
Using Intrinsic Surface Geometry Invariant  
for 3D Ear Alignment 

 
S.Taertulakarn1,2,  

1 Faculty of Engineering,  
King Mongkut’s Institute of 

Technology Ladkrabang, Thailand 
10520 

2 Faculty of Allied Health Sciences, 
Thammasat University, 

Pathumtani, Thailand 12121.  
Email: somchatt@yahoo.com 

 
 
 

P.Tosranon  
 
Faculty of Applied Sciences, King 

Mongkut’s University of 
Technology North Bangkok, 

Thailand 10800 
Email: ptn@kmutnb.ac.th 

 
 

 
 

 

C.Pintavirooj 
                    

Faculty of Engineering, King 
Mongkut’s Institute of Technology 

Ladkrabang, Thailand 10520  
Email: 

chuchartpintavirooj@gmail.com 
 
 
 

ABSTRACT 
In this study we derive novel surface fiducial point’s detection that is computed from the differential surface 
geometry. The fiducial points are intrinsic, local, and relative invariants, i.e., they are preserved under similarity, 
affine, and nonlinear transformations that are piecewise affine. In our experiment, the fiducial points, computed 
from high order surface shape derivatives, are used in a non-iterative geometric-based method for 3D ear 
registration and alignment. The matching is achieved by establishing correspondences between fiducial points 
after a sorting based on a set of absolute local affine invariants derived from them. Experimental results showed 
that our purposed surface feature is suitable for further application to 3D ear identification because its robustness 
to geometric transformation. 

Keywords— 3D ear registration, Surface geometric invariant, Zero torsion 

1. INTRODUCTION  
Biometrics is an emerging technique that involves the 
use of physiological and behavioral characteristics to 
determine the identity of an individual. At the present 
time, the physical biometrics, for example 
fingerprints, facial patterns and eye retinas, are 
developed and enhanced. In this work, we are 
interested to identify humans by ear structure.   The 
ear anatomy has a lot of unique structures which do 
not change with changing event or age. In addition, 
compared with the other biometrics techniques, the 
ear data can be registered in a non-invasive way 
[Che07a, Bur00a].  
Geometric Invariance is a central problem in visual 
information system, computer vision, pattern 
recognition image registration, and robotics. The term 
invariance is referred to the geometrical properties of 
the relative distance among a collection of static 
spatial features of an object [Gov99a-Pin13a].  

 
Our study is focused on registration techniques for 
biomedical 3D images, Surface registration.  Surface 
registration is a vital step in medical imaging 
literature. Various techniques have been proposed for 
surface registration from which the following general 
methodology can be defined. Firstly, the landmarks or 
specific structures are extracted from each image to 
be registered. Secondly, correspondence between the 
extracted landmarks is established. Thirdly, choice of 
geometric transformation, such as rigid 
transformation affine transformation or polynomial 
transformation, is entertained. Fourthly, the geometric 
transformation parameters are estimated. Lastly, the 
two surfaces are aligned. Surface registration methods 
can be categorized into polynomial transformation 
[Sin09a], similarity-based [Woo98a] surface-based 
[Bes92a], energy-based [Por94a] and fiducial point -
based registration [Kan81a-Ibr98a].   
In this paper, we consider the problem of 3D ear 
alignment in the different orientations. The data is 3D 
and obtained using a laser scanner. Our approach is 
based on the differential geometry of the surface, 
consists of two processes, start from computing 
intrinsic local fiducial points on the surface and on 
curves that reside on the surface. A fast non-iterative 
alignment is purposed in our study that establishes 
reliable correspondences between fiducial points 
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without any prior knowledge of the overall nonlinear 
global transformation that took place after the 
changes. This is achieved through the construction of 
a set of ordered novel absolute local affine invariants. 
With enough fiducial points collection as 
correspondents, the overall nonlinear transformation 
is computed and the ear before and after the 
transformation are aligned. Finally, this paper deals 
with the computation of the fiducial points that are 
based on high order surface shape and curve 
derivatives, which are honorable for their sensitivity 
to measurement errors, round off error and distortion.  
This paper is organized as the following: - Section 2 
introduces the intrinsic local geometric fiducial points 
on surfaces. Section 3 shows how to construct a set of 
absolute invariants derived from these fiducial points 
and how to manage the correspondences between two 
partial sets of fiducial points residing on two surfaces 
that are transformations of one another. The 
experimental results on robustness of surface 
geometric invariance applied compared with the 3D 
ear are described in section 4. The finally, discussions 
and conclusions are given in section 5. 

 

2. GEOMETRIC INVARIANT SHAPE 
MEASURE  
2.1  Parabolic Contour  Points 
Local  and  invariant  intrinsic  properties  are 
presented by the Frenet frames [8], which states that 
for a curve r(s) parameterized by arc length s, the 
tangent t(s) = r(1) (s), the curvature k(s) = r(2) (s),          
the vector b(s) = t(s)x k(s), and the torsion                     
τ(s) = – <r(2)(s), b(1)(s)> determines as a set of local 
coordinates on the curve at each point that completely 
characterizes the curve at that point, where 
r(k)(s)stands the kth order derivative of r with respect to 
s, and x is the cross product operation.  
As we are interested in finding the relative and 
absolute invariant to the affine transformation, we 
observe that since arc length is not preserved under 
the affine transformation, neither t(s) nor b(s) cannot 
be used because they are not relative invariants. We 
seek to find geometric invariance on the surface 
which is intrinsic, local and affine invariant. When a 
surface undergoes an affine transformation, the 
parabolic contours are the affine transformed 
parabolic contours of the original curve, i.e., they are 
preserved. Similarly, the fiducial points residing on 
these contours are also preserved under the affine 
transformation. In this section, we briefly introduce 
theory related to the geometric invariance.  
Parabolic contours are space curves that reside on a 
surface when either one of the two principal 
curvatures, k1 or k2, is zero [Do76a, Mil97a]. In that 
case, the Gaussian curvature (KG = k1 k2), which is 

intrinsic, and vanishes at these points. For a surface, 
represented by the parameterization r(u,v): U ⊂ R2 → 
S, the Gaussian curvature is given by the determinant 
of the second fundamental form parameters [Do76a]    
    

 𝐾𝐺 =  𝑘1𝑘2 ∝ �𝑒 𝑓
𝑓 𝑔�                     (1) 

 
Where 

𝑒 = 〈𝑁, 𝑟(2,0)〉, 𝑓 = 〈𝑁, 𝑟(1,1)〉,𝑔 = 〈𝑁, 𝑟(0,2)〉   
 

𝑁 = 〈𝑟(1,0), 𝑟(0,1)〉, 𝑟(1,0) =
𝜕𝜕
𝜕𝜕

, 𝑟(0,1) =
𝜕𝜕
𝜕𝜕

  
 

𝑟(2,0) =
𝜕2𝑟
𝜕𝑢2

, 𝑟(0,2) =
𝜕2𝑟
𝜕𝑣2

, 𝑟(1,1) =
𝜕2𝑟
𝜕𝜕𝜕𝜕

  

            
The parabolic contours are given by solving 
 
 𝑒𝑒 − 𝑓2 = 〈𝑁, 𝑟(2,0)〉〈𝑁, 𝑟(2,0)〉 − 〈𝑁, 𝑟(1,1)〉 = 0  (2) 
 
The parabolic contours, which are based on the 
Gaussian curvature, are intrinsic [Do76a] and 
preserved under the affine transformation. 
The mean curvature was computed from half of 
Gaussian curvature. 

 

𝐾𝒎 = 1 2⁄ (𝑘1𝑘2)                      (3) 

 

2.2  Zero Volume and Zero torsion Points 
on Parabolic Contour Curves 

Given a parabolic contour curve r(t) we can also 
obtain intrinsic curve points by creating volume 
relative invariants. One such relative affine invariant 
can be had by considering the volume of the 
parallelepiped spanned by the zero, first, and second 
curve derivatives given by the scalar triple product 

𝑣1(𝑡)  =   〈𝑟(0)(𝑡) × 𝑟(1)(𝑡),    𝑟(2)(𝑡)〉          (4) 

Where r(k)(t) is the kth derivative of the curve with 
respect to parameter t. Equation (5) is a relative affine 
invariant when the affine transformation has zero 
translation, i.e., when it is a purely linear 
transformation. Another relative invariant that carries 
in the case of a nonzero translation, is the volume of 
the parallelepiped that is spanned by the first, second, 
and third curve derivatives given by the scalar triple 
product 

𝑣2(𝑡)  =   〈𝑟(1)(𝑡) × 𝑟(2)(𝑡),    𝑟(3)(𝑡)〉         (5) 

 

3. ALIGNING THE SURFACES 
To align two surfaces that we need to establish the 
corresponding fiducial points on the two set of 
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parabolic contours from which we can estimate the 
overall transformation using least squares. To 
establish these correspondences and in the absence of 
the knowledge of the transformation parameters a 
priori, we construct absolute invariants derived from 
the fiducial points residing on any contours. These are 
blind to the transformation and remain unchanged 
before and after the affine transformation.  

3.1 Constructing Absolute Invariant from 
the Fiducial Points  
The set of absolute invariants are constructed from the 
sequence of relative invariants formed by the volumes 
of the parallelepipeds spanned by set of four intrinsic 
surface fiducial points on observed contour.  The 
volume spanned by a set of four points m, n, k and l, 
is given by V(m,n,k,l) = |<rm-rl)x(rn-rl), (rk-rl)>|. 
When the surface is affine mapped, the volume 
Va(m,n,k,l) spanned by the mapped points m, n, k and 
l, relates to  

𝑉𝑎(𝑚,𝑛, 𝑘, 𝑙)  =   𝑑𝑑𝑑{[𝐿]} 𝑉(𝑚,𝑛, 𝑘, 𝑙)           (6) 

To facilitate the process of finding the 
correspondences by reducing to string matching, we 
rearrange the fiducial points in accordance with the 
order described below.   

For a collection of n intrinsic fiducial points, we pick 
an intrinsic surface fiducial point, say point i. By 
using this point as well as the other three points 
selected from the combination �𝑛−1

3
�, we compute the 

volume spanned by theses four vectors. The smallest 
volume out of the �𝑛−1

3
�  computed volumes is 

assigned as the point i relative invariant.  We restart 
the process with the next point and the remaining (n-
2) points excluding the ith point. The process repeats 
until the list is depleted. The order of the intrinsic 
surface fiducial point is then sorted according to 
increasing volume. If both surfaces have n fiducial 
points, the two sequences of volume patches on the 
two surfaces would be.  
�𝑉(1) < 𝑉(2) < ⋯ < 𝑉(𝑛 − 3)&𝑉𝑎(1) < 𝑉𝑎(2) < ⋯ < 𝑉𝑎(𝑛 − 3)� 

where there volume patches are related by 

𝑉𝑎(𝑖)  =  𝑑𝑑𝑑{[𝐿]} 𝑉(𝑘), 𝑘 = 1,2, … ,𝑛 − 3      (7) 

The absolute invariants on the original and 
transformed surface are the defined as the ratio of the 
consecutive volume element in the ordered sequence, 
i.e., 

𝐼(𝑘) = �
𝑉(𝑘)

𝑉�(𝑘 + 1)𝑚𝑚𝑚 (𝑛 − 3)�
� ,𝑘 = 1,2, … ,𝑛 − 3 

 

𝐼𝑎(𝑘) = �
𝑉𝑎(𝑘)

𝑉𝑎�(𝑘 + 1)𝑚𝑚𝑚 (𝑛 − 3)�
� , 𝑘 = 1,2, … ,𝑛 − 3 

(8) 

 

3.2 Establishing Correspondence of the 
Fiducial Points  
In the absence of noise and occlusion, each of Ia(k) 
will have a counter part I(k) with Ia(k)=I(k), with that 
counterpart easily determined through a circular shift 
involving n comparison where n is the number of 
invariants. To allow for noise and distortion, a smaller 
error percentage between counterpart invariants is 
tolerated. The lower the error percentage, the stricter 
the matching is. In this our experiment, an error 
percent of 5% is used. A run length method is applied 
to decide on the correspondences between the two 
ordered set of zero-torsion points. For every starting 
point on the transformed set, this run length method 
computes a sequence of consecutive invariants that 
satisfies |I(k)-Ia(k)| < 0.05 |I(k)| and declare a match 
based on the longest string. Once this correspondence 
is found, these matched fiducial points are used to 
estimate the polynomial transformation. 

 

4. EXPERIMENT AND RESULTS 
The experiments are divided into two parts. In part 
one; we would like to test the robustness of the 
purposed method to ear feature extraction. In this test, 
3D ear cloud point data are subjected. In the second 
part, we would like to test the aligning curvature 
feature of our method.  
 

 
Figure 1.  Process of extracting color-mapped 

images of zero torsion points of surfaces computed 
from Gaussian curvature. 
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A. Feature Extraction 
The experiment of the robustness of the surface 
geometric invariant feature on the 3D ear surface 
extracted from cross-sectional contours to certain 
class of geometric transformation is described in this 
section. The process which shows in Fig.1, is as 
follows: 
        (i) Extract 3D coordinate from a set of dense 3D 
data. 
        (ii) Numerically compute to create the grid on 
the surface 
       (iii) Compute Gaussian curvature. The parabolic 
contours are then derived by approximately solving 
by Equation (2). 
        (iv) Compute Zero torsion points. We obtain 
intrinsic curve points by creating volume relative 
invariants which following by Equation (4, 5). 
 

B. Aligning the Surfaces 
In this process, the experiment is based on real 3D 
scans of the same person taken under different 
orientations. The ear point cloud data is collected in 5 
positions. We elect to use the distance map that 
displays the distance between any point of one surface 
and the closest point on the other surface after 
undoing the transformation to the second surface. The 
two ears taken of the same person at different 
orientations and with two different positions.  
Corresponding fiducial points are found, the affine 
transformation estimated using LSE fitting and the 
two surfaces are then aligned. The alignment is shown 
in Fig. 4 whereas we show the two surfaces before 
and after the alignment in Fig. 2 and 3 respectively. 
The average distance map error after alignment is 
shown in table 1.  

 
 

 
 

Figure 2.  The pre-process of ear alignment  
  

 
 

Figure 3.   The result of ear alignment  
 

 
Figure 4.   The ear alignment in the presence of 

occlusion 

 

 
Error 

Mean STD 
1.908 0.723 

 
Table 1.  Distance map error after alignment in the 

case of occlusion (Unit in mm) 
 
 

5. DISCUSSIONS AND CONCLUSIONS  
In this study, we introduced geometric-based methods 
to perform shape matching by aligning 3D surfaces. 
For the 3D-to-3D alignment, a novel collection of 
surface fiducial points, which are the points on the 
affine-invariant contours, e.g. parabolic contours, 
where the volume of parallelepiped spanned by two 
derivative vectors is zero, are computed. In addition, 
the fiducial points are preserved under affine 
transformations. To establish correspondences 
between the fiducial points on the two shapes, a set of 
absolute invariants were derived based on the 
volumes confined between parallelepipeds spanned 
by sets of the fiducial point quadruplets. Once the 
correspondences were established, the parameters of a 
relevant transformation were estimated and the two 
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surfaces were aligned. The performance of our 
method is demonstrated by the ability to register the 
3D ear data scanned under a host of shape 
transformations, including ones that arise from 
change in ear position. Alignment errors, which were 
found to be within the 3D scanner resolution of 0.8 
mm. This will be particularly relevant to applications 
where there is intra-class variability in the 3D, or due 
to the use of different modalities. 
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