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RECENT PROGRESS IN NUMERICAL METHODS
FOR EXPLICIT FINITE ELEMENT ANALYSIS

R. Kolman1, J. Kopačka 2, J. Gonzalez3, D. Gabriel4, S.S. Cho5, J. Plešek6, K.C. Park7

Abstract: In this paper, a recent progress in explicit finite element analysis is discussed. Properties and behaviour of classical
explicit time integration in finite element analysis of elastic wave propagation and contact-impact problems based on penalty
method in contact-impact problems are summarized. Further, stability properties of explicit time scheme and the penalty
method as well as existence of spurious oscillations in transient dynamics are mentioned. The novel and recent improving and
progress in explicit analysis based on a local time integration with pullback interpolation for different local stable time step
sizes, bipenalty stabilization for enforcing of contact constrains with preserving of stability limit for contact-free problems and
using a direct inversion of mass matrix are presented. Properties of the employed methods are shown for one-dimensional cases
of wave propagation and contact-impact problems.
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1 Introduction
Although explicit finite element analysis has a long tradition and it is widely implemented in com-

mercial FEM software and used in real applications, it is still necessary to improve this technology and
develop new methods and procedures. In many cases, implementations of explicit finite element method
are based on linear finite element type with reduced one-point integration and hourglass stabilization,
with lumped (diagonal) mass matrix and the central difference method in time [1, 2]. There are some
shortcomings in addressing wave propagation in solids and modelling of contact-impact problems, where
the penalty method is often used [3]. The list of disadvantages of explicit finite element analysis with
traditional methods could be mentioned as motivation for improving:

• existence of spurious oscillations of stresses for computations with small time step sizes,

• loss of accuracy in computations of waves propagation in heterogeneous materials with different
wave speeds,

• influence of stability limit by the stiffness penalty term for enforcing of contact constrains and
requirement for optimal setting of the stiffness penalty parameter [3].
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2 Explicit time integration in FEM
In this paper, the main attention is paid to explicit time integration in finite element method, for

details see [2, 4]. We shortly introduce the basic idea of this method for solving of a dynamic system.
After finite element discretization [5], the equation of motion has the form

Ma = fext − fint − fcont (1)

where M is the mass matrix, a is the vector of nodal accelerations, fext, fint and fcont are the vectors
of external, internal and contact forces, respectively. In the following text, u, v = u̇ and a = ü mark
the vectors of nodal displacements, velocities and accelerations. In linear theory, the internal forces are
computed as fint = Ku, where K is the stiffness matrix. We assume the finite element method with
linear shape functions and lumped mass matrix given by row-summing of terms.

In this paper, we present a predictor-corrector form of the central difference method in time. The
predictor-corrector form of the central difference method [2] to solve a general dynamic problem (1) with
geometrical and material non-linearities is briefly listed below.
Predictor phase:

ũn+1 = un + ∆tu̇n +
∆t2

2
ün

˙̃u
n+1

= u̇n +
∆t

2
ün (2)

¨̃u
n+1

= 0

The system of equations of motion constituted at the time tn+1 = tn + ∆t to solve:

Mn+1(ũn+1, tn+1)∆¨̃u
n+1

= fext(t
n+1)− fint(ũ

n+1, ˙̃u
n+1

, tn+1)− fcont(ũ
n+1, ˙̃u

n+1
, tn+1) (3)

Corrector phase:

un+1 = ũn+1

u̇n+1 = ˙̃u
n+1

+
∆t

2
∆¨̃u

n+1
(4)

ün+1 = ∆¨̃u
n+1

Here ∆¨̃u
n+1

marks the update acceleration vector and ∆t is the time step size. Quantities with the
superscript n has a meaning of the approximation of quantities at the time tn, e.g. un ≈ u(tn) and so
on. In the foregoing relationships, the predictor quantities are marked by the tilde.

Generally, explicit methods are only conditionally stable; the time step size ∆t has to satisfy a
stability limit in the form ∆t ≤ ∆tc, where ∆tc is the critical time step size. The critical time step size
securing the stability of the central difference method for a linear undamped system takes the form [6]

∆tc =
2

ωmax
(5)

where ωmax being the maximum eigenfrequency of the system, related to the generalized eigen-value
problem Ku = λMu, taking ω2 = λ, see [1, 6].

In real multi-dimensional cases, the critical time step size ∆tc could be exactly determined with
respect to Eq (5), but it is practically impossible to compute ωmax for a large eigen-value problem of
linearized system at each time step. On the other hand, we know, by Fried’s theorem [7], that the
maximum frequency ωmax is bounded by ωemax obtained as the maximum eigen-value taken over all the
elements in a FE mesh. In wave propagation problem in solids, the stable time step size satisfying the
stability limit is approximately equal to the time required to run longitudinal elastic wave through the
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smallest finite element constituting a FE mesh [2]. For some element types and uniform FE meshes,
the critical time step size is estimated under elastic wave propagation rule of thumb ∆tc = αH/cL [1],
whereH is the characteristic length of the smallest element of a FE mesh and α is a parameter depending
on finite element type and its shape.

An example of stress wave propagation in an elastic bar for different time step sizes defines by the
Courant number Co = ∆tcL/H is shown in Fig. 1. Here, one can see spurious oscillations in stress
distributions in a bar, which are a by-product of dispersive behaviour of the finite element method. For
the critical Courant number Co = 1, the results for the linear finite element with the lumped mass matrix
show disperionless behaviour.
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Figure 1: Example of stress wave propagation in an elastic bar for different time step sizes.

3 Recent numerical methods in explicit time integration
In the following text, the recent modifications and novel methods in explicit time integration applied

on problems of wave propagation and contact-impact problems of solids are mentioned and presented as
follows:

• Explicit time integration with local time stepping [8]

• Bipenalty method in contact-impact problems [9]

• Direct inversion of mass matrix [10]

3.1 Explicit time integration with local time stepping

In this section, we present a special time stepping process for wave propagation in heterogeneous
media, where different wave speeds at different positions of a body are assumed. The presented numeri-
cal method for wave propagation in heterogeneous materials is based on the algorithm presented by Park
in [11, 12]. This scheme has been reformulated into the two-time step scheme in [13]. The used time
stepping process is consisted of following two computational steps for the predictor-corrector form for
numerically elimination of spurious stress oscillations close to wavefront and dispersive properties of the
finite element method [14] as follows:

STEP 1. Pull-back integration with local stepping:
1a) Integration by the central difference scheme with the local (elemental) critical time step size ∆tcre

for each finite element at the time tn+cr = tn + ∆tcre

(un+cr
fs )e = une + ∆tcre vne +

1

2
(∆tcre )2ane (6)
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(an+cr
fs )e = (Me)

-1
[
fn+cr
e −Ke(u

n+cr
fs )e

]
(7)

The elemental critical time step size ∆tcre is set as ∆tcre = he/ce or ∆tcre = 2/ωemax, where ωemax is
the maximum eigen-angular velocity for the e-th separate finite element. Here Ke and Me are elemental
stiffness and mass matrices.

1b) Pull-back interpolation of local nodal displacement vectors at the time tn+1 = tn + ∆t with
α = ∆t/∆tcre , β1(α) = 1

6α
(
1 + 3α− α2

)
, β2(α) = 1

6α
(
α2 − 1

)
(un+1

fs )e = une + ∆tcre vne + (∆tcre )2β1a
n
e + (∆tcre )2β2(an+cr

fs )e (8)

1c) Assembling of local contributions of displacement vector from Step 1b.

un+1
fs = [LTL]-1LT(un+1

fs )e (9)

where L is the assembly Boolean matrix.

(a) (b)

(c) (d)

Figure 2: a) Scheme of a free-fixed graded elastic bar under shock loading. Stress distributions in
a graded elastic bar under shock loading obtained by b) the central difference method, c) the Park method
without local stepping, d) the Park method with local stepping. Corresponding Courant numberCo = 0.5
and θ = 0.5.

STEP 2. Push-forward integration with averaging:
2a) Push-forward predictor of displacement vector at the time tn+1 = tn + ∆t by the central differ-

ence scheme with the time step size ∆t.

un+1
cd = un + ∆tvn +

1

2
∆t2an (10)
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2b) Averaging of the total displacement vectors at the time tn+1 = tn + ∆t from Steps 1c and 2a for
given θ = [0, 1].

un+1 = θun+1
fs + (1− θ)un+1

cd (11)

2c) Evaluation of acceleration and velocity nodal vectors at the time tn+1 = tn + ∆t.

an+1 = (M)-1 [f(tn+1)−Kun+1
]

(12)

vn+1 = vn +
1

2
(an + an+1) (13)

An example of results of numerical solution of elastic wave propagation problem in a graded bar is
presented in Fig. 2a. The elastic modulus of a bar is linearly distributed along the bar, where E1 = 16
Pa and E2 = 1 Pa. The density is constant along the bar. The presented explicit scheme with local time
stepping produces results without spurious oscillations, but only small cusps on the corners of stress
discontinuities can be observed, see Figs. 2. Further, the improvement of stress spurious oscillations is
evident with comparison of the scheme with and without local stepping, because the nominated local
stepping process respects local critical time step at each material point.

3.2 Bipenalty method in finite element method for contact-impact problems

In the work [9], the improving of the penalty method based on the bipenalty modification in appli-
cation into dynamic contact problems has been presented with the stability analysis. In the bipenalty
method, beside the additional penalized stiffness term as in the penalty method corresponding to pene-
tration of bodies, an additional penalized mass term is added and contact residual forces are computed
as

R̂c(û, ¨̂u) = M̂p
¨̂u + K̂pû + f̂p (14)

where

M̂p =

∫
Γc

εmH(g)NNT dS K̂p =

∫
Γc

εsH(g)NNT dS f̂p =

∫
Γc

εsH(g)Ng0 dS (15)

Here, M̂p is the additional elemental mass matrix due to inertia penalty, K̂p is the additional elemental
stiffness matrix due to stiffness penalty, û is the vector of displacements of contact pairs and f̂p is the part
of the elemental contact force due to the initial gap g0; g is the gap function; H(g) is the Heaviside step
function for prescribing active or inactive contact constraints; εm and εs are mass and stiffness penalty
parameters; Γc is the contact surface between bodies; the matrix N represents an operator from the
displacement field u to the gap function gN in the contact

gN = NTu + g0. (16)

The particular form of the matrix N follows from the used contact discretization.
We now consider the time integration of the semi-discretized system (1) in the framework of the

central difference method

(Mt + Mt
p)
ut+∆t − 2ut + ut−∆t

∆t2
+ (Kt + Kt

p)ut + f tp −Rt = 0 (17)

Assuming that displacements are known at time t−∆t and t, one can resolve unknown displacements at
time t+ ∆t, where ∆t marks the time step size. Note, that the matrices Mt

p and Kt
p are time-dependent

because they are associated with active contact constraints.
The stability graph for several combination of mass and stiffness penalty parameters is presented in

Fig. 3, for more details see [9]. One can see the stability limit for the penalty limit and the stability limit
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Figure 3: Bipenalized Signorini problem: Dependence of the critical Courant number Cr on the dimen-
sionless stiffness penalty βs for selected dimensionless penalty ratios r [9].

rapidly decreases with larger value of stiffness parameters. On the other side, the stability limit for a
special setting of ratio of stiffness and mass penalty parameters is not affected by the stiffness penalty
term, see line for r = 1 in Fig. 3. It means that the stability limit of a contact problem using the bipenalty
stabilization is the same as stability of a contact-free problem. Further, the stability limit can be estimated
before activation of contact constrains during computations.

Stabilized explicit time integration scheme for contact-impact problems is mentioned in depth. In the
work of Wu [15], the fully explicit time integration scheme with stabilized technique for contact-impact
problems has been published and tested. The mentioned time integration scheme takes the following
flowchart with splitting bulk and contact accelerations:
• Given ut, u̇t−∆t/2, f text
• Compute accelerations of predictor phase ütpred = M−1(f text −Kut)

• Mid-point velocities of predictor phase u̇
t+∆t/2
pred = u̇t−∆t/2 + ∆tütpred

• Displacements of predictor phase ut+∆t
pred = ut + ∆tu̇

t+∆t/2
pred

• For given ut+∆t
pred analyze contact, compute gap vector g and contact forces fcont = −Kpu

t+∆t
pred +f0

p

• Compute accelerations of corrector phase ütcorr = (M + Mp)−1(fcont)

• Compute total accelerations üt = ütpred + ütcorr

• Mid-point velocities of corrector phase u̇t+∆t/2 = u̇
t+∆t/2
pred + ∆tütcorr

• New displacements of corrector phase ut+∆t = ut + ∆tu̇t+∆t/2

• For given ut+∆t analyze contact, compute gap vector g and contact forces f t+∆t
cont = −Kpu

t+∆t +
f0
p

• t→ t+ ∆t

In this two-time step scheme, bulk accelerations in the predictor phase ütpred are computed only
for internal and external forces without information about contact constrains and they are computed
with the standard lumped mass matrix as for a contact-free problem. After updating of velocities and
displacements, contact constraints are analyzed and contact forces fcont are computed. For these contact
forces, contact accelerations in the corrector phase ütcorr are computed with the additional penalized
mass matrix. After that, the both parts of accelerations are taken together.

In Figs. 5, one can see time histories of contact forces between two elastic bars from Fig. 4 com-
puted by the stabilized explicit scheme. In this cases, the bipenalty method with the optimal ratio of
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Figure 4: A scheme of an one-dimensional impact of two bars with different lengths.

stiffness and mass penalty parameters were used. The time histories are presented for several values of
dimensionless stiffness penalty parameter as follows βs = {0.25; 0.25e2; 0.25e4; 0.25e8}. One can see
that results for βs = 0.25 exhibit excellent progress, because this value of βs corresponds to stiffness of
the finite element in contact. On the other hand, the results of the central difference method for higher
value of βs shown significant spurious oscillations of contact forces, where force amplitudes grow up
with the value of stiffness penalty parameter βs. In Fig. 5, the results for the stabilized explicit scheme
are presented for higher values of βs. In principle, for higher βs, one can see the contact force histories
independent of βs. Further, the stabilized explicit scheme produces robust and stable results for contact
forces for a large range of stiffness penalty parameters including extremely higher values.

Figure 5: Time history of contact force for impact of two bars with different lengths - the stabilized
explicit method with Courant number C = 0.5 for βs = {0.25; 0.25e2; 0.25e4; 0.25e8} and optimal
bipenalty stabilization setting.

3.3 Direct inversion of mass matrix

In the explicit time integration is needed to solve the system (1) in each time step. One can solve the
system using the inverse mass matrix M-1 as

a = M-1F, (18)
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Figure 6: Bar vibration problem. Frequencies for the free-free (left) and fixed-free (right) cases. Com-
parison of exact frequencies and numerical frequencies obtained with: lumped mass-matrix (LMM),
average mass-matrix (AMM) and the proposed inverse mass-matrix (RMM).

but in the case of off-diagonal (e.g. consistent) mass matrix and a large problem the process is not effec-
tive. If one solve a linear problem, the inversion of M is evaluated only at the beginning of computational
process.

Approximation of inversion of the mass matrix is called the reciprocal mass matrix and in works of
Tkachuk [16] and Gonzalez [10], it has been suggested to evaluated as

M = AC-1AT ⇒M-1 = A-1CA-T (19)

where A is the global projection matrix and C is the global reciprocal mass matrix. Often, the matrix
A is chosen as diagonal and after that the inversion is a trivial issue and only inversion of elemental
mass matrices in needed. In the work [10], the element-by-element evaluation of the reciprocal mass
matrix (RMM) is presented and tested in free vibration problems. In Fig. 6, the comparison of frequency
spectra is depicted. One can see very good agreement of spectrum for the reciprocal mass matrix and the
averaged mass matrix (a linear combination of consistent and lumped mass matrix).

4 Conclusions
The three recent and novel methods for improving of explicit time integration in finite element analy-

sis have been presented and tested in one-dimensional problems. In the future, the work will be extended
into mutli-dimensional problems and all presented methods will be taken together for modelling of com-
plex geometrical and material dynamic problems with contact constrains with friction.
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