 for the in-control process with 
fraction nonconforming p0.

1.2 CCC-r Chart
To improve the sensitivity of detecting small 
upward shifts in the fraction nonconforming, 
the chart based on r successive run lengths 
has been developed. Bourke (1991) fi rst 
considered RL2 chart for r = 2 with the moving 
sums RL2 = Yi-1 + Yi for i = 2, 3, ..., but later 
the separated sums Y1 + Y2 , Y3 + Y4 etc. were 
used, see e.g. (Wu et al., 2001). More general 
case 2r   is considered in Xie et al. (1999), 
Kaminsky et al. (1992), Xie and Goh (1997). 
Often r values of 2 or 3 are recommended, see 
Wu et al. (2000) or Schwertman (2005). Ohta 
et al. (2001) constructed an economic model 
to fi nd the best value of r. All these charts are 
based on a negative binomial distribution of 
the monitored variable. Common name for 
these charts is the CCC-r chart, although other 
names may appear, e.g. SCRL chart in Wu et 
al. (2000).

The cumulative count of units until the r-th 
observed nonconforming unit follows a negative 
binomial distribution with the probability function

1
( ) (1 )

1
 

   
r y ry

f y p p
r

,
 

y = r, r + 1, r + 2,... 
(5)

Assuming that the probability of 
a nonconforming unit is p, the two-sided control 
limits and the centerline are determined by 
solving the following equations (see Chen & 
Cheng, 2010):
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When only an upward shift is followed, the 
one-sided lower control limit must satisfy the 
equation

1
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for the specifi ed risk of false signal α. The 
interpretation of the CCC-r chart is similar to the 
CCC chart interpretation.

With an increasing value of parameter r the 
CCC-r chart is more sensitive to small upward 
shifts in p. But on the other hand more and more 
Bernoulli observations are needed to obtain a 
point in the chart and therefore the inspection 
cost increase (see e.g. Ohta & Rahim, 2001). 
For that reason it is necessary to set the optimal 
parameter r. 

1.3 Geometric CUSUM Chart
The geometric CUSUM chart was proposed 
by Bourke (1991). It is based on the schemes 
introduced in (Page, 1954) that can be 
expressed by

1max(0, )  
  i i iS S Y K , (10)
1min(0, )  
  i i iS S Y K , i = 1, 2, ... 

These schemes can be used to detect 
downward or upward shifts in a distribution of 
Yi. If variables Yi follow a geometric distribution 
and the process deteriorates, i.e. if the fraction 
nonconforming p increases, values of Yi less 
than K- predominate and 

iS  becomes more 
and more negative. As soon as 

iS  drops under 
the specifi ed limit H- for some i, an out-of-control 
signal is given. The value of H- determines the 
chart performance, i.e. ANOS0 and ANOS. The 
more negative it is, the longer the time to signal.

To avoid the negative values of 
iS , the 

lower Page scheme is often presented in the 
form 1max(0, )  

  i i iS S Y K . Here the 
original expression given by (10) is used, with 
an omitted minus sign in the upper index. 
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Values of the CUSUM statistic are then zero or 
negative and the lower limit H is negative.

When a shift from in-control p0 to a higher 
value p is to be detected, the minimum value p1 
that is considered to be inappropriate must be 
chosen. The level of the fraction nonconforming 
is acceptable for p ≤ p0 , and unacceptable for 
p ≥ p1. As a matter of fact, hypotheses H0: p = p0 
versus H1: p = p1 are tested. Using the Wald 
sequential probability test and the geometric 
distribution given by (1), the reference value K 
is

1 0

0 1

0

1

(1 )ln
(1 )

1ln
1








p p
p pK p

p

. (11)

Frequently S0 = 0
 
is used but a head-start 

can be chosen to detect an initial out-of-control 
state quickly (see Bourke, 1991).

The determination of the lower limit H is 
somewhat complicated. When the Markov chain 
approach is used, the number of H transient 

states is quite large and computational problems 
arise. Bourke (1991) suggests approximating 
the geometric distribution by an exponential 
distribution, grouping states into a substantially 
less number of categories and then using an 
approach for a continuous variable based on 
transitions among the categories by Brook 
and Evans (1972). Reynolds and Stoumbos 
(1999) introduced the corrected diffusion 
approximation and presented formulas for the 
Bernoulli CUSUM chart, which is closely related 
to the geometric CUSUM chart:
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*
BH  can be obtained from (12) by means of 

the Excel function Goal Seek.
Once the parameter HB of the Bernoulli 

CUSUM chart has been found, the parameter 
HG of the geometric CUSUM chart can be 
expressed as (Szarka & Woodall, 2012):

HG = – m(HB–1). (13)

In this paper, the lower limit H was set at fi rst 
approximately using the approach by Reynolds 
and Stoumbos (1999), and then adjusted by 
means of simulations:
1. For a specifi ed value of ANOS0, an 

approximate value of the limit HB of the 
Bernoulli CUSUM that is implicitly included 
in the formula (12) was calculated and the 
corresponding value of the limit HG of the 
geometric CUSUM was determined from (13).

2. The value of HG was refi ned iteratively 
through simulations so that the resulting 
ANOS0 is as close to the specifi ed value 
as possible. It means that run lengths Yi for 
i = 1, 2, ..., from G(p0) were generated and 
the CUSUM characteristic Si was calculated 
as well as the cumulative sum of run lengths 
(or the number of Bernoulli observations) 
NOSi. As soon as Si decreased under the 
lower limit H for some i = I, the simulation 
was interrupted and NOSI was stored. 
This cycle was repeated 10,000 times, i.e. 
ANOS0 was estimated as an average from 
10,000 NOS values. Then the value of HG 
was modifi ed and another 10,000 cycles 
were performed. This procedure was 
repeated until the nearest possible value 
to the theoretical ANOS0 was attained. The 
fi nal value H of the parameter obtained 
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by this iterative way was used in the 
subsequent simulations.

2. Aspects of the Control Chart 
Performance Assessment

When the performance of different types of 
control charts is to be compared, a suitable 
criterion must be chosen. It is common to 
compare the effi ciency of charts that have 
roughly equal ANOS0 (see e.g. Reynolds & 
Stoumbos, 1999; Wu et al., 2000).

In the Shewhart-type charts, the probability 
of a signal at the moment when a nonconforming 
unit has been observed depends only on the 
length of the current run, however, the value 
of the CUSUM statistic is affected by the past 
history of the process. Therefore the zero-state 
and steady-state analysis is distinguished at 
the CUSUM chart if ANOS is examined, see 
e.g. (Szarka & Woodall, 2011; 2012). In the 
zero-state analysis a shift is supposed to be 
present when the process monitoring begins. 
The steady-state analysis is based on the 
assumption that a large number of conforming 
units were inspected before a shift occurred.

In addition, the moment of the process 
shift (the change point) affects ANOS in charts 
based on the conforming counts. The steady-
state fi xed-shift model assumes that the shift 
occurs immediately after a nonconforming item 
is found. Wu and Spedding (1999) were the fi rst 
to point out the problem in the CCC chart and 
considered the alternative steady-state random-
shift model, when a shift may occur at any time 
during monitoring. The time to the change point 
is assumed to follow an exponential distribution 
(Wu et al., 2000) or a uniform distribution 
(Stoumbos & Reynolds, 1997). The random 
shift model is further considered in Wu et al. 
(2001) or Bourke (2006).

A number of comparative studies were 
performed. In Bourke (1991) the RL2 chart and 
the geometric CUSUM were compared and 
the zero-state ANOS was determined. The 
in-control fraction nonconforming p0 was 0.01 
and the ANOS curves showing dependence on 
the fraction nonconforming p up to 15p0 were 
displayed for a chosen design of the geometric 
CUSUM chart. The CCC-3 chart and the 
geometric CUSUM chart (and np chart) with the 
random-shift model were considered in Wu et 
al. (2000). Small in-control p0 between 0.0001 
and 0.00065 were assumed, the specifi ed p1 
for the upward shift detection ranged from p0 

to 10p0 and only ANOS(p1) was tabulated. 
Chang and Gan (2001) compared the CCC 
chart and the geometric, Bernoulli and binomial 
CUSUM charts. The zero-state and the case 
p0 = 0.0001, p1 = 0.0003 were considered. The 
ANOS values were tabulated for p up to 10,000 
p0. The RL2 (or CCC-2) chart and the geometric 
CUSUM (apart from the Poisson CUSUM chart 
and the optimal np chart with curtailment) 
were compared in (Wu, 2006). The steady-
state analysis with the random-shift model was 
considered for p0 ranging from 0.005 to 0.02, 
p1 equal to 3p0 or 5p0, and ANOS0 equal to 10/p0 
and 100/p0. More extensive comparisons of the 
moving sums RL2 and the geometric CUSUM 
(among others) can be found in Bourke (2008). 
Here both the initial-state and steady-state 
random-shift analysis were performed. The p0 
values were between 0.002 and 0.01. For 
some specifi ed values of ANOS0 expressed as 
multiples of 1/p0 and ranging between 1,000 
and 50,000 the ANOS(p1) was given, p1 values 
were between 3p0 and 20p0.

In most works the geometric CUSUM chart 
was considered to be the best method that is 
capable to detect an increase in p more quickly 
than other charts, except for very large shifts, 
when the ANOS in the CCC-r charts was smaller. 
The conclusions in Wu et al. (2000) were rather 
different; the higher quickness of the SCRL 
(CCC-3) chart was sometimes manifested 
even for smaller shifts. The difference may be 
caused by the fact that both the downward and 
upward shifts were considered in the study. 
As the surprising fi nding concerned the value 
of p0 similar to ours, the comparison with our 
results may be of interest.

2.1 Estimation of ANOS 
for CCC-CUSUM Chart

Three scenarios mentioned above were 
considered: zero state, fi xed-shift steady state, 
and random-shift steady state. The shift of the 
fraction nonconforming was represented by the 
change from p0 to p. The moment of the change 
depended on a scenario.

a) Zero state
The process shift occurred immediately. All 
observations came from the process with the 
fraction nonconforming p, i.e. all generated 
observations followed the geometric distribution 
G(p).
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b) Steady state, fi xed shift
Sometimes the necessity of a large number of 
in-control observations is emphasized when 
the steady-state model is to be analyzed. For 
example, Szarka and Woodall (2012) use 5,000 
observations from G(p0) before a shift occurs. 
This requirement seems to be worthless with 
respect to the random in-control variation of 
the CUSUM statistic. Here another method 
was used. The number of observations from 
G(p0) was much smaller and not fi xed, but it 
was restricted by the limit of 50,000 Bernoulli 
observations. Geometric observations Yi from 
G(p0) were generated and at the same time, their 
cumulative sum was recorded. As soon as the 
cumulative sum exceeded the predetermined 
value of 50,000 for some i = I, the YI value 
was cancelled and the change point was set 
immediately after I  1 observations from G(p0). 
All subsequent observations were from G(p).

c) Steady state, random shift
Now the change point was set after a fi xed number 
of 50,000 inspected items, i.e. randomly between 
two subsequent observed nonconforming items. 
Again, observations from G(p0) were generated. 
As soon as their cumulative sum exceeded the 
value of 50,000 for some i = I, only a part ZI of 
this YI obtained as a difference between 50,000 
and the prior cumulative sum was taken into 
account. Then instead of YI the sum ZI + Yi+1 
was considered, where Yi+1 came from G(p). All 
subsequent observations were from G(p).

In both cases b) and c) false signals before 
the process shift were excluded; when the 
CUSUM statistic exceeded the lower limit H, the 
current observation was cancelled and another 
one was generated.

2.2 Calculating ANOS for CCC-r Chart
The values of ANOS for the CCC-r charts 
were determined according to the formula

( )



rANOS

p F LCL  
(14)

where F(LCL) can be set using equation (9).

The theoretical value ANOS0 for p = p0 is

0
0 




rANOS
p  

(15)

In the case of the steady-state random-
shift model, ANOS for CCC-r was estimated 
using simulation as follows: the run lengths Yi 
from G(p0) and G(p) were generated as in c) 
of the previous section 2.1 but now sums of 
three (or two) subsequent observations were 
calculated and after each new triple (pair) the 
sum was compared with the corresponding 
lower control limit LCL. The cumulative sum of 
run lengths NOSi was calculated as before and 
as soon as the current sum of three (two) run 
lengths decreased under LCL for some i = I, the 
simulation was interrupted and NOSi was stored. 
To arrange the same sequence of observations 
as in 2c), the part of the former procedure for the 
geometric CUSUM with cancelling observations 
that led to false alarms was used.

3. Comparative Statistical Analysis
Based on the experience with the manufacturing 
process which is described in detail in Section 4, 
the in-control p0 = 0.0002 and the out-of-control 
p1 = 5p0 were chosen. Three values of the risk 
α were considered: 0.0027, 0.005, and 0.01. 
The semi-economic model by Brodecká (2013) 
resulted in the CCC-3 chart for α = 0.0027 and 
the CCC-2 chart for α equal to 0.005 or 0.01. The 
lower limits for both types are displayed in Tab. 1.

The fraction nonconforming p ranged from 
0.0004 to 0.003. The values of ANOS for all 
charts are shown in Tab. 2, 3 and 4 and in 
Fig. 1, 2 and 3.

CCC-r Geometric CUSUM
α r LCL HG H

0.0027 3 1,354 -7,171 -7,179
0.0050 2 518 -5,901 -5,904

0.0100 2 744 -5,044 -5,061

Source: own

Tab. 1: Lower limits of CCC-r chart and geometric CUSUM chart
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CUSUM CCC-3

p zero fi xed random traditional random
0.0002 5,557,857 5,557,857 5,557,857 5,566,358 5,557,857

0.0004 116,645 115,474 117,576 424,203 245,093

0.0006 24,954 24,727 25,981 101,870 64,965

0.0008 11,867 11,675 12,637 39,066 26,577

0.0010 7,624 7,482 8,204 19,332 14,328

0.0012 5,561 5,446 6,076 11,226 9,088

0.0014 4,390 4,286 4,837 7,271 6,379

0.0016 3,613 3,519 3,994 5,097 4,885

0.0018 3,075 2,996 3,419 3,791 3,904

0.0020 2,674 2,606 2,979 2,952 3,201

0.0022 2,366 2,308 2,643 2,385 2,726

0.0024 2,123 2,073 2,365 1,984 2,370

0.0026 1,923 1,873 2,146 1,690 2,124

0.0028 1,757 1,714 1,972 1,468 1,912

0.0030 1,618 1,580 1,820 1,297 1,743

Source: own

CUSUM CCC-2

p zero fi xed random traditional random
0.0002 1,999,842 1,999 842 1,999,842 2,006,896 1,999,842

0.0004 77,281 77,227 79,117 268,458 273,083

0.0006 19,729 19,481 20,728 85,071 86,770

0.0008 9,850 9,707 10,639 38,361 40,558

0.0010 6,372 6,197 6,996 20,980 22,525

0.0012 4,694 4,554 5,197 12,961 14,153

0.0014 3,702 3,594 4,133 8,708 9,781

0.0016 3,053 2,972 3,442 6,220 7,189

0.0018 2,595 2,538 2,940 4,655 5,480

0.0020 2,260 2,208 2,572 3,613 4,308

0.0022 2,003 1,955 2,282 2,889 3,527

0.0024 1,798 1,756 2,059 2,366 2,971

0.0026 1,639 1,596 1,881 1,978 2,552

0.0028 1,503 1,460 1,725 1,682 2,216

0.0030 1,388 1,348 1,596 1,451 1,933

Source: own

Tab. 2: ANOS for the geometric CUSUM (three models of the shift occurrence) 
and the CCC-3 chart (formula (14) and simulation), α = 0.0027

Tab. 3: ANOS for the geometric CUSUM (three models of the shift occurrence) 
and the CCC-2 chart (formula (14) and simulation), α = 0.005
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CUSUM CCC-2

p zero fi xed random traditional random
0.0002 1,000,268 1,000,268 1,000,268 1,000,511 1,000,268

0.0004 57,341 57,770 59,423 137,798 140,892

0.0006 16,510 16,264 17,619 44,930 47,776

0.0008 8,482 8,280 9,270 20,832 22,720

0.0010 5,558 5,425 6,190 11,707 13,244

0.0012 4,092 3,987 4,608 7,426 8,661

0.0014 3,223 3,148 3,676 5,120 6,101

0.0016 2,662 2,599 3,050 3,750 4,632

0.0018 2,249 2,202 2,625 2,875 3,699

0.0020 1,958 1,919 2,297 2,285 3,028

0.0022 1,728 1,694 2,039 1,869 2,527

0.0024 1,545 1,508 1,830 1,565 2,157

0.0026 1,394 1,363 1,665 1,336 1,894

0.0028 1,269 1,242 1,524 1,160 1,676

0.0030 1,168 1,142 1,406 1,021 1,504

Source: own

Tab. 4: ANOS for the geometric CUSUM (three models of the shift occurrence) 
and the CCC-2 chart (formula (14) and simulation), α = 0.01

Fig. 1: ANOS curves for the CCC-3 and the geometric CUSUM chart, α = 0.0027

Source: own
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Fig. 2: ANOS curves for the CCC-2 and the geometric CUSUM chart, α = 0.005

Source: own

Fig. 3: ANOS curves for the CCC-2 and the geometric CUSUM chart, α = 0.01

Source: own
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As for the geometric CUSUM chart, ANOS 
for the steady-state fi xed-shift model is smaller 
than for the zero state as could be expected, 
because on average, the CUSUM statistic is 
less than zero and nearer to the lower limit H 
then. Obviously, the differences between the 
two models are negligible and so only the fi xed-
shift and random-shift models are used in the 
subsequent analysis. ANOS for the random-
shift model is always larger than that for the 
fi xed-shift model, which follows from the fact 
that the run length covering the change point 
tends to be larger than the run length starting 
from the change point.

The CCC-2 chart shows the similar 
performance as to the differences between the 
fi xed-shift and random-shift models. With the 
CCC-3 chart, the relation between ANOS for 
the random-shift model and that for the fi xed-
shift model is reverse for p up to 0.0016.

To compare the CCC-r and geometric 
CUSUM charts, the effi ciency ratio

CCC r

CUSUM

ANOS
ANOS  

(16)

was used. Both the fi xed- and random-shift 
models were considered (Tab. 5). They 
confi rm that in terms of ANOS, the geometric 
CUSUM chart performs better than the 
corresponding CCC-r chart for p up to 0.0022, 
i.e. approximately up to more than 2p1. Larger 
shifts may be detected more quickly by CCC-r 
chart, depending on ANOS0 which is related to 
the risk α, and the type of the shift considered.

The results are consistent with those 
discussed in the literature sources mentioned 
above. The superiority of the CCC-r chart over 
the geometric CUSUM chart for small shifts and 
small p0 claimed in Wu et al. (2000) was not 
confi rmed.

p
α = 0.0027

r = 3
α = 0.005

r = 2
α = 0.01

r = 2
fi xed random fi xed random fi xed random

0.0002 1.002 1.000 1.004 1.000 1.000 1.000

0.0004 3.674 2.085 3.476 3.452 2.385 2.371

0.0006 4.120 2.500 4.367 4.186 2.763 2.712

0.0008 3.346 2.103 3.952 3.812 2.516 2.451

0.0010 2.584 1.747 3.385 3.220 2.158 2.140

0.0012 2.061 1.496 2.846 2.723 1.863 1.880

0.0014 1.697 1.319 2.423 2.367 1.626 1.660

0.0016 1.448 1.223 2.093 2.089 1.443 1.519

0.0018 1.266 1.142 1.834 1.864 1.306 1.409

0.0020 1.133 1.075 1.637 1.675 1.191 1.318

0.0022 1.033 1.032 1.478 1.545 1.103 1.239

0.0024 0.957 1.002 1.348 1.443 1.038 1.178

0.0026 0.902 0.990 1.240 1.357 0.981 1.137

0.0028 0.857 0.970 1.152 1.284 0.934 1.100

0.0030 0.821 0.958 1.076 1.212 0.894 1.070

Source: own

Tab. 5: Effi ciency ratio ANOS CCC-r / ANOS CUSUM
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4. Application to the Assembling 
Process

CCC-r and CCC-CUSUM charts were applied 
to the highly capable process of the Exhaust 
Gas Recirculation (EGR) pressure sensor 
manufacturing. This sensor detects the exhaust 
gas fl ow in the EGR valve which is a part of 
the combustion motor that enables to reduce 
nitrogen oxide (NOx) emissions. The electronic 
assembling of the EGR sensor consists of 
several subprocesses and operations. The last 
but one subprocess is the manual application 
of the protective gel. This subprocess is highly 
capable with in-control fraction nonconforming 
p0 = 0.0002 (200 ppm). Every sensor is visually 
inspected – it means that continuous 100% 
inspection is performed. This subprocess was 
chosen for the application of SPC based on the 
Bernoulli process to obtain information about 
changes in the fraction nonconforming. The 
problem of controlling this process is solved in 
Brodecka (2013). She considered CCC-r chart 
and proposed a new semi-economic model 
which is based on the economic design of 
CCC-r chart described in Ohta et al. (2001) but 
is easier to apply in practice. The algorithm of 
the new semi-economic model is based on the 
minimization of the overall cost of producting 

nonconforming units, inspection and testing, 
and parameter r is the only optimized parameter.

Three values of the risk of false signal α were 
considered in our application and therefore three 
control charts for each type were constructed. 
For α = 0.0027, the parameter r = 3 was set as 
the optimal one using the semi-economic model. 
Separated sums of three observed successive 
run lengths are plotted in Fig. 4. The lower limit 
of 1,354 was not exceeded.

For α = 0.005 and α = 0.01 the parameter 
r = 2 was set as the optimal one and the CCC-2 
chart with the limits of 518 and 744, respectively, 
was applied. Now, the sums of two successive 
run lengths were plotted (Fig. 5). The lower limit 
LCL was not exceeded in any of the cases.

Fig. 6 shows the geometric CUSUM chart. 
Three variants of the lower limit H (-7,179; -5,904;
-5,061) for three values of α are displayed. 
For α = 0.01, the signal occurred at the 50th 
observed run length, in the case of α = 0.005 at 
the 51st observation.

The results obtained correspond to the 
analysis described in Section 3. An upward shift 
in fraction nonconforming was likely to occur 
sometime after the 45th nonconforming unit 
was found. However, the shift was not large 
and therefore the 16th and 17th observation in 

Fig. 4: CCC-3 chart for the gel-application process control

Source: own
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Fig. 5: CCC-2 chart for the gel-application process control

Source: own

Fig. 6: CCC-CUSUM chart for the gel-application process control

Source: own
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Fig. 4 referring to the 46th to 51st nonconforming 
units, or the 23rd observation in Fig. 5 referring 
to the 45th and 46th nonconforming units only 
approached the lower limit. The CUSUM 
chart for higher values of α responded to this 
shift after the occurrence of several other 
nonconforming units.

Conclusions
In this paper, the effi ciency of two types of CCC 
charts was studied using the expected number 
of inspected items to the signal ANOS. Two 
scenarios of upward shifts were considered: 
the fi xed-shift and random-shift model. The 
latter model is considered more realistic, but 
the differences in ANOS are not too great, 
especially for α of 0.005 or 0.01.

Since the response of the CUSUM chart 
to an upward shift in fraction nonconforming 
is much faster than that of the CCC-r chart 
for shifts up to ten times the in-control fraction 
nonconforming, the superiority of the geometric 
CUSUM was confi rmed. For example, 
considering the random-shift model, α = 0.005 
(or ANOS0 around 2,000,000) and the shift from 
p0 = 0.0002 to p1 = 0.001, for which the CUSUM 
chart was designed, the signal can be expected 
after approximately 7 nonconforming units on 
average compared with 23 nonconforming units 
with the CCC-2 chart that must be discovered 
before the signal occurs. In this case, the 
production of another 16 nonconforming units 
may be prevented, representing approximately 
70% saving cost for repair or replacement of 
nonconforming units.

The response to larger shifts is comparable 
for both types of charts. Therefore, when larger 
shifts are to be avoided, the CCC-r chart may 
be preferred due to its easier construction.

This paper was elaborated in the frame 
of the specifi c research project SP2018/109 
and SP2019/62, which has been solved at the 
Faculty of Materials Science and Technology, 
VŠB - TU Ostrava with the support of Ministry of 
Education, Youth and Sports, Czech Republic, 
and the Skoda Auto University project.
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Abstract

COMPARATIVE STATISTICAL ANALYSIS OF SELECTED CONTROL CHARTS 
FOR HIGHLY CAPABLE PROCESSES
Eva Jarošová, Darja Noskievičová

When a high-quality process is to be controlled by 100% inspection and yes-no decision is 
employed, several types of charts come into account, e.g. CCC, CCC-r or geometric CUSUM 
(CCC-CUSUM). The aim of the paper is to examine performance of these charts so that a suitable 
one can be chosen for a given process. The charts are compared according to the quickness with 
which the upward shift in the fraction of nonconforming items is detected. The average number 
of observations to signal (ANOS) instead of the usual average run length (ARL) is determined. 
While ANOS for CCC or CCC-r charts can be easily calculated based on a geometric or a negative 
binomial distribution, its computation is quite diffi cult in the case of CCC-CUSUM chart. The 
corrected diffusion (CD) approximation was used to determine ANOS and the results were verifi ed 
by Monte Carlo simulation. Zero-state and steady-state (both fi xed-shift and random-shift model) 
analyses were performed to take different scenarios of the process shift occurrence into account. 
CCC-3 or CCC-2 and CCC-CUSUM charts were compared. The order r for CCC-r chart was 
chosen as an optimal value for the given process based on the semi-economic model suggested in 
Brodecká (2013). Our study revealed that for in-control p0 equal to 0.0002 the CCC-CUSUM chart 
performs best especially for shifts around the pre-specifi ed out-of-control fraction nonconforming. 
The CCC-r chart may be comparable or even better in detecting larger shifts. The results of the 
comparative study were utilized for the choice of the most suitable and best performing control chart 
to control the high-yield process producing ERG (Exhaust Gas Recirculation) sensors. Comparisons 
of CCC-r and CCC-CUSUM charts can be found elsewhere in literature, but conclusions seem to 
be rather inconsistent. To our best knowledge no study dealing with such small in-control fraction 
nonconforming together with the low risk of false alarm has been published yet. The choice of 
CUSUM’s parameters and consequent values of ANOS can help practitioners who need to control 
high-quality processes.

Key Words: CCC chart, CCC-r chart, CCC-CUSUM chart, ANOS, zero-state scenario, fi xed 
shift steady-state scenario, random shift steady-state scenario, simulation.
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