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Polymeric hydrogels are interesting materials for biomechanics applications. These materials 

can be used as carriers for the cultivation of different types of biological materials. Hydrogels 

exist in many species, differing in chemical composition. The chemical composition, together 

with internal topology and external geometry, defines mechanical properties of the polymer 

hydrogels. The topology of hydrogels is a porous structure. The shape and size of the pores is 

affected by their production. It is shown that the mechanical properties of the inner structure 

significantly affect to cell production. Therefore, there is area for research into the mechanical 

properties of hydrogels. The goal of the whole research is to be able to design a topology so 

that the resulting mechanical properties are optimal for biological materials cultivation. This 

article deals with FEM modeling of hydrogel as homogeneous body without internal topology. 

This involves problems with the non-standard behavior of the material model over models 

commonly used in machine practice. 

Hydrogels are very soft and flexible materials with a very great strains. Therefore, their 

material models are hyperelastic. The second significant feature of hydrogels is swelling. 

During production, they absorb the solvent. Mostly water. When swelling, the volume changes 

as long as a balance is established between the cohesive forces that hold the solvent in the 

material and the elastic forces that prevent the volume change of the body. This phenomenon 

is described by changing Gibbs' free energy, such as Flory-Huggins' formula (2). The overall 

change in Gibbs' free energy is the sum of the mixing component (2) and the elastic component 

(3). The elastic component represents any hyperelastic model. The material model based on the 

Gents’ model of material with limited stretchability was used. For simplicity, we do not 

distinguish between Gibbs' free energy and Helmholts' free energy. 
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Parameters 𝜙1 and 𝜙2 are the volume fractions of solvent and gel. Volume fractions can be 

expressed by volume ratio. The volume ratio is a deformation function. Parameters λi are 

stretch. Other parameters are constants. Overall, the change of Gibbs' free energy is a function 

of only the main deformations. With this material model, it is possible to work with 

conventional continuum mechanics. 

When computing, there is a problem with model convergence. Because the description 

contains a swelling component, the model changes the volume. With free swelling, the volume 

increases by about 350% and causes a deformation of about 65%. This of course depends on 

input parameters. Such large deformations must result in the first increment, and this causes 

numerical instability. The biggest problem is when the body is statically undefined. Another 
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problem is the shape of the function (1). For some combinations of input parameters it may not 

be convex. And it may contain more extremes. Such a case is shown in Fig. 1. The solution is 

not clear and you need to select the correct minimum Gibbs’ free energy and avoid the 

maximum. 

 
Fig. 1. Change of Gibbs’ free energy for free isotropic swelling 

The model shown in the figure shows 3 solutions for free isotropic swelling. One is the 

maximum and is unstable, the other two need to choose one. The easiest way is to choose a 

solution with lower energy (greater stability), or use the Maxwell construction for choice. 

Swelling deformations are large. The calculation may not converge. This can be solved by 

the correct estimation of nodal displacements in numerical solution. This estimate determines 

which solution will be found. Nodal displacements estimates are simple for static defined tasks 

only. For general tasks, it is a very complicated estimate to carry out because it must respect 

kinematic boundary conditions. Therefore, another method is used. The calculation is made 

with another material model that does not show swelling. With this model, it is not a problem 

to calculate the task with all the boundary conditions. After applied boundary conditions, the 

material model switches to the desired swelling. The switching of the material model can be 

controlled incrementally. The incremental scheme will ensure convergence. In the case of a 

model with multiple solutions, the non-swelling model switches to swelling with a clear 

solution. This solution is consistent with one of the final material model solutions for the 

isotropic task. This ensures convergence to the chosen solution - choice of solution. And in the 

last phase it switches to the final material model. 

The paper describes the possible procedure of FEM calculation of hydrogel materials. The 

basis of the calculation is to perform a calculation with a common material model. Only after 

the application of boundary conditions is the material model incrementally changed to the 

desired. This procedure reduces the risk of non-convergence. In addition, this allows you to 

choose a solution to which the model converges, if they exist. 
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