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As soon as I mention this, people tell me about miniaturization, and how far it has

progressed today. They tell me about electric motors that are the size of the nail on your

small �nger. And there is a device on the market, they tell me, by which you can write the

Lord's Prayer on the head of a pin. But that's nothing; that's the most primitive, halting

step in the direction I intend to discuss. It is a staggeringly small world that is below. In

the year 2000, when they look back at this age, they will wonder why it was not until the

year 1960 that anybody began seriously to move in this direction.

Richard Phillips Feynman, 1959 [24]
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Abstract

The submitted dissertation thesis is focused on a theoretical mathematical model describing
contractile activity of skeletal muscles. More speci�cally, the main subject of interest is the
mathematical model of a structure called sarcomere. Sarcomere is traditionally considered
as the basic contractile unit at the lowest level of muscle structural hierarchy (scale of units
of µm). Sarcomere itself is a natural mechanism consisting namely of three specialized
proteins in a shape of �laments - myosin, actin and titin.

Firstly, the basic contractile properties of muscles (sarcomere) are introduced in general.
Considerable part of the thesis is devoted to the description of myosin and its interaction
with actin, where the single myosins as molecular motors are able to develop discrete
movements in a range of units of nm. Further, the protein titin and its role in sarcomere is
described more profoundly. Namely, the important information about currently observed
special properties of this protein is introduced.

On account of mathematical modelling, the thesis follows the classical cross-bridge the-
ory and two sliding �lament theory as developed during 1950s. More concretely, the cross-
bridge theory was proposed and mathematically described in 1957 by A.F. Huxley. In brief,
theoretical models based on those two approaches more or less succeeded in the elucidation
of the nature of isometric contraction (force at constant muscle length) and concentric con-
traction (shortening). Till nowadays, the most challenging part of the mentioned theories
remains the explanation of eccentric contraction (stretch). The another insu�ciently ex-
plained properties of muscle contraction are history-dependent phenomenons namely force
depression following after concentric contraction and force enhancement following after
eccentric contraction.

To summarize the main aims of dissertation thesis, the main goals were to modify and
enhance the classical Huxley's mathematical model according to the latest experimental
results obtained on a single myosin molecule (single cross-bridge) and according to the
experimental results on a single sarcomere. Further on account of the description of eccen-
tric contraction and force enhancement, the pivotal modi�cation is the integration of the
currently discovered special titin properties into classical approaches.

Therefore, one of the main results of the presented thesis is the derived mathematical

three �lament cross-bridge model of skeletal muscle (sarcomere) contraction. Based on
this model, the main goal of the thesis is to show convincing results that the crucial
mechanical properties of muscle contraction have their origin on a sarcomere or more
speci�cally on a half-sarcomere level. In particular, simulations of eccentric contraction
and force enhancement on a half-sarcomere level were performed. Further, the results of
simulation of isometric contraction, concentric contraction, sudden shortening and sudden
stretch are presented. The achieved results are compared to various experimental results as
published in literature. The important conclusion of the thesis is that the results achieved
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by the derived three �lament cross-bridge model might signi�cantly contribute namely to
the explanation of the nature of eccentric contraction and its intrinsic phenomenon called
force enhancement.

keywords: muscle contraction, eccentric contraction, sarcomere, myosin, titin, molecular
motors, Huxley's cross-bridge model, two sliding �lament theory.
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Abstrakt

P°edkládaná diserta£ní práce se zabývá teoretickýmmatematickýmmodelem, který popisuje
kontrakci kosterního svalstva. Hlavním p°edm¥tem zájmu je konkrétn¥ matematický model
struktury nazývané sarkomera. Sarkomera je tradi£n¥ povaºována jako základní funk£ní
jednotka svalové kontrakce na nejniº²í úrovni strukturální hierarchie svalstva (²kála jed-
notek µm). Sarkomera samotná je p°írodní mechanismus, který se skládá p°edev²ím ze t°í
speciálních protein· - myosinu, aktinu a titinu.

V práci jsou nejd°íve obecn¥ popsány základní vlastnosti kontrakce svalu (sarkomery).
Velká £ást práce je v¥nována popisu myosinu a jeho interakci s aktinem, kde jednotlivé
myosiny jakoºto molekulární motory jsou schopny vyvinout diskrétní pohyb v °ádu jed-
notek nm. V následující £ásti práce je podrobn¥ji popsán protein titin a jeho úloha v
sarkome°e. Tato £ást dizertace také obsahuje d·leºité informace o v sou£asné dob¥ po-
zorovaných speciálních vlastnostech tohoto proteinu.

Zp·sob matematického modelování uvedené problematiky vychází z klasické cross-
bridge teorie (cross-bridge theory) a klasické "teorie dvou �lament" (two sliding �lament
theory), které byly navrºeny v padesátých letech 20. století. Cross-bridge teorii konkrétn¥
navrhl a zachytil do matematického modelu A.F. Huxley v roce 1957. Teoretické modely
zaloºené na t¥chto dvou teoriích více £i mén¥ usp¥ly ve vysv¥tlení podstaty izometrické
kontrakce (síla p°i konstantní délce svalu) a koncentrické kontrakce (zkracování svalu). Do
sou£asnosti z·stává obtíºnou £ástí vý²e uvedených teorií vysv¥tlení excentrické (eccentric,
taºení svalu) kontrakce. Dal²í vlastnosti, které nejsou dostate£n¥ vysv¥tleny, jsou jevy
závislé na historii kontrakce. Konkrétn¥ se jedná o niº²í neº o£ekávanou velikost síly (force
depression) následující po koncentrické kontrakci a vy²²í neº o£ekávanou velikost síly (force
enhancement) následující po excentrické kontrakci.

Shrnutí hlavních cíl· dizertace je následující. Hlavním cílem bylo modi�kovat a vylep²it
klasický Huxleyho matematický model vzhledem k aktuálním experimentálním výsledk·m
obrºeným na úrovni jetlivých molekul myosinu (na úrovni jednoho cross-bridge) a vzhle-
dem k experimentálním výsledk·m získaných na úrovni jedné sarkomery. Dal²í d·leºitou
úpravou s ohledem na popis excentrické kontrakce je za£len¥ní nov¥ objevených speciálních
vlastností titinu do klasických teorií.

Jedním z hlavních výsledk· práce je proto odvozený matematický model zaloºený na
cross-bridge teorii, který popisuje kontrakci kosterního svalstva (sakomery) jako interakci
t°í �lament. Na základ¥ tohoto modelu je hlavním cílem diserta£ní práce ukázat p°esv¥d£ivé
výsledky o tom, ºe klí£ové mechanické vlastnosti svalové kontrakce májí sv·j p·vod na
úrovni sarkomery nebo je²t¥ p°esn¥ji na úrovni poloviny sarkomery. P°edev²ím byly prove-
deny simulace excentrické kontrakce a jevu nazývaného force enhancement. Dále jsou v
práci prezentovány výsledky ze simulací izometrické kontrakce, koncentrické kontrakce,
náhlého zkrácení sarkomery (sudden shortening) a náhlého nataºení sarkomery (sudden
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stretch). Výsledky ze simulací byly porovnány s r·znými experimentálními výsledky pub-
likovanými v literatu°e. D·leºitým záv¥rem dizerta£ní práce je, ºe výsledky získané pomocí
odvozeného cross-bridge modelu, který popisuje interakci t°í �lament, mohou podstatn¥
p°isp¥t k vysv¥tlení podstaty excentrické kontrakce a s ní spojeným jevenem nazývaným
force enhacement.

klí£ová slova: svalová kontrakce, excentrická kontrakce, myosin, titin, sarkomera, molekulární
motory, Huxleyho cross-bridge model, two sliding �lament teorie.



6

Resumen

La presente tesis doctoral está centrada en la descripción de un modelo matemático capaz
de predecir la actividad contráctil de músculos esqueléticos, especí�camente la actividad de
su unidad básica denominada sarcómero. El sarcómero es la unidad contráctil del músculo
(en una escala de µm) que a su vez se constituye de tres proteínas �lamentosas: la miosina,
la actina y la titina.

En primer lugar se describe en esta tesis, en términos generales, las propiedades bási-
cas contráctiles de los músculos. Gran parte del texto está centrada en la descripción
de la miosina y su interacción con la actina, donde las estructuras de miosina actúan
como motores moleculares que son capaces de desarrollar movimientos discretos en la es-
cala nanométrica. También se describe con gran profundidad el papel que juega la titina
en el sarcómero, proteína en la que se han observado recientemente ciertas propiedades
especiales.

Respecto a la modelización matemática, la presente tesis se basa en la teoría clásica
de cross-bridge, descrita por el Nobel Sir Andrew F. Huxley, y en la teoría de �lamentos
deslizantes (sliding �lament theory), ambas desarrolladas durante la década de 1950. Mod-
elos matemáticos posteriores que se basan en las dos anteriores teorías han predicho con
éxito tales procesos naturales como la contracción isométrica (fuerza con longitud muscu-
lar constante) o la contracción concéntrica (acortamiento). Sin embargo, hasta hoy en día,
estas teorías fallan en la modelización de la contracción concéntrica (estiramiento) del mús-
culo. Otra de las carencias de estos modelos es la descripción de la de tales propiedades
que dependen de la historia muscular, concretamente depresión de fuerza (force depres-
sion) después de la contracción concéntrica y el desarrollo de fuerzas (force enhancement)
después de la contracción excéntrica.

Los principales objetivos de esta tesis han sido modi�car y mejorar el clásico modelo
matemático descrito por Huxley de acuerdo con los recientes resultados experimentales
sobre la molécula miosina (single cross-bridge) y sobre la unidad básica muscular (sar-
cómero). Considerando la carente descripción de la contracción excéntrica y desarrollo de
fuerzas (force enhacement), la central modi�cación del modelo se basa en la inclusión de
las mencionadas propiedades especiales de la titina dentro del modelo clásico.

Asimismo, uno de los principales resultados de esta tesis doctoral es el desarrollo del
denominado modelo matemático del cruzamiento de tres �lamentos (mathematical three
�lament cross-bridge model) durante la contracción de músculos esqueléticos (sarcómero).
Basándose en este modelo, el principal objetivo de esta investigación yace en la obtención de
resultados convincentes que arrojen luz a que las propiedades mecánicas de la contracción
muscular tienen su origen en su unidad básica, es decir, en el sarcómero. Para ello, se han
realizado simulaciones del modelo sobre la contracción excéntrica y del desarrollo de fuerzas
(force enhancement). De la misma manera se presentan resultados de simulaciones de
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contracción isométrica, contracción concéntrica, rápido acortamiento y rápido estiramiento.
Los resultados obtenidos se comparan con varios resultados experimentados publicados en
la literatura cientí�ca.

La conclusión más importante de esta investigación es que los resultados obtenidos
del modelo matemático desarrollado para esta investigación pueden contribuir signi�can-
temente a la explicación de la naturaleza de la contracción excéntrica y a su fenómeno
intrínseco llamado desarrollo de fuerzas (force enhancement).

Palabras clave: contracción muscular, contracción excéntrica, sarcómero, miosina, titina,
motores moleculares, modelo cross-brigde de Huxley, teoría del deslizamiento de dos �la-
mentos.
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Chapter 1

Introduction and Motivation

The possibility to conduct a directed movement is one of the most striking features of the

living organisms. It can be resolved on a macro-scale level as well as on a micro-scale

and nano-scale level. In a fact, the active movement of all living organisms on the macro-

scale, as we can observe without special equipment, is in summary superposition of the

movements generated at nano-scale level. In the realm of biological nano-world, the source

of an active movement are special proteins called molecular motors - biological engines.

Molecular motors are small mechanisms developed during the millions years of evolu-

tion. They are responsible for intracellular transport, organization of (in) cells, organelle

movements, cell division, mitose, muscle contraction and other physiological processes. It

might be said that these mechanisms are one of the crucial parts that create "life nature"

because their physiological activity fundamentally contributes to the "maintaining of the

life" on a cellular level.

In contrast to macroscopic engines, molecular motors operate mainly at the single

molecule level in Brownian environment, thermodynamically nonequilibrium but isother-

mal conditions [71]. Due to their operating environment which is strongly a�ected by

thermal noise, their features di�er in many properties in comparison to macro-scaled en-

gines. But as a great surprise might be a fact that these small mechanisms has also a lot

of in common with "ordinary" macroscopic engines. Regarding to this comparison, there

24
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can be found biological motors conducting linear translational motion as well as rotational

motion. In comparison to �classical engines�, molecular motors are also cyclic machines.

During their activity, molecular motors undergo speci�ed working cycle. The single molec-

ular motors must go through this cycle and reach again the same initial state before it can

produce work again. Within their working cycle, these biological nanometer-sized motors

consume energy released from chemical reaction to produce mechanical work. On account

of the huge number of living organisms, this results for example in a fact that more energy

is transformed each day by biological engines than by all arti�cial engines including the

cars [97].

The beginning of understanding to molecular motors is strictly connected with the

research on muscles and experiments in physiology. The pivotal results which signi�cantly

contributed to the progress in understanding of molecular motors were achieved during the

1950s in the experiments on striated skeletal muscles. Although that time the terms as

molecular motors were not used, it was already apparent that at the nano-scale level of

biological systems is occurring something, which soon started to attract attention not only

of physiologists but also of specialists in other scienti�c �elds as physic, math, chemistry etc.

As a proof might be that for instance already in 1959, well-known physicist Richard Phillips

Feynman mentioned in his famous talk Plenty of Room at the Bottom [24] the "marvellous

biological systems" as an example and great source of inspiration for technology.

Nowadays, after of almost seventy years of intensive research, with new observation

and measuring techniques, it is possible and feasible to examine these small mechanisms

in more details. During the 1990s, two main techniques were introduced: Optical tweezers

and glass needles. These tools allowed to conduct experiments on single molecules. Further

experiments with atomic force microscope allowed to measure length-force relationships of

proteins in the length range of Å. Therefore, it is now possible to observe and even control

the motion of a single motor-protein molecule under a variety of conditions and with a

high spatial and time resolution [71]. The popularity and the importance of the topic of

molecular motors was also highlighted by the Nobel Prize in Chemistry 2016 awarded to

Jean-Pierre Sauvage, Sir J. Fraser Stoddart and Bernard L. Feringa "for the design and
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synthesis of molecular machines".

Although many types of molecular motors are still being discovered, the most currently

known are the families of: dynein, kynesin, myosin, DNA and RNA polymerases and

helicases [71]. The main subject of interest in the following pages is a molecular motor

from myosin family, concretely molecular motormyosin II. Myosin II molecular motor is the

main propelling engine of all kind of muscles. As an inherent part of musculoskeletal system

and cardiac tissue, the myosin II constitutes with another two functional and structural

proteins actin and titin regular structures called sarcomeres.

Single saromeres are objects at the lowest level of regular organisation of skeletal and

heart muscles. The higher levels of organisation in skeletal and heart muscles are always

basically serially linked sarcomeres into parts called myo�briles. The �nal contractile

activity of the whole muscle is then the superposition of contractile activity of great amount

of sarcomeres in each myo�brile. The various properties of single sarcomeres are therefore

the subjects of the intensive and manifold researches in muscle science. Also due to this

reason, the mechanical properties of a single sarcomere, considered as a mechanism powered

by molecular motor myosin II, are the main subject matter in this submitted thesis.

The presented work is especially devoted to a theoretical mathematical model describing

activity of bunch of myosins II, actins and titins proteins in a single sarcomere. The main

aim of presented work was to show convincing results that the crucial mechanical properties

of muscles have their origin on sarcomere or more speci�cally half-sarcomere level. The

submitted dissertation thesis followed an approach and theories called sliding �lament

theory and especially cross-bridge theory as developed and discussed during the decades

mainly in [48], [51], [54], [56].

In brief, the sliding �lament theory was established during 1950s by two independent

teams leaded by Andrew Fielding Huxley1 and Hugh E. Huxley and their co-workers. The

�rst basic assumption of this theory was (is) that proteins actin and myosin in the shape

of �laments slide relative to one another during contractile activity of sarcomeres. In

1950s, this assumption came directly of microscopy observation, but the exact propelling
1The Nobel Prize in Physiology or Medicine 1963
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mechanism of sliding was still not known. In the later of 1950s, Andrew Fielding Huxley

suggested an idea of a molecular interaction among the contractile proteins based on the

sliding �lament theory. His idea resulted in so called cross-bridge theory which was later

supported by the experiments and persisted as a major explanation of muscle contraction

till nowadays.

In cross-bridge theory approach, there is a strong e�ort to explain the muscle mechanics

out of the processes taking place on the molecular level. The original Huxley's cross-bridge

theory describes the interaction between two main contractile elements in sarcomere which

are represented by two proteins myosin and actin. Myosin and actin molecules, as already

noted above, form a shape of �laments. Along the myosin �laments protrude the speci�c

parts of myosin molecules. These parts of myosin are able to cyclically bind and unbind at

actin �laments and shift actin �laments in the direction to the centre of sarcomere. Active

shifting of actin by myosin is in brief the main principle of muscle shortening - contraction

and muscle force production against the external force. Once the protruding myosin parts

attach at actin, they form transient connection among myosin and actin �laments. These

connection are traditionally and illustratively called cross-bridges, which gave the name to

this theory. Every single cross-bridge is nothing else then the molecular motor myosin II.

The cross-bridge theory and its developed mathematical description can be denoted as a

bridge connecting molecular mechanics with the mechanics of the whole muscle (continuum

mechanics) and with chemical kinetics. The �rst mathematical model related to this theory

was published already in 1957 by its founder A. F. Huxley [48]. Nowadays, his 1957

paper is recognised as a classic work in cross-bridge theory, which helped to uncover and

understand molecular basis of muscle contraction and helped to set the direction of the

muscle research. As the time progressed, the original Huxley's cross-bridge hypothesis and

model were improved into various forms and many of its variations were published as the

research was bringing actual results. But the main idea about the cyclical interaction of

two main contractile proteins actin and myosin remained the same till nowadays.

The classical cross-bridge model involving interaction of two �laments was a long time

considered as a universal tool to clarify and simulate the contractile activity and energetic
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properties of muscles. Many attempts can be found to modify this model for explaining

all physiology related to contraction of the muscles even nowadays. In brief, models based

on the classical cross-bridge theory more or less succeeded in the explanation of concentric

contraction - shortening of the muscles and isometric contraction - force production of

muscles, where the length of muscle is kept constant. Till nowadays, among the most

challenging part of cross-bridge theory remains the explanation of the properties of eccentric

contraction - stretch of active muscle, and history dependent properties of contraction as

phenomena called force enhancement followed after stretch of activated muscle and force

depression followed after active shortening of muscle.

Regarding to eccentric contraction, there were proposed a few models, but no one of

them was more widely and universally accepted till nowadays. Among the most successful

and discussed might be mentioned the theories with sarcomere length non-uniformities

[86] or model called distribution-moment model [128]. Although these and other models

brought better insight and description into muscle science, the universal mathematical

description involving su�cient explanation of all physiological processes regarding to con-

tractile activity is still missing.

As the latest experiments uncovered and suggested new properties of sarcomere activity

and discovered new mechanical properties of proteins inside sarcomere, it might be worth-

while to return to the original Huxley's cross-bridge mathematical model and include to

this model the new information achieved namely in last two decades. In last two decades,

one of the most important investigation related to the sarcomere was done on protein

titin and myosin. On account of titin's recently discovered properties, titin is very often

referred as "molecular spring". As proposed in [40], one of the reasons of insu�ciently ex-

plained problems of eccentric contraction might be the fact that the role of this third most

abundant protein in sarcomere might be much more important than originally thought in

classical cross-bridge theory. Recently, titin was found to bind calcium ions upon activa-

tion of sarcomere, thereby increasing its structural stability. This way its sti�ness increases

and the force production is higher than originally thought when it is stretched [43] during

eccentric contraction. Furthermore, there is an increasing evidence that the speci�c parts
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of titin binds to actin in an activation, thereby shortening its "free-length" [43], [37].

Further important results which might be used to improve classical cross-bridge model

comes from experiments on single myosin molecules and single sarcomeres. In �rst men-

tioned, the nonlinear force-length relationship was measured on single myosin molecules

uncovering then non-linear sti�ness of single cross-bridges [62], [63]. In latter mentioned,

it was for instance experimentally showed that the history-dependent properties as force

enhancement followed after eccentric contraction is property observable also on a single

sarcomere level [79], [95], [99]. These and other results introduced in the following chap-

ters indicated the way the classical cross-bridge theory and its mathematical description

could be enhanced.

To summarize the goals of presented work, the main aim was to modify and enhance

the classical Huxley's mathematical model according to the latest experimental results ob-

tained on a single myosin molecule (cross- bridge) [62], [63], according to the experimental

results on single sarcomere [80], [79] and according to the way of the third �lament titin

implementation in sarcomere activity as proposed in [40].

Before all, the work was focused namely on the improve of classical cross-bridge model

with respect on properties of eccentric contraction - stretch of active sarcomere. Regarding

this aim, the main goal was to show that the phenomena of force enhancement has its

origin on half-sarcomere level. Besides other, the aim of thesis was also to describe and

introduce myosin II in the context of another molecular motors. Further, the aim was to

introduce the sarcomere as an amazing nano-machine developed by nature. The reason for

this latest mentioned aims is to point out that the classical Huxley's cross-bridge model

can be understood as one of the �rst and maybe the �rst mathematical model describing

the activity of molecular motors.

Information summarized in the following chapters was selected especially with the re-

spect on mechanical and physical properties of sarcomere in skeletal muscle although some

information about the other muscle tissues is also presented. Due to the complexity of

studied problem, namely the part involving chemical properties of sarcomere had to be

neglected.
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The presented work is organised as follows. First the sarcomere's structure and its

relation to the contractile activity and force production is described in detail in chapter

2. This chapter comprises mainly of information about the basic properties of sarcomere.

The information was selected namely with regard on contraction related to the skeletal

muscle. But some information related to the contractile properties of other two kinds of

muscle tissues, i.e. about cardiac and smooth muscle, is also presented for better insight

into muscle science. The crucial part for better comprehension of the main subject of this

work is the section about the contractile properties of eccentric contraction. The sources

of information in this chapter were predominantly texts [6], [10], [15], [19], [20], [23], [29],

[28], [37], [38], [36], [35], [39], [40], [41], [42], [43], [44], [49], [53], [55], [56], [58], [57], [59],

[60], [72], [80], [79], [87], [86], [89], [95], [97], [99], [100], [104], [106], [111], [114], [126].

Molecular motors concept and muscle propelling molecular motor myosin II is intro-

duced in chapter 3. The chapter devoted to molecular motors gives a brief overview about

one of the most amazing structures in nature - about molecular motors. This part of

the text presents mainly information related to the molecular motor myosin II. Further-

more, the important concept of power stroke [56] is introduced here. Further, information

given in this part of text describes the molecular mechanism of muscle contraction as a

biomechanical cycle of single cross-bridge. The information about the myosin molecule and

molecular motors comes namely from [1], [2], [3], [4], [5], [8] [15], [16], [18], [25], [26], [27],

[46], [52], [51], [50], [48], [54], [56], [61], [63], [62], [68], [69], [71], [73], [74], [76], [81], [82],

[83], [88], [90], [92], [96], [97], [101], [102], [105], [109], [110], [113], [112], [115], [120], [121],

[122], [125], [127].

Molecular spring protein titin and its elastic properties are presented in chapter 4. The

chapter presents structure of this biggest natural protein and its relation to the sacromere

contractile activity. The last part of chapter about titin introduces an important concepts

and clue for modi�cation of classical cross-bridge theory as proposed in [40]. The informa-

tion about the titin comes predominantly from [9], [11], [17], [26], [30], [31], [33], [37], [38],

[40], [43], [64], [66], [67], [72], [75], [80], [84], [85], [91], [103], [116], [117], [119], [118].

The next chapter 5 introduces selected mathematical models and their results. Among
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the others, chapter introduces classical Huxley's mathematical model, models of titin me-

chanics, distribution-moment model and few more models for better insight into considered

problems. The main source of information and also the main sources of the inspiration for

the changes of classical Huxley's model are primarily texts [3], [6], [9], [11], [12], [13], [14],

[21], [34], [40], [44], [45], [52], [48], [54], [61], [70], [71], [76], [77], [78], [83], [84], [85], [88],

[93], [94], [97], [107], [108], [110], [116], [125], [123], [124], [128], [129], [130], [132], [131].

The chapter 6 following after introduction and brief description of the crucial parts of

sarcomere, myosin II and titin introduces the modi�ed Huxley's cross-bridge model. In

this chapter, the mathematical model was derived from the scratch for better and clearer

insight into the model purpose. This chapter contains one of the most important results

of the thesis.

The proposed model was used to simulate the basics and various contractile activity of

sarcomere. Therefore, in the following chapter 7 are presented another important results of

thesis. In particular, the simulation of concentric, isometric and eccentric contraction were

conducted. Further, the special cases of concentric and eccentric contraction as sudden

release and sudden shortening of sarcomere, were simulated. The chapter with results also

contains the important results on simulated properties of phenomenon of force enhance-

ment. The graphical results of developed mathematical model are compared to the results

obtained in experiments.



Chapter 2

Sarcomere - An Amazing

Nanomachine

The cause and propelling source of human and animal movement are muscles. In addition to

movement such as walking, muscles act also as the crucial regulators of various physiological

processes as digestion, blood circulation and other important life supporting processes.

Based on the specialized functions of muscles and the external appearance, the muscle

tissues are traditionally divided into three classes:

1. striated (skeletal) muscles,

2. cardiac muscles,

3. smooth muscles.

Striated muscles are involved in skeletal motion, lip motion, eyelid motion and eyeball

motion [32]. Skeletal muscles are under conscious control, although some move without

voluntary control. Skeletal muscles constitute of the long cylindrical cells, which have many

nuclei. Cardiac muscles are found in heart. They have one nucleus. In contrary to skeletal

muscles, the cell structure of cardiac muscles is often branched [32]. Cardiac muscles are

not under conscious control. The last kind of muscles are smooth muscles. Smooth muscle

32
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cells are the basics structural elements of blood vessel, digestive and urogenital organs and

retina. Smooth muscles are not under conscious control. They have one cell nucleus.

Arrangement of all kind of muscles, considered as a whole tissues, comprises of a few

distinctive units at di�erent level of order and scale. Regardless of the muscle type, the

main mechanism causing the ability of muscle contractile activity is found at the lowest

level of muscle structure. Contractile mechanism consists of two main contractile proteins

myosin and actin. These two proteins are capable to trigger contraction activity and

force production of muscles. The main contractile proteins are accompanied by structural

proteins of elementary contractile apparatus.

Notwithstanding the contraction of smooth muscle is not the main subject of presented

work, at least the information about the elementary contractile structure in smooth muscle

tissue is introduced here for the better insight into considered problem. In smooth muscles,

the contractile proteins are organized in smooth muscle cells. Smooth muscle cells are

the main units constituting tissue of smooth muscle. Although the arrangement of the

contractile proteins in smooth muscle cell prevails in the direction along the longest "axis"

of smooth muscle cell, the organization of these proteins look like random or irregular

arrangement with no deeper speci�c structure. Illustrative arrangement of contractile

proteins in smooth muscle cell is shown in �gure 2.1.

Figure 2.1: Arrangement of contractile proteins in smooth muscle cell.

In contrary to arrangement of contractile proteins in smooth muscle cell, the arrange-

ment of contractile proteins in striated and cardiac muscles is highly organized. The
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contractile proteins in these two kinds of muscles are organized in the structure called sar-

comere. Albeit sarcomeres in cardiac and skeletal muscle are very similar, the following

text is predominantly focused on sarcomere in skeletal striated muscle. Nevertheless, some

information given in the following chapters are also valid for cardiac and even for smooth

muscle.

Figure 2.2: Schematic diagram of skeletal muscle structural hierarchy in vertebrate striated
muscle. The picture was adapted from [47].

Structural hierarchy of skeletal muscle parts is depicted in �gure 2.2. Sarcomere (sarco

= muscle, mere = unit) is the basic functional contractile unit of striated and heart mus-

cle. It a�ects the crucial mechanical properties of muscle contractile activity. Sarcomere

is found at the lowest level of skeletal muscle regular hierarchy. Sarcomere never exists in

isolation [97]. Sarcomeres are always organized in series into �laments called myo�brils.

Myo�brils are further bundled into �bers. Fibers anchore serially linked sarcomeres in my-

o�brils into muscle. This serially linkage of sarcomeres induces the characteristic periodic

external appearance of striated muscle. Therefore, the skeletal muscles are called striated.

Each muscle �ber has millions of sarcomeres [95].
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The characteristic striation pattern was �rst observed with the light microscope by

Dutchman van Leeuwenhoek in seventeen century [97]. Further the most important inves-

tigation on sarcomeres was performed already with electron microscope during the 1950s

by two independent teams leaded by Hugh Huxley and Adrew F. Huxley. They and their

colleagues showed that the striation pattern arose out of the arrays of overlapped �laments.

Even with this profound insight to structure, the mechanism of contraction was still not

understood.

Since the regular structure of striated muscle was always the motivation to develop

easy and transparent model describing the properties of contraction from molecular level

to tissue level, in 1957 Andrew Fielding Huxley published a theoretical model supported

by mathematical model. Nowadays, Huxley's work is well know as cross-bridge theory. At

this time, during 1950s, the technology did not allow to con�rm A. F. Huxley's theory.

Either way, Huxley's theoretical work directed and paved the way of muscle research, which

prevails till nowadays.

2.1 General Description of Sarcomere

As already mentioned above, myo�brilar sarcomere is a highly regular structure. Its reg-

ularity is the key feature of the e�ective contractile process [97]. The typical striation

pattern consists of the periodically sequences of the dark and light bands. During the

early time of muscle investigation, the scientist conducting observations with microscopes

started to call the dark band as A-band and light band as I-band.

Although the structure of sarcomere varies little bit from species to species, the main

scheme of protein structure stays similar. Nowadays, three kind of proteins in the shape

of �laments are considered as the main structural parts of sarcomere. These proteins

a�ect the crucial mechanical and contractile properties of sarcomere and consequently the

mechanical properties of the whole muscle tissue. These three �laments consist in particular

from proteins myosin, actin and titin [43]. The bunches of these three kinds of �laments

lay in parallel in sarcomere as depicted in �gure 2.3. Regarding to the myo�brile's striated
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Figure 2.3: Structure of sarcomere with three main structural �laments: actin, myosin and
titin. The picture was adapted from [33].

patterns of A-bands and I-bands, single sarcomere consists of one A-band in the centre of

sarcomere and two halves of I-bands. Each of one half of I-band is structurally connected

at the side of A-band (see the �gure 2.3). The sarcomere is con�ned on the both sides

with parts called Z-lines. The Z-lines on both sides of sarcomere determine the sarcomere's

boundary. Each sarcomere is approximately 2.0−2.5µm [87] long and is symmetric. Along

the �ber length and in cross-sectional area are observed signi�cant length non-uniformities

of sarcomeres.

On account of the contractile activity, individual parts (proteins) of sarcomere can

be sorted to two classes: active and passive parts. The �rst mentioned are called active

since they are capable to actively contribute to the contractile activity. These are namely

myosin and actin. Whereas the later mentioned are called passive, because they are able to

a�ect the mechanical properties only "passively" with their natural mechanical properties

as elasticity or viscous properties. The main example of these is predominantly titin.
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2.2 Structure of Sarcomere

2.2.1 A-band

A-band is the region of sarcomere, where the active contractile force is produced. A-band is

dense and dark due to the great amount of proteins myosin and actin. It consists of parallel

arrays of overlapped thin (actin) and thick (myosin) �laments. During contraction, the

size of A-band remains approximately of the same length. In 1950s, the observed length

conservation of A-band was one of the main concepts that led to the proposals of "sliding

�lament theory" [53], [57] and understanding of molecular basis of contraction. On the

other hand, some experiments and texts argue with conservation of A-band length during

the sarcomere activity, see for instance [97]. Nowadays, it is known that the length of

this region slightly changes. This change is considered rather as consequence of contractile

activity than the active contributor to contraction.

In this part of sarcomere, the titin is the internal part of myosin �lament [118]. The

actin �laments protrude to A-band part from I-band region (see �gure 2.3 on page 36 ).

Figure 2.4: Molecular structure of vertebrate striated muscle sarcomere's A-band. Seven
myosin �laments and twelve actin �laments are shown during contraction. The source of
picture is [111].
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Myosin - the molecular motor The most interesting and important part of A-band is

the protein myosin. Myosin is the main propelling source of sarcomere contractile activity.

It acts as motor - molecular motor. Myosin as a crucial part a�ecting contraction is

presented in detail in chapter 3 Myosin II - Muscle Molecular Motor .

2.2.2 I-band

In contrary to A-band, I-band changes its length during the contraction signi�cantly. This

part of sarcomere is composed mainly of the ordered arrays of actin �laments and titin

�laments. Actin �laments are at one sides anchored to the Z-line and cross through the

I-band part to the A-band part. Further, I-band of sarcomere is spanned by protein titin.

Titin �laments connect Z-lines with myosin �laments. The bunches of titin �laments are

traditionally thought to be the main source of the passive forces and viscoelasticity [119]

since the titin is considered as "molecular spring".

During last two decades, more deeper and more sophisticated experiments were con-

ducted on the titin �laments and their structure. Latest results suggest that the role of

titin in sarcomere is not only passive, but also active [40], [43]. Although the viscous prop-

erties are arguable under normal physiological conditions of sarcomere. The properties of

titin are introduced more deeply in one of the following chapters 4 Titin - An Entropic

Molecular Spring.

2.3 Contraction properties

In the rest part of this chapter, the basic contraction properties are introduced from the

macroscopic (continuum) point of view. The description given bellow is presented regard-

less of the deeper insight into molecular mechanism of the contractile activity. The detailed

molecular mechanism of contraction is more profoundly described in following chapter 3

Myosin II - Muscle Molecular Motor. But, for the better comprehension of the contraction

properties as introduced in the following parts of this chapter, the elementary properties of
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sarcomere's contractile mechanism are here brie�y introduced. The basic theories of mus-

cle contraction are cross-bridge theory and two sliding-�lament theory. Nowadays, both of

these theories have plausible experimentally substantiated background.

Cross-bridge theory Cross-bridge hypothesis is widely accepted theory to explain mus-

cle contraction. Cross-bridge theory proposes that muscle force is produced as a conse-

quence of direct physical contact between the the part of myosin molecules, called illus-

tratively cross-bridges, and the actin units in the thin �laments [56]. 1mg of muscle

contains 1014 of cross-bridges [5].

Sliding �lament theory The interaction of cross-bridges with actin �laments results in

the process, where the myosin and actin �laments slide along each other. One of the most

signi�cant sarcomere's property regarding the contractile activity is that the sarcomere can

only shorten not lengthen actively. This results from the fact that cross-bridges can

pull the actin �laments only in one direction. This direction is to the centre of sarcomere.

According to the sliding-�lament theory, the force exerted by actin-myosin interaction then

depends on the degree of actin-myosin overlap.

To achieve the elongation of activated sarcomere, external force must be applied to

overcome activity of contractile proteins. Beyond the 4 µm of sarcomere length there is no

myosin and actin overlap. Therefore, cross-bridge theory predicts no active force in this

range.

2.3.1 Three main types of contraction

The force-time relationships of muscles/sarcomeres depend on the types of contraction.

Characteristic force evolutions during all kinds of contraction are depicted in �gure 2.5.

Three kinds of contraction are traditionally stated:

1. concentric - muscle shortening,

2. isometric - muscle exerts force at constant length,
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3. eccentric - activated muscle is stretched by an external force, which overwhelm the

force exerted by muscle.

Figure 2.5: Concentric (shortening), isometric (force production at constant length) and
eccentric (lengthening) contraction of skeletal muscle and relevant dynamic force-time re-
lationship with length-time relationship. The picture was adapted from [23].

The experiments on muscles contraction are performed either on intact or on skinned

muscle �bers [87] and nowadays also on single sarcomeres [79]. In the case of intact muscle,

the cells are dissected from a tissue leaving the cell membrane intact. In this case, the

excitation of muscle in achieved through the physical processes on cell membrane, which

is excited to allow the in�ow of Ca2+ from internal and external surroundings into cell.

In contrast, the membrane of skinned muscle cell is removed allowing the myo�lament

environment to be controlled from the bath [87].
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2.3.2 Force-velocity relationship

The force-velocity relationship of muscle contraction (see �gures 2.6 and 2.7 ) is well known

through the Hill's pioneering work from 1938 [44]. The properties of force-velocity relation-

ship are important because they re�ect and provide deeper insight into muscle physiology.

The force-velocity relationship determines the theoretical limits of the amount of work

and power of muscle in vivo [96]. The shape of force-velocity relationship is known to

be a�ected by intracellular concentration of substrate ATP and metabolities (ADP, inor-

ganic phosphate, H+) [12]. The velocities as depicted in force-velocity relationship are the

maximal velocities that can be achieved regarding to the particular magnitudes of force.

In other interpretation, the force-velocity relationship captures the properties of isotonic

contraction, where the muscle contract under constant force.

The force-velocity relationship represents the muscle's basic properties as [10]:

• description of the spectrum of all possible force-velocity interactions,

• determines the instantaneous power P = Fv,

• determines the enthalpy change (∆heat+ ∆work) during contraction,

• dictates the rate of adenosine triphosphate hydrolysis,

• dictate e�ciency.

Shortening (concentric) domain of force-velocity relationship Skeletal muscles

shorten rapidly when the load is low. Whereas when the muscle contracts against the

higher load, the velocity of shortening is much lower [44], [10].
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Figure 2.6: Illustrative curves of force-velocity relationship and muscle power. A) Force-
velocity relationships for the domain of concentric contraction. B) Power curves of muscle.
Modi�ed from [10].

Figure 2.7: General shape of force-velocity relationship. The force-velocity relationship in
both eccentric contraction domain and concentric contraction domain. The case for V = 0
corresponds to isometric contraction. Source of picture [10].
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Isometric domain of force-velocity relationship Isometric domain of force-velocity

relationship is simply one point, where the velocity of contraction is zero. The force-velocity

relationship is traditionally normalized to the force related to zero velocity.

Lengthening (eccentric) domain of force-velocity relationship The exact shape of

force-velocity relationship in lengthening domain is hard to establish universally since the

lengthening is caused primarily by external force. The external force can have in general

arbitrary magnitude. Therefore, the general shape of force-velocity relationship during

eccentric contraction is hard to establish. Sometimes this part force-velocity relationship

is referred rather as plane determined by various factors than simple line. The approximate

shape of this part of the force-velocity relationship can be seen in �gure 2.7.

2.3.3 Isometric contraction, Gordon's graph: force-length rela-

tionship

Isometric contraction occurs in a case, when the force produced by cross-bridges is the

same as external force. This happen in the case, when the muscle is kept at constant

length and is simultaneously activated to exert the force. Isometric contraction triggered at

di�erent lengths of sarcomere produces di�erent forces related to the particular sarcomere

lengths and degree of actin-myosin �laments overlap. During the isometric contractions are

achieved the maximal forces that can be produced by actin-myosin interaction. Isometric

forces reach a maximum at average sarcomere lengths about 2µm (frog sarcomere) [39].

The average force per single cross-bridge during isometric contraction is assumed to be

6pN [63]. Isometric contraction is also considered as su�ciently understood in cross-bridge

theory. For characteristic force-time evolution of isometric contraction see �gure 2.8.
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Figure 2.8: Illustrative force production of muscle during isometric contraction, when the
muscle is kept at constant length. At t = 0 the muscle is activated and starts to produce
the force. After a while, the force production reaches its maximum. This maximum is kept
by muscle until it is deactivated or subjected to the changes of surroundings. Adapted
from [35].

Gordon's graph: Force-length relationship Regarding to the various magnitudes of

forces intrinsic to particular lengths of sarcomere during isometric contraction, the force-

length relationship of isometric contraction of sarcomeres was measured in 1966 by Gordon

et. all. [29]. Gordon's graph, as is the force-length relationship often called, was obtained

by the measurements on a single �bre from frog striated muscle. Due to the experimental

equipment used in 1960s, Gordon was not able to measure directly the lengths of sarcomeres

in �bre. Instead of sarcomere's length, he was able to measure the distances among the

neighbouring A-bands (neighbouring striations). Based on these results, he reconstructed

force-length relationship for isometric contraction of single sarcomeres. Gordon's force-

length relationship covers the whole range within the myosin and actin �laments overlap.

Force-length relationship can be simply explained by sliding �lament theory as can be seen

from following pictures 2.9 and 2.10.

Gordon's graph is traditionally divided into three distinctive regions (see the �gure 2.9):

1. ascending limb region,
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2. plateau region,

3. descending limb region.

Figure 2.9: Gordon's graph: Force-length relationship. Summary of the results of force
production of isometric contraction conducted along the sarcomere lengths by which actin
and myosin �laments have various degree of overlap. The arrows with numbers in the top
part of the graph are intrinsic to the numbered stages as depicted in �gure 2.10. The
picture was modi�ed from [29].

Figure 2.10: Critical lengths of sarcomere according to Gordon's graph. The picture shows
signi�cant stages of actin-myosin overlap. The picture was modi�ed from [29].
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The characteristic shape of Gordon's graph can be traced to the lowest level of muscle

structural hierarchy. The experimental measurements of force-length relationship at the

sarcomere level give the same pro�le of this property as the results on higher level of the

structural hierarchy of muscle. See the results of measurements on a single sarcomere in

�gure 2.11 from year 2009.

Figure 2.11: Force-length relationship for isometric contraction obtained from measurement
on single sarcomeres. The open circles represent the force obtained at 15oC and closed
circles represent the forces measured at 20oC. The continuous lines represents results of
least squares �tting and �tting with linear regression. The picture with its description was
adapted from [95].

2.3.4 Concentric contraction

Concentric contraction occurs if the force produced by cross-bridge mechanism overcomes

external force acting on sarcomere. This also includes the case, when the external force

equals to zero. The work produced during concentric contraction is often called positive

work. In this type of contraction sarcomere shortens, which results in the whole muscle

contraction. This kind of contraction is assumed to be su�ciently understood in cross-

bridge theory with exception of history-dependent phenomena called force depression as

described bellow.
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Figure 2.12: Illustrative transient state of force during concentric contraction followed
by steady-state isometric force. At t = 0 the muscle is activated and force production is
approaching its maximum force intrinsic to isometric contraction at particular length. Then
the muscle is subjected to shortening accompanied by characteristic decrease in a force.
After a while, the shortening is stopped and the force production approach the steady-state
magnitude of force related to isometric contraction at new corresponding length. Modi�ed
from [35].

Figure 2.13: Force-time histories of concentric contraction conducted for various shortening
speed in the range of 4 − 128mms−1, depicted as lines b − f regarding to magnitudes of
speed. The shortening distance of muscle was 8mm for all speeds and the �nal length of
sarcomere was the same for all speeds. The resulted forces are compared to isometric force
at corresponding resulted length, depicted as line a. Adapted from [42].
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The characteristic property of concentric contraction is the force decrease once the

concentric contraction is triggered. This force decrease is dependent on the magnitude of

shortening velocity. The decrease in force production is higher for higher velocities and

vice versa. See the results in �gure 2.13, where the muscle was shortened for the same

amount of length but with di�erent magnitudes of speed.

Force depression

Force depression is an absolute or percentage decrease in the steady-state isometric force

following a shortening contraction compared to the purely isometric force at the correspond-

ing length [35]. The force depression increases with increasing magnitudes of shortening.

It increases also with decreasing speed of shortening and with increasing force during the

shortening phase [35].

Figure 2.14: Example of force depression. The top line represents an isometric force
achieved at constant length. The bottom line represents the concentric contraction followed
by isometric contraction at the same length like isometric contraction of top line. ∆F
represents the force depression. The picture was adapted from [35].

The mechanism underlying force depression is still not su�ciently explained although

several mechanism have been proposed. One of the most probable theories suggests that

during the concentric contraction the actin �laments might be shifted to the opposite site
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behind the centre of sarcomere. There they might reduce the probability of cross-bridge

attachments [42] of cross-bridges from opposite side of sarcomere. In addition, the actin

�laments from opposite side of sarcomere may encounter and collide. The force depression

then might come from myo�lament deformation [42].

Sudden shortening step

Sudden shortening step is a special case of eccentric contraction, where the muscle/sarcom-

ere is suddenly released from its isometric contraction. The force-time relationship then

corresponds with results for high velocity shortening. The results of sudden shortening

step can be seen in �gure 2.15 as published by Huxley in 1971.

Figure 2.15: Transient force respond of muscle exposed to sudden shortening step. The
top line represents sudden shortening step in length. The bottom line represents the
corresponding force-time relationship. The picture was adapted as published by Huxley in
1971 in [54].

2.3.5 Eccentric contraction

Eccentric contraction is one of the most challenging themes for cross-bridge theory and two

sliding �lament approach. Already Huxley, when he proposed cross-bridge theory in 1957,

was aware that his hypothesis has limitation on the explanation of this kind of contraction.

Eccentric contraction occurs if the external force is greater than the cross-bridge mecha-

nism is able to develop. The external force then overwhelms the force developed by inner
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mechanism in sarcomere. Sarcomere is consequently stretched. The work done during the

eccentric contraction is often called negative work since it is done by external force.

The most insu�ciently understood property of this kind of contraction is the explana-

tion of the nature of the phenomena called force enhancement. The typical force-time

relationship of eccentric contraction is characterized by the quick force increase once the

muscle is stretched by external force from its initial isometric state. After that, with the

continuous lengthening by external force, the force monotonically increases until the exter-

nal force stop to stretch the muscle. Once the external force disappears, the force relaxes

to a lower value of steady-state force (see �gure 2.16). Force-time relationship of eccentric

contraction is then characterized by following components [100], [41], [37]:

1. sudden increase in the force once the stretch begins (transient state of force enhance-

ment),

2. continuous monotonous increase in the force (transient state of force enhancement),

3. gradual dissipation of the force once the external force disappears (transient state of

force enhancement),

4. stable steady-state increased force that remains constant until the end of the sarcom-

ere activation (steady-state force enhancement).

Figure 2.16: Illustrative force-time relationship of eccentric contraction. The muscle is �rst
activated at constant length. Consequently, the muscle is lengthened by external force to
the new length. Adapted from [41].
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Transient state of force enhancement

As can be compared from experimentally measured results in �gures 2.17, 2.18 as well as

in �gure 2.20, the magnitude of force developed by muscle in the transient state of eccentric

contraction depends on the magnitude of speed. More concretely, the value of force in

transient state of eccentric contraction increases with the speed of stretch (lengthening).

This e�ect is the most apparent at the beginning of eccentric contraction, where the quick

increase of force occurs.

Figure 2.17: The stretches of 9, 6, 3 mm conducted by speed of 9 mms−1, f denotes
reference isometric contraction. The picture was adapted from [41].

Figure 2.18: The stretches of 9, 6, 3 mm conducted by speed of 27 mms−1, f denotes
reference isometric contraction. The picture was adapted from [41].
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Steady-state force enhancement

When activated skeletal muscle is stretched from its initial isometric contraction state to

the following isometric state after stretch, the force developed by sarcomere after stretch is

greater that expected by classical theories [100], [40], [79], [43]. According to the classical

cross-bridge theory, the expected value of isometric force after stretch might have the

same value as the isometric force at the corresponding length of sarcomere. This is in

contrary with experimentally observed data. The di�erence between expected value of

force according to the cross-bridge theory and the value of force observable in experiments

is called (steady-state) force enhancement (see �gure 2.19).

Figure 2.19: Force enhancement ∆F : the top line represents force-time relationship of ec-
centric contraction. The bottom line represents isometric contraction. The force produced
by muscle after stretch is higher than the force produced during isometric contraction at
corresponding (same) length. The picture was adapted from [35].

Force enhancement after active stretch can not be explained based on the classical cross-

bridge theory and two sliding-�lament theory. This contractile history-dependent property

of muscles can not be explained by the degree of actin and myosin �laments overlap [100] or

another reasons as "stuck cross-brige" or "new unbound/bound state" leading to additional

force producing step in cross-bridge cycle (the multi-step cycle model)[123].

A few theories were proposed to clarify the steady-state force enhancement. Among

the others for example, it was suggested that the nature of force enhancement may arise
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from non-uniformity of sarcomere lengths connected in series along myo�brile [86]. But,

the experiments on the single sarcomere level precluded sarcomeres non-uniformities as a

source of force enhancement [79].

The most apparent properties of steady-state force enhancement as observed in experi-

ments are as follows. Force enhancement occurs on the ascending, descending limb also as

on plateau region of the force-length relationship (Gordon's graph) [123]. Force enhance-

ment seems to be permanent and its value depends on the magnitude of stretch [123]. The

steady-state values of force enhancement after stretch remains the same for all velocities

of stretch performed for the same length of stretch. Consequently, the two main properties

of the steady-state force enhancement might be summarized as follows [37]:

1. the magnitude of steady-state force enhancement is increasing with magnitude of

stretch (see �gure 2.20),

2. the magnitude of steady-state force enhancement is independent on the magnitude

of the speed of stretch.

Figure 2.20: The dependence of the magnitude of force enhancement on the magnitude
of stretch. f represents the reference isometric contraction. The lines 9, 6, 3 represent
the force-time relationship for stretches conducted for 9, 6 and 3 mm. All stretches were
conducted for the same speed of 3 mms−1. The picture was adapted from [41].
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Force enhancement at di�erent levels of muscle hierarchical structure Force

enhancement was observed at whole muscle scale, �bre scale and single sarcomere scale [79].

Force enhancement at muscle level was examined for instance in [106]. Force enhancement

at single �bres level was observed for example in [19], [20]. At single isolated myo�bryle it

was observed in [59]. And at the lowest level of muscle structure, the force enhancement

was observed also in experiments on a single sarcomere as published in [79].

Figure 2.21: Force enhancement on three structural levels of skeletal muscle. A shows force
enhancement in an entire muscle. B depicts force enhancement on isolated myo�bril. C
represents force enhancement in a single, mechanically isolated sarcomere. The grey lines
in A refers to isometric reference force and length. The black lines in A represents course
of force during stretches. The grey trace in B is a passive stretch while the black trace is
an active stretch of a myo�bril. The picture and the annotations are adapted from [37],
[38], [43].

Passive force enhancement

The force enhancement does not occur in stretched passive (deactivated) muscles [123].

Nevertheless, passive force after deactivation of an actively stretched muscle is higher than

the force produced after a purely passive stretch or after deactivation from an isometric

contraction at the corresponding length [60]. The passive force enhancement is long lasting.

It increases with stretch magnitude and initial muscle length. Passive force enhancement

is independent of the speed of stretch [60], [41]. As the main source of passive force

enhancement is believed to be titin [60]. See depicted passive force enhancement ∆P in
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�gure 2.22.

Figure 2.22: Illustration of passive force enhancement ∆P . ∆F is force enhancement after
stretch. The top line represents eccentric contraction. The middle line represents isometric
contraction at corresponding length of the �nal length of eccentric contraction. The bottom
line represents stretch of passive muscle. Adapted from [35].

Sudden stretch

Sudden stretch is a special case of eccentric contraction. In this case the muscle is subjected

to sudden short ramp stretch starting from isometric force production. The results of this

stretch as experimentally observed by Huxley can be seen in �gure 2.23.

Figure 2.23: Sudden stretch of muscle as published by Huxley in 1971 [54]. The top line
represents sudden change of muscle length - ramp stretch. The bottom line represents the
corresponding force-time relationship during response on ramp stretch.
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Quick summary of chapter

Sarcomere is the basic contractile unit of skleletal and cardiac muscles. As a me-

chanical system in the range of units of µm, single sarcomere contractile activity is

propelled by molecular motor myosin II. Sarcomere can only shorten not lengthen

actively. Sarcomere force production on account of contraction is history depen-

dent. Steady states of isometric force production following after transient states of

concentric as well as eccentric contraction are accompanied by phenomenons of force

depression and force enhancement. In the case of force depression, the isometric force

is decreased in comparison to isometric force achieved without previous contraction.

In the case of force enhancement, the isometric force is increased in comparison to

isometric force achieved without previous contractile activity. The phenomena of

force enhancement was observed at every structural scale of muscles. Both of these

history dependent properties of muscle/sarcomeres can not be explained by classical

theories of contraction, i.e by cross-bridge theory and two sliding-�lament theory.



Chapter 3

Myosin II - Muscle Molecular Motor

The main aim of the following pages is to introduce the muscle propelling molecular motor

myosin II with its basic properties. At �rst, this chapter brie�y summarizes the elementary

properties of molecular motors in general. Then, the essential myosin II properties related

to the muscle contraction are provided.

3.1 Molecular Motors in General

The beginning of understanding to molecular motors is closely related to the muscle science.

It can be dated back in the year 1954 when two papers were published in Nature by two

independent research groups [113]. The �rst paper was published by Hugh Huxley and Jean

Hanson (Massachusetts Institute of Technology); Changes in the cross-striations of muscle

during contraction and stretch and their structural interpretation [57]. The second paper

was published by Andrew Fielding Huxley and Rolf Niedergerke (University of Cambridge);

Structural changes in muscle during contraction; interference microscopy of living muscle

�bres [53]. It might be worthwhile to mention that A.F. Huxley and H. Huxley were not

relatives and the same surname Huxley of these two men is only coincidence. In their

papers the authors proposed sliding-�lament theory of muscle contraction. This theory

was further extended theoretically by Andrew F. Huxley in paper Muscle structure and

57
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theories of contraction [48] into cross-bridge theory in year 1957.

The cross-bridge theory is nowadays widely theoretically as well as experimentally ad-

mitted description of molecular motor myosin II activity in muscle tissues on molecular

level. Except of muscle science, it also helped to describe activity of another types of

molecular motors, which were discovered during the latest years in nature. These another

molecular motors are namely families of kinesin and dynein molecular motors. Last years

also emerged the �rst success in arti�cially synthesized molecular motors. Currently, the

Nobel Prize in Chemistry 2016 awarded to synthesis of molecular machines". Jean-Pierre

Sauvage, Sir J. Fraser Stoddart and Bernard L. Feringa was "for the design and Apart from

muscle contraction, the molecular motors are involved in processes such as carrying cargo

against physical �eld gradients or cell division and many other physiologically important

processes.

During the 1950s, when the cross-bridge theory was proposed, it was related strictly

to the muscle science. In �rst, this theory was suggested namely theoretically based on

Huxley's mathematical model. In the following years, it took decades to submit convincing

experimental results to support Huxley's cross-bridge theory, because no laboratory instru-

ments were able to su�ciently capture and display the processes occurring at nano-scale,

where the crucial activity of cross-bridge theory as well as of all molecular motors happens.

Apart from cross-bridge theory, also another theoretical concepts and approaches were de-

vised for better understanding of molecular motors. Among other, theoretical models based

on Brownian ratchets, power-strokes, Langevin equation, Fokker-Planck equation, Markov

models, Markov-Fokker-Planck models [76] are su�ciently used. The later mentioned are

predominantly used to describe single molecular motor properties, whereas cross-bridge

based models are used to describe the simultaneous activity of greater amount of molecu-

lar motors.

Individual molecular motors are enzymatic molecules that convert chemical energy into

mechanical work and linear translational motion [71] or rotation. Molecular motors, as

proteins, usually need the presence of another speci�c proteins, which serve as the tracks

and usually determine the direction of their movement. For instance, molecular motors
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walk on cytoskeleton proteins as microtubules and actin �laments.

Information about the structure of molecular motors is mostly obtained by di�raction-

based techniques and cryomicroscopy [71]. Single motor proteins comprise typically of

several subunits [76]. The most important part of the molecular motors are usually "heads",

where the enzymatic activity takes place. These "heads" also bind speci�c places on

molecular tracks (microtubules, actin �lament, DNA or RNA molecules) [71].

Molecular motors are cyclic machines like a heat engines [88]. Their working cycle is

closed series of chemical (conformational) states. In comparison to macromolecular motors

(for instance combustion and diesel engines), one of the most striking features is that the

thermal energy ,kbT , of surroundings is much smaller for macromolecular motors. Whilst

for the molecular motors, the thermal energy of surroundings is comparable. The kinetic

energy of a molecular motor calculated using the average velocity is much smaller than the

thermal energy kBT and the kinetic energy calculated using the instantaneous velocity is

comparable to the thermal energy. In contrast, the kinetic energy of a macroscopic motor

is much larger than the thermal energy[125].

3.1.1 Mechanochemical cycle - conformation states and power

stroke

Many theoretical approaches to rotary and linear motor proteins are essentially the same

[71]. One of them is the concept of biochemical or mechanochemical cycle and kinetic of

this cycle. In order to produce force and work, molecular motors combine chemical cycle of

ATP hydrolysis with a mechanical cycle of motor interaction with its tracks. This process

can be found also under name mechano-chemical coupling or biochemical cycle.

The operation of molecular motor is strictly connected with its mechanochemical cycle.

The results from experiments show that motor protein undergoes multiple conformations

coupled in biochemical network [71] during its activity. Some of the pathways of biochem-

ical cycle are dominant and control the overall dynamics [71].

The important concept related to the molecular motor's biochemical cycle is the term
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Figure 3.1: Mechanochemical cycles of myosin (left) and kinesin (right). The myosin force-
producing step occurs with Pi release. In contrary, ATP binding is thought to be the
force-producing step for kinesin based motors. Modi�ed from [73].

power stroke. Understanding the phenomena of power-stroke is crucial to comprehend

the biological motility achieved by molecular motors. It connects and include mechanical

forces, movements, structural changes as well it is linked to ATPase cycle and hydrolysis

of ATP. The power stroke is the most important conformational change in the globular

motor domain of a molecular motor. During power stroke, the molecular motor can perform

step on its track or shift another proteins as in the case of muscle contraction. This way

molecular motors are able to perform work as a part of their biochemical cycle [88]. Series

of conformational changes, including power strokes, are driven by biochemical reactions.

Repetitive power strokes and conformational changes produced by molecular motor are

generated as a result of periodical conformational rearrangements of protein structure

driven by the enzymatic cycle of ATP hydrolysis [74]. Each biochemical cycle starts and

ends at the same conformational state. Therefore, molecular motors are cyclic machines

like a heat engines [88].

On account of biochemical cycle, another property called the duty ratio can be de�ned.

The duty ration is the time of the biochemical cycle over which a motor head stays strongly

attached to its track [8].
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3.1.2 Movement on molecular motor tracks

Molecular motors move along linear, periodic, polar �laments [61] of the cytoskeleton.

The usual �laments tracks are microtubules and actin �laments. Kinesins and dyneins

move along microtubules. Myosins move along actin �laments [69]. Actin and tubulin �la-

ments are formed by a polymerization process from identical monomers - actin and tubulin

monomers [61]. During polymerization of these monomers units, the regular periodic track

structure is prepared.

The important feature of �laments track is their polarity. The �laments are asymmetric

with respect to their two ends [61]. The ends of macromolecular tracks are usually denotes

as +,−, i.e. "plus end" and "minus end". This polar asymmetry is crucial for motor on

account of the direction of motion. Depending on concrete molecular motors, molecular

motors can move towards plus as well as to minus ends of particular tracks.

The movement is performed in discrete steps. For myosin V it is 36nm and 8nm

for kinesin [69]. The periodicity along the motor's track is also one of the main factors

determining the length of molecular motor step. Several classes of motors move on their

tracks by repeatedly hydrolyzing one ATP molecules at rate of order one step per 10ms

[71]. The catalytic activity of a motor domain is strongly diminished when it unbinds from

from its linear �lament [71].

Kinesin and Myosin V appear to move hand-over-hand fashion in which rear head

detaches from the track and reattaches to the front [3]. Another type of movement is that

whole molecular motor unbinds from its track once its biochemical cycle is �nished (myosin

II).

3.1.3 Processive vs. non-processive motors

One of the essential properties of molecular motors is the property called processivity.

It refers to the manner how the molecular motors moves along their tracks. Processivity

is a mechanochemical property that refers to the number of catalytic cycles a motor can

perform before di�using away from its track [92].
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Processive molecular motors

Processive molecular motors typically undergo numerous steps along their tracks before

they completely dissociate from their track �lament. Highly processive motors can perform

hundreds of rounds of ATP binding and hydrolysis before release from their tracks [92].

For instance myosin V I can move longer than 200 nm without detaching from actin.

Myosin V a can go up to several microns [92] before detaching. Processive motors are often

dimeric or even oligomeric forms [71]. Among processive motors are conventional kinesin,

cytoplasmic dynein, and myosin V and V I[71].

Non-processive molecular motors

Unlike of processive motors, the non-processive motors complete only few steps or strokes

before they completely detach from their �laments [71]. Non-processive motors bind their

track once per ATPase cycle and release their track after their biochemical cycle [92] is

�nished. Many of non-processive motor proteins such as myosin II work in large groups

and in assembly, although the detail of the cooperative mechanism is largely unresolved

[71]. Non-processive motors are usually monomers forms [71].

3.1.4 Thermodynamics of molecular motors

The molecular motors operate in the environment of continuous stochastic thermal �uc-

tuation [88]. Thermal �uctuations a�ect their behaviour and these e�ects must be often

included in theoretical description [125]. This results also in assumption that unbounded

molecular motors from their tracks are believed to perform Brownian motion in the sur-

roundings �uid [69]. The binding energy of molecular motors to �laments is �nite and can

be overcame by thermal �uctuations [69].

Due to the small size and negligible inertia of molecular motors, the motors are often

damped by high viscous friction during their activity and are subjects to large thermal

excitation from the surrounding �uid environment [125]. Also therefore, for molecular

motors the length scale over which inertial e�ects are important are much shorter than the
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characteristic length scales of the motor motion [125]. Therefore inertial e�ect can be in

many cases neglected.

In vast majority of literature, it is believed that molecular motors operate under isother-

mal conditions. At the nanoscale, where the molecular motors operate, the greater temper-

ature gradient is hardly sustainable. Therefore, in comparison to macromolecular motors,

the molecular motors activity is not achieved by temperature gradient. The origin of

their activity comes from their biochemical cycle, which keeps molecular motors in non-

equilibrium thermodynamic state. The information about how far from thermodynamic

equilibrium molecular motors operate di�ers. Some papers say that molecular motors op-

erate far from thermodynamic equilibrium in contrast to the texts that stated that the

molecular motors operate close to thermal equilibrium.

Regarding the skeletal muscles, at the rest, the skeletal muscles use 18% of the body

energy consumption rate (basal metabolic rate) [32]. The energy used for work by skeletal

muscles during activity varies around 25% [32], which re�ects the muscular e�ciency. The

resting 75% is released as heat, which is very important source of body heat [32].

Energy sources

Invention in muscle physiology before World War II led to the discovery of adenosine

triphosphate (ATP) and to the idea that this substance is the energy source for muscle

contraction [48]. The molecular motor's heads are an actin-activated adenosine triphos-

phatase (ATPase) [102]. Discovering the interaction of ATP with myosin was also one of

the investigation that brought the research of muscle contraction in the right way [48].

The most common source of chemical energy for motor proteins is hydrolysis of ATP or

related compounds [71] and second the polymerization of nucleic acids and proteins (tubu-

lin) [71]. The energy of ATP hydrolysis is only about one order of magnitude larger than

the average energy of thermal �uctuation. The hydrolysis of ATP maintains the system

in non-equilibrium thermodynamic conditions and biases the random walk of molecular

motors in one direction[74].
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Although it is known that working step is directly coupled to the ATP hydrolysis step,

the transfer of chemical energy to mechanical energy by molecular motors still remains

object of intense research. The transformation of chemical energy into mechanical work

and movement is typically the serie of biochemical reaction and physical processes [71].

ATP hydrolysis - source of energy Adenosine triphosphate molecules are abundant

in cells and react with water (hydrolyse) to form the products ADP and Pi. Under physi-

ological conditions, ATP hydrolysis can occur through a spontaneous pathway in solution

(slow) or accelerated through an enzyme-catalysed pathway [4].

Through the uncatalysed reaction pathway, released Gibbs free energy ∆GATP is lost

entirely as heat. Whereas through the catalysed reaction pathway ∆GATP is divided

between heat and external work [4]. The work is here conducted by molecular motor as

moving against the external force by distance δx and internal work performed by a motor

in stretching out elastic elements (springs, cross-bridges) in the motor system [4].

Motor as the protein structures are dynamic. Within a given biochemical state they

�uctuate about an energy minimum. Upon motor biochemical transition such as ATP

binding and ADP + Pi release, motors undergo dramatic structural changes [4]. The

hydrolysis of ATP releases about 20kbT [69], where the part of energy in used for work and

a part of energy is also dissipated to heat.

Simpli�ed form of ATP hydrolysis:

ATP −→ ADP + Pi, (3.1)

where ATP is adenotriphosphate, ADP is adenodiphosphate and Pi is inorganic phosphate.

ATP hydrolysis is an exothermic reaction with a negative change in enthalpy ∆H that

contributes to the reaction's negative ∆G[88].

∆G = ∆G′0 + kT ln(
[ADP ][Pi]

[ATP ]
) (3.2)
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The free energy, ∆G, is available to motor via hydrolysis of ATP (or other nucleotides).

Under the physiological conditions normally used for in vitro studies, it is concluded that

[71]:

|∆GATP . 25kBT | (3.3)

The maximum force a motor taking a step d can exert can be formulated as [71]:

Fmax =
∆G

d
. (3.4)

3.1.5 Myosin family

Myosins are a large superfamily of actin-dependent molecular motors [109]. Myosins are

found in most eukaryotic cells [101]. Myosins play structural and enzymatic roles in muscle

contraction, intracellular motility, cell division and transport of organelles within cells [101],

[27]. Myosins molecules can be also found in plants, some of them exclusively (myosin VIII,

XI and XIII) [109]. Members of this class are hexameric enzymes composed of two heavy

chains with a molecular weight of 171-244 kDa and pairs of light chains [109]. The myosin

family consists of at least 18 [105] - 20 [92] distinct classes with a number approaching 100

unique myosins [18] distributed across plant and animal kingdoms and with great diversity

of cellular functions [105]. Recent studies identi�ed many more potetial classes of myosins

with a total number up to 40 [92]. Motor proteins of the myosin family drive various

movements in biological environment by a multi-step power stroke.

Most majority of the myosins move toward the plus end of actin. The myosin properties

of a myosin family are de�ned by a combination of its enzyme kinetics and structural

characteristic [92].

The structure of myosins

Myosins are characterized by three domains; head, neck and tail domain [92], [27]:
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1. N-terminal motor or "head" that binds actin and ATP,

2. a "neck" domain consisting of one or more light chain,

3. C-terminal tail, also known as α helix.

The tail connects the myosin motor to its cargo or myosin �lament. In myosin family,

there is a considerable sequence and structural diversity in the tail part of the molecule.

Whereas the domain motor or head of the molecule is well conserved [105]. Therefore it is

assumed that throughout the myosin family the basic mechanism of movement and force

generation remains the same [105].

Lever-arm hypothesis

Lever-arm hypothesis has received much experimental support [27]. This theory suggests

that conformational changes in myosin's heads are ampli�ed by the adjoining part serving

as lever-arm. Mentioned conformational changes produce large displacement at far end of

the neck, which is translated into the movement of the whole protein [27] (see �gure 3.2).

The size of motor displacement then depends (also) on the length of the lever arm, which

turns around its fulcrum.

For the same lever arm length the size of the apparent power stroke can vary among

di�erent myosins [8]. The apparent stroke size is proportional to the length of the light

chain domain [8]. The power stroke is multi-step and comprises of series of structural

changes within the actin-myosin complex after the myosin motor domain has attached

an actin �lament [8]. Without external load the total movement generated by one head

of a myosin molecule during an ATPase cycle is expected to be equal to the sum of the

individual structural changes of the multi-step power stroke [8].

Velocity of single myosin molecules

Myosins move along their track with a wide range of velocities. The slowest myosin 9b

moves with velocity in the range of 15 − 40nm/s. On the other hand, one of the fastest
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Figure 3.2: a) Lever arm movement of myosin molecular motors. b) Movement of myosins
in hand-over-hand fashion. The picture was adapted from [27].

as myosin XI "runs" 60µm/s [92]. Myosin Ia moves with velocity of 50 − 100nm/s [92].

Velocity of single myosins is also adjusted to physiological functions. Smooth muscle myosin

velocity (µm/s) in vitro is > 10x slower than skeletal muscle myosin (6.6µm/s) [92].

3.2 Myosin II - Muscle Propelling Engine

Myosin II was �rst extracted from muscle by Kühne, who named it and characterize it

in Untersuchungen über das Protoplasma und die Contractilität (1864) [48], [10]. It took

approximately to the year 1930 that it was shown that the length of the myosin �laments

is approximately the same length as the length of A-band in sarcomeres. Although some

nowadays studies show that the length of myosin part of sarcomere slightly changes as well,

that time it was crucial results which helped to distinguish among the sarcomere parts.

Till now, myosin II is also the best studied molecular motor from myosin family also for

the reason of intensive research in muscle science and its crucial role in contraction [27].

Therefore, myosin II is sometimes referred as "convectional" myosin since it was the only
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class of myosin known for decades [109], [18].

Myosin II as a molecular motor propelling muscle contraction is a pico-Newton force

generator, which is able to shift actin �laments. The myosin II head is an actin-activated

adenosine-triphosphatase[102]. The part of myosin molecules, which protrudes out of the

myosin �laments, is able to form a transient connection (cross-bridges) between actin and

myosin �laments. This is the main assumption and principle of the cross-bridge theory

based on two-sliding-�lament theory, where the results of cyclical binding of cross-

bridges is sliding of myosin and actin �laments along each other. Myosin II molecular

motors are optimized for a wide range of contractile activity including rapid repetitive

contraction cycles of insect �ight muscles to the extremely slow contraction of tonic smooth

muscle [105].

Among the most common factors in�uencing the properties of contraction are geometry

of �laments in sarcomere, the mechanical properties of the �laments and cross-bridges, the

kinetics of thin �lament activation by Ca2+ and the kinetic of cross-bridge cycling [114].

3.2.1 Single myosin II molecule

Single myosin II molecule can be divided into discrete functional domains.

Structure of a single myosin molecule

Skeletal muscle myosin consists of two heavy chains of molecular weight 220kDa each and

two pairs of light chains. Light chains have molecular weights in the range 15 − 22kDa

[101]. Each myosin molecule is highly asymmetric composed of two globular heads joined

to a long tail. It is a complex hexameric structure, which is composed from

• two heavy chains,

• two essential light chains,

• two regulatory light chains.
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Figure 3.3: The two headed structure of single myosin molecule (single cross-bridge). The
scheme depicts following parts: MHC - myosin heavy chains, essential light chains (LC),
regulatory light chains (LC), ATP binding loop, actin binding loop, carboxyl terminal
subfragment-1 (S1) part, subfragment-2 part(S2). MHC can be cleaved to into α-helical
light meromyosin (LMM), S2 and S1. The picture adapted from [18].

One essential light chain and one regulatory light chain is associated with each myosin

heavy chain and with one head (see �gures 3.3 and 3.4 ). The terms "essential" and

"regulatory" light chains might be considered as historical. Based on the identi�cation of

their electrophoretic mobility, they can be identify as follows [10]: the essential light chains

have been classi�ed as myosin light chain-1 (MLC1) and myosin light chain-3 (MLC3). The

regulatory light chain has been classi�ed as myosin light chain-2 (MLC2). It is assumed

that the two heads of myosin act independently from each other [87]. Only one myosin II

head is necessary for production of motion and force [87].

Myosin head - Subfragment-1

Myosin head is also known as Subfragment-1 (S1). The globular head of myosin heavy

chain contains the actin binding site and the ATP binding site. Globular part of the

myosin molecule is responsible for the generation of force. S1 keeps its motor functionality

in vitro, i.e. the ability to produce motility and force in vitro [105].

A neck domain of myosin head consists of essential and regulatory light chains bound to
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Figure 3.4: The N-terminal 25-kDa domain is labeled green. The upper and lower 50-kDa
domains are red. The C-terminal 20-kDa is blue. The regulatory light chain is (RLC)
light blue. The essential light chain (ELC) is purple. The picture with its description was
adapted from [120].

a long α-helical portion of the heavy chain. The myosin head is an actin-activated adenosine

triphosphatase (ATPase) [102]. Chicken skeletal myosin subfragment-1 as published in [101]

has dimensions: overall length 165 Å, width 65 Å and thickness of 40 Å. S1 can be further

distinguished into three fragments according to their apparent molecular weights [105]:

1. an amino-terminal nucleotide-binding region of molecular weight 25 kDa, called

NH2− terminal, it is catalytic (or motor) domain containing the actin-binding sites

and the ATPase catalyc site,

2. a central segment of molecular weight 50 kDa,

3. carboxy-terminal portion of molecular weight 20 kDa, called COOH− terminal.

The length of Subfragment-2 (S2) as depicted in �gure 3.3 is approximately 40nm [63].
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The light chains Essential and regulatory light chains share considerable amino acid

sequence similarity with troponin-C and calmodulin. The experiments suggested that reg-

ulatory light chains are important in controlling the myosin and cross-bridge kinetics [28].

The regulatory light chain is located at the end of the subfragment-1 head at distal part

from the nucleotide binding site [101]. Essential light chain wraps around an approximately

linear section of the long α-helix of the myosin heavy chain. Molecular weight of essential

and regulatory light chains is approximately 20kDa.

The arrangement of the regulatory and essential light chains, relative to the nucleotide-

binding pocket and actin-binding site of S1 head, suggests that one of their function might

be to create a longer molecule, thereby amplifying the power-stroke [101]. In contrary

to striated muscle, in smooth muscle the phosphorylation of the regulatory light chains

is essential for contraction. In striated muscle, phosphorylation of regulatory light chains

enhances the force and force development rate at low Ca2+ activation [28].

The heavy chains The myosin heavy chain (MHC) constitutes the entire thick portion

of the myosin head and contains both the nucleotide-binding site and actin-binding region

[101]. Molecular mass of heavy chains is approximately 200kDa each [28]. The heavy

chains form a parallel two-chain coiled structure over most of their length except for heads

[28]. The coiled region of myosin forms �laments. The MHC can be proteolytically cleaved

to generate α-helical light meromyosin (LMM), an S2 α-helical section and the S1 globular

head region [18](see �gure 3.3).

3.2.2 Power-stroke and myosin II conformation cycle

In detached state, the myosin head is subjected to unbiased thermal �uctuations. Whereas

in activated state, when the myosin head is attached at actin binding sites, the myosin

head is source of force production able to shift actin �laments in directed motion.
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Lever-arm theory or neck-lever model

X-ray di�raction studies of muscle led to the proposal of the swinging cross-bridge model

of contraction in which the myosin induced movement of actin occurs through the rotation

of some structural components of the actin-bound myosin followed by release of the actin

�lament [56]. Swinging lever-arm theory was proposed and introduced in 1969 by H.E.

Huxley in article The mechanism of muscular contraction [56].

On the basis of crystal structures, it has been hypothesized that the cross-bridge force

is produced by an angular movement of the myosin regulatory domain about a fulcrum

in the so-called converter region of the myosin head [105]. The swinging neck-lever model

assumes that a swinging motion is the origin of the movement [121]. Due to the length and

C-terminal location (see dark blue α-helix in �gure 3.4), it was suggested that it may play

a role as lever arm that could amplify a small conformational changes of motor domain

[120]. This model assumes that the step size and the concentric contraction velocity are

linearly related to the length of the neck [121]. The angular movement, which leads to

the shortening of single cross-bridge resulting in force production and shifting of actin

�lament, is called power-stroke in cross-bridge theory. For instance, in myosin II of

chicken or species Dictyostelium discoideum converter domain is rotated about 70◦ [8] or

65◦ [120].

Myosin II biochemical cycle

The transformation of chemical energy into mechanical work and movement is typically

the serie of biochemical reaction and physical processes [71]. These processes are tra-

ditionally called by terms mechano-chemical cycle, conformational cycle or biochemical

cycle. During these processes each myosin II molecule undergoes the set of cyclical confor-

mational changes (isomerization). Most of these conformational changes, also denoted as

states, are chemically indistinguishable. During this process the main change is the spatial

rearrangement of the molecule parts.

During myosin biochemical cycle, single cross-bridge interacts with actin �lament form-
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Figure 3.5: Myosin power-stroke mech-
anism as proposed by H. E. Huxley in
1969. He proposed that the source of
force production is rotation of head S1,
where the movement of rotation is trans-
mitted to the actin �lament by the S-2
part of single myosin molecule.The pic-
ture is adapted from [56], [49].

Figure 3.6: A.F. Huxley and Simmons
further enhanced proposals [54] on mech-
anism as depicted in �gure 3.5. They in-
corporated elastic element and stepwise-
shortening elements into force-producing
model. The picture is adapted from [49].

ing actomyosin complex. In each cyclical interaction of myosin with actin, one molecule of

ATP is hydrolyzed by the myosin head into ADP and inorganic phosphate Pi [105]. Each

myosin II motor domain spends most of its ATPase cycle time detached from actin [87].

Kinetic studies showed that the rate-limiting step of the myosin ATPase cycle is the release

of hydrolysis products or an isomerization after ATP cleavage but before Pi release [28].

The relation between force-generation step and phosphatase release is still poorly un-

derstood [87]. The release of Pi and its relation to power-stroke still remains the subject

of intensive research. It is still not obvious, if the release of Pi occurs before or after power
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stroke. In literature, both of these cases can be found (see review article [87]).

For better comprehension of cycle and deeper insight into problem, see �gures 3.7, 3.8

and 3.9. The biomechanical cycle can be described step by step as follows (mainly [15],

[82], [87], [102]):

1. The cycle starts in rigor state. Binding of ATP to myosin motor domain causes

unbinding from actin and a structural change with a swing of the myosin lever arm

- a recovery stroke from previous power-stroke,

2. subsequently ATP is hydrolysed by free myosin to ADP and inorganic phosphate Pi,

but the hydrolysis products remain bound to the active site of myosin,

3. myosin recombines with actin �lament forming cross-bridge in a weak form,

4. subsequently, the release of Pi follows, which is associated with strong increase of

actomyosin a�nity and a large drop in free energy,

5. further follows an appreciable structural change - the power stroke,

6. the cycle is �nished. The next detachment from strongly bound is linked again with

the binding of ATP [120].

The rate of ATP binding to myosin II is 1× 106M−1s−1 [28]. The ADP release is ATP

independent [120]. The recovery stroke occurs in detached state [87]. During eccentric

contraction, after formation of bound, the cross-bridge is pulled in opposite direction to

its power-stroke. In this case cross-bridges might be forcibly detached. This leads to the

situation, where the whole biochemical cycle is uncompleted without release of ADP [87].

Weakly and Strongly bound states

Myosin cycle contains weakly and strongly bound states at actin �lament binding sites.

The idea is that myosin �rst bounds in a weakly conformation [102] and than undergoes

isomerization to a strongly binding form [102] - tight (rigor) bound. It is assumed that

power stroke occurs while the myosin is in strongly bound state.
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Figure 3.7: Schematic representation of cross-bridge cycle during contractile activity. The
picture is adapted from [101].

Figure 3.8: Myosin conformation cycle. Picture shows 10nm power-stroke. The picture is
adapted from [113].
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Figure 3.9: Biochemical and structural states of ATPase cycle. A = actin, M = myosin,
T = ATP, D = ADP, P = Pi. Upper case Ki denotes equilibrium kinetics rates of state
transitions, ki denotes kinetics rates of various state transitions. Adapted from [87].

The initial weak binding is thought to be mainly electrostatic in nature with attached

and detached states in rapid equilibrium [87]. Experiments suggested that the transition

from weakly bound states to the strongly bound states involves a large change in free

energy. Therefore, this change is associated with force generation performed by power

stroke.

Smooth muscle and skeletal muscle myosins spend only a small fraction of their bio-

chemical cycle time ( 5%) strongly bound to actin [120]. The information about exact

time spent in rigor bound varies in literature. The lifetime of a rigor bond without a load

and ATP has been reported to be 102 − 103s [90]. In the presence of external load and

without presence of ATP molecules the myosin detaches within 3s [90]. The duration of

cross-bridge attachment during contraction, i.e. in the presence of ATP, is < 5ms [28]. Or,

depending on the myosin isoform, the duration of step may range from 1− 100ms [120].

Cross-bridge detachment during isometric contraction is quite slow [87]. From experiments

it is obvious that higher loads shorten lifetimes of rigor bond.
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The structure of the actomyosin The actomyosin interaction is believed to be

stochastic [12]. The initial binding is nonspeci�c and dynamically disordered with a range

of azimuthal and axial angles relative to actin �lament[87]. The motor domain of S1 binds

to the actin �lament at an angle of about 45o to the actin �lament axis [102]. The structure

of actomyosin is depicted in �gures 3.10 and 3.11.

Figure 3.10: The interaction of myosin
with actin. The green, red and blue seg-
ments represent the heavy chain. Yellow
segment represent essential light chains.
The magenta segment represent regula-
tory light chain. The picture is adapted
from [101].

Figure 3.11: The structure of acto-
myosin. Adapted from [87].

3.2.3 Single myosin II molecule mechanics

In physiological conditions, the force and displacements produced by myosin head are

heavily in�uenced by external load which dictates their functioning and mechanics [87].

Understanding single molecule mechanics of myosin II is crucial for comprehension to active
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contraction of muscle. Finally in the last years, the progress in technology and developed

techniques allowed to measure with precision of nanometers. Due to quick progress in

technology, it is possible to measure mechanics properties of single cross-bridges as for

example in [62], [63], [68], [90]. Before the description of mechanical properties of single

cross-bridge, it is worth to recall here the the behaviour of single cross-bridge in attached

states in the presence of three main types of contraction:

1. during isometric contraction, the length change of single cross-bridge is thought to

be caused only by power-stroke,

2. during concentric contraction, the length change of single cross-bridge is a simulta-

neous e�ect of power stroke and activity of other cross-bridges on myosin �laments,

which shortens considered cross-bridge by shift of actin �lament. In this case, the

power stroke has the same direction as contraction.

3. during eccentric contraction, the length change of single cross-bridge is a simultaneous

e�ect of power stroke and the e�ect of external force, which stretches the sarcomere

in opposite direction to contraction. Therefore in this case, the direction of power

stroke is in opposite to the direction of "contraction" - eccentric contraction.

Power stroke size vs. size of step/shift/displacement

The length change of a single cross-bridge achieved by power-stroke is still a subject of

debate. A wide range of myosin II steps were measured since the actomyosin complex

attracts attention. Measured steps vary in the range of 4 − 25 nm [81], 1 − 17nm[120],

up to 15 − 20 nm [127]. The wide variety of measured results is without doubts also on

account of precision of laboratory devices.

The data from �bers studies and protein crystallography predicts a stroke size about

10 nm, single molecule studies imply a stroke size for single myosins only about 5 nm [8],

5.3nm [68], 11nm [25], 5− 10nm by an unloaded myosin [87]. For example, the observed

stroke size for a lever arm length for species Dictyostelium discoideum is 5.5nm, whereas
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for smooth muscle myosin it is 9nm [8]. Further, according to results in [25], the ATP

concentration does not a�ect the length of myosin step.

On account of the length of actin �laments shift, it it necessary to distinguish the exact

size of power stroke step and exact size of �lament shift/step. According to results

in single myosin experiments, the power stroke seems to be independent on the load and it

value is 8− 10nm [62], [63]. In contrary to assumed static value of power-stroke, step-size

as the observed sliding displacement can vary with di�erent velocities and loads [63].

The load-dependent step size can be interpreted as follows [62]: the myosin head at-

taches to an actin �lament and perform the working stroke dw generated by conformational

changes of the myosin head. If there is an external load then the elastic part of myosin is

elongated by de. The resulted step size (shift of �lament) ds can be then expressed as [62]:

ds = dw − de. (3.5)

Therefore, in contrary to power stroke, step sizes of single myosin heads as experimen-

tally measured in [62] vary from 4 to 7nm in a load-dependent manner. Without external

load the working stroke distance is equal to sliding step size and consequently the working

stroke in the maximum limit of myosin II sliding step.

Figure 3.12: Stretch of elastic element by power stroke. The picture is adapted from [21].
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Single myosin II molecule force and sti�ness

Force As well as for the size of step, the data on exact magnitude of force production

of single cross-bridge di�ers. On account of force production during muscle contraction and

working properties of single cross-bridge, two magnitudes of force might attract attention.

At �rst, it is the magnitude or better the range of force, which is single cross-bridge able to

produce by itself. As second, it is the magnitude of force, which is single cross-bridge able

to exert upon stretch of external force until it forcibly detaches from actin. Steady-states

forces in the cross-bridge theory are thought to be independent of the history of contraction

[48], [43].

Myosin II is pico-Newton force generator. Measured force per one single myosin head

ranged from 1 to 7pN with average 3.4 ± 1.2pN independent of ATP concentration [25],

1 − 10pN [87]. Recent experiments suggests maximum force per one myosin molecule to

be approximately 12pN [63]. A maximum force of about 10pN is actively developed by a

myosin motor domain [87]. For isometric contraction the average force per myosin molecule

is assumed to be 6pN [63], 3− 4pN [25].

Figure 3.13: Force-length relationship for
single myosin molecule as measured and
published in [62].

Figure 3.14: Force-length relationship for
single myosin molecule as measured and
published in [63].

Pulling cross-bridge in opposite direction to its power stroke lead to the stretching of

myosin's elastic elements which results in higher force production until the cross-bridge

detaches due to binding of ATP or due to forcible detach by external force. Pulling the
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attached head to rupture the rigor state, the average unbinding force was 9.2 ± 4.5 [90].

This force is much smaller than other intermolecular forces, for example 110pN for actin-

actin bound [90]. The maximum strain at which the rigor bond ruptures in experimental

measurement in [90] was 69 ± 27nm. The measured force-length relationship of single

cross-bridge is depicted in �gure 3.13 and 3.14.

Sti�ness of single cross-bridge The cross-bridges contribute signi�cantly to the

total compliance of muscle �bres: 50−70% [89]. The sti�ness of one single myosin molecule

varies in range of 1− 3pN/nm [63], 0.58± 0.26pN/nm [90], in the range 1.7− 3.3pN/nm

[87].

Since the measurements providing just strain showed the linear sti�ness resulting from

S1 domain, the nonlinearity is attributed to S2 region of myosin, i.e. buckled or bended part

of myosin in �gures 3.13 and 3.14. The experimentally measured sti�ness-force relationship

is depicted in �gure .

Figure 3.15: Sti�ness-force relationship. Adapted from [63].

3.2.4 Myosin �lament, thick �lament

As notes already above, the myosin II motor is non-processive molecular motor and operates

in cluster consisting of tens of myosin molecules. The α− helical tails of the myosin II

molecules are packaged into the backbone of myosin �laments [96]. Individual motors
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(cross-bridges) protrude from myosin �lament at regular 14.5nm intervals. Single myosin

�lament is approximately 1.6µm in length. The whole �lament in skeletal muscle, see

�gures 3.16 and 3.17, is bi-polar structure with central barezone, where no myosin heads

are present. This barezone is situated in the middle of the sarcomere. The number of thick

�laments in striated muscle is estimated to be 500/µm2 [28], 470/µm2 [117]. One of the

internal structural part of myosin �lament is also titin.

Figure 3.16: Myosin thick �lament and its bipolar structure. Source of picture [2].

Figure 3.17: Comparison of skeletal muscle myosin �lament (A) and smooth muscle myosin
�lament B. Skeletal muscle �lament is a bipolar structure with a central bare zone without
myosin heads. Myosin �lament in smooth muscle is believed to be "side polar". Adapted
from [18].

A large ensembles of motors acts as a functional unit, although it is assumed that

each cross-bridge acts as independent force generator. Nevertheless, at least one kind of

cooperation might be indenti�ed. Since if they work in ensemble, single myosin can a�ect
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the lengths of others by its power stroke activity. Therefore they "interact mechanically"

as mentioned for example in [124]. As a result, the production of force and displacement

by myosins in muscles is the cyclic interactions of billions of myosin motors [87].

Single �lament mechanics

The myosin �lament length was supposed to be constant in classic cross-bridge theory.

Nowadays, it is experimentally con�rmed that in unactivated state of sarcomere the length

of thick �laments remains constant. Whereas in activated state of sarcomere, there is

frequently reported that myosin �lament shortens sometimes substantially [97].

Mechanical as well as X-ray studies demonstrated that the number of attached heads

includes force-generating and non-force generating heads [63]. In studies, the estimated

number of attached myosin heads producing force varies from 5 % up to 60−70% [25]. The

results in [25] suggests that only 20−40% of the heads produce force at any time although

the X-ray di�raction suggest values at any moment 75 − 90%. But these estimates may

include attached cross-bridges not developing force. It is worth to notice, that some of

these attached myosin head may be bounded under di�erent angles, which could lower the

ability to produce maximal force. X-ray measurement suggests a fraction of ordered heads

in ideal direction is 0.2− 0.3% [25].

3.2.5 Actin - A Linear Track for Molecular Motor Myosin, thin

�lament

Actin �laments with its regular structure serve to the myosin II motors as linear tracks. The

experiments on single myosin molecule also established that the direction of contraction is

determined by the actin �laments [50]. Myosin II moves along actin �lament towards the

plus end [61].
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Structure of actin �lament

Three main compounds comprise actin �lament: actin monomer, troponin complex and

two strands of tropomyosin molecules. Tropomyosin is approximately 42nm long molecule.

It is formed as homodimer or heterodimer of two α-helical chains. Troponin complex

consists further of three proteins: troponin-I, troponin-C and troponin-T. Actin has much

higher sti�ness (approximately 20pN/nm) than myosin [63]. Actin �lament in sarcomere

is approximately 1.0µm long and has approximately 100 Å in diameter. Its axial repeat

is approximately 370 Å[2]. Actin and myosin �laments have di�erent rotational symmetry

and helical symmetry [2].

Structural and biochemical studies suggest that the position of tropomyosin and tro-

ponin on the actin �lament determines the interaction of myosin with the binding sites on

actin [28]. In passive state of sarcomere, the binding sites on actin �laments are blocked

by tropomyosin. Tropomyosin position on the actin �lament is regulated by the occupancy

of NH-terminal Ca2+ binding sites on TnC. The binding of Ca2+ at NH-terminals on TnC

results in conformational change and movement of tropomyosin on actin surface. At the

end, this process leads to the uncovering of cross-bridge binding sites. The states of binding

sites on actin �lament might be denoted as [28]:

1. blocked: cross-bridges are unable to bind the binding sites,

2. closed: cross-bridges are able to weakly bind the binding sites,

3. open: cross-bridges are able to create strong bound with power stroke.

Troponin C (TnC) binds Ca2+, troponin I (TnI) binds to actin and inhibits the acto-

myosin ATPase. Troponin T (TnT) links the troponin complex to tropomyosin.

3.2.6 Spatial arrangement of myosin and actin �laments

The �laments arrangement in sarcomere varies from species to species. The impact of

di�erent arrangements of �laments in sarcomere on muscle contraction remain largely un-

known [114]. To date, the most familiar arrangements are depicted in �gure 3.20.
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Figure 3.18: Structure of actin (F-actin, where "F" stands for �lamentous). Four main
components are: actin monomer (referred as G-actin), tropomyosin and troponin complex
consisting of three components: troponin-C, troponin-I and troponin-T. The picture is
adapted from [2].

In comparison to sarcomere, the arrangement of contractile proteins in smooth muscle

cell is assumed to be random with prevailing direction along the longest "axis" of smooth

muscle. Contractile proteins in smooth muscle cells are assumed to be anchored by so

called dense bodies into cell membrane. For illustration see �gure 3.21.
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Figure 3.19: Atomic model of F-Actin �lament. The arrangement of troponin (Tn),
tropomyosin and actin in the skeletal muscle thin �lament. The various troponin sub-
units are color coded - TnC(red), TnT(yellow) and TnI(green). The picture is adapted
from [28].

Figure 3.20: Schematic drawing of a cross-section through the myosin and action �laments
lattices within the A-band parts of sarcomere. (A) �sh skeletal muscle, (B) insect �brillar
�ight muscle, (C) scallop pecten muscle. Adapted from [2].
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Figure 3.21: Assumed arrangement of myosin and actin �laments in smooth muscle cell.
Modi�ed from [104].

3.3 Contraction - Interaction between Myosin and Actin

Filaments

3.3.1 Contraction velocity

Maximum shortening velocity depends on [ATP ], as emerged for instance in experiment

presented in [81] as well as in other articles. Measured velocities on molecular level con-

�rmed that in the presence of higher calcium concentration the velocities are also higher.

The velocity of concentric contraction ranges from 0.5 − 5.0 muscle length s−1 [18]. At

maximal shortening velocity, the rate-limiting step in a cross-bridge cycle is the hydrolysis

of ATP and the release of Pi and ADP from the myosin head [110]. Maximal velocity vmax

is more temperature sensitive than maximal exerted force Fmax. The measurements on

sigle myosin molecules established that speed of contraction conducted by sigle myosin was

close to the unloaded sliding speed of the �laments in the muscle from which the myosin

was obtained [50].
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3.3.2 Regulation of contraction - regulation of cross-bridge cy-

cling activity

In vertebrate striated muscle, contraction is regulated primarily through Ca2+ e�ects on

actin �lament, where concentration of Ca2+ regulate strong cross-bridge binding to actin

[28]. This regulation is often referred as thin �lament regulation. The primary regulation

of smooth muscle contraction is through the phosphorylation of myosin light chain by a

calmodulin-kinase mechanism [18]. This regulation is often referred as thick �lament reg-

ulation. In striated muscle, the main source of Ca2+ ions are primarily internal structures

called sarcoplasmatic reticulums. Whereas in smooth muscle the main source of Ca2+ is

external environment of smooth muscle cell.

In striated muscle, the position of tropomyosin and troponin on the actin �lament

covers/uncovers binding sites for myosin heads (for cross-brides). Tm position on the

actin �lament is regulated by the occupancy of NH-terminal Ca2+ binding sites on TnC.

TnC then can be denoted as the Ca2+ sensor in skeletal and cardiac muscle contractile

regulation. The expose of myosin-binding sites on actin increases the a�nity of actin for

myosin. The a�nity of all actins for myosin is further increased when su�cient number of

strongly attached cross-bridge displace (or stabilize the displacement of) the tropomyosin

further than occurs with Ca2+ binding alone [28].

The initial rate of force development depends mostly on the extent of Ca2+ activation of

the thin �lament and myosin kinetic properties [28]. The regulation of contraction might

be further modi�ed by the activity on myosin light chains. Essential light chains may

modulate ATPase activity [10]. The regulatory chains can be reversibly phosphorylated

which can in�uence the rates of tension development [10].

As stated in [28], physiological studies suggest the following process of regulation of

contraction:

1. Ca2+ ions bind to troponin and tropomyosin which results in opening of the binding

sites on the actin �laments. Myosin heads can consequently attach at these places.
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2. Ca2+ regulates the strong binding of myosin to actin, which precedes the production

of force and release of hydrolysis products.

3. A small number of strongly attached cross bridges can activate the actins in one unit

and perhaps those in neighbouring units. This results in additional myosin binding

and isomerization to strongly bound states and force production.

4. The cooperativity between neighboring regulatory units contributes to the activation

by strong cross bridges of steady-state force but does not a�ect the rate of force

development.

5. Strongly attached cross bridges can delay relaxation in skeletal muscle in a coopera-

tive manner.

6. Strongly attached and cycling cross bridges can enhance [Ca2+] binding to cardiac

TnC, but in�uence skeletal TnC to a lesser extent. Di�erent Tn subunit isoforms

can modulate the cross-bridge detachment rate as shown by studies with mutant

regulatory proteins in myotubes and in vitro motility assays. These results and

conclusions suggest possible explanations for di�erences between skeletal and cardiac

muscle regulation.

7. In some cases, the light chains are believed to modulate the basic functions of the

globular head [10].
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Quick summary of chapter

Molecular motors are molecular (protein) mechanisms that are able to cyclically con-

vert chemical energy into mechanical energy. They operate in the realm of nanome-

ters surrounded by stochastic behaviour induced by thermal noise. In contrary to

macroscopic engines, they operate under isothermal condition. Their working cycle

is powered by chemical reactions. The beginning of understanding to molecular mo-

tors is strictly connected with muscle science and its early research during 1950s.

In all kinds of muscles, the main propelling source and force generator is molecular

motor mysin II. Single myosin is able to exert the force in the range of units of pN .

Myosin II is found at the lowest level of the muscles structural hierarchy. Myosin II

is non-processive molecular which acts in ensemble. During its working cycle, it is

able to attach and shift actin �laments in the direction to the centre of sarcomere.

The crucial force generating step in its working cycle is called power stroke, which is

the biggest conformational change in its mechano-chemical cycle.



Chapter 4

Titin - An Entropic Molecular Spring

Titin, also known as connectin, is the largest protein currently known in the natural world

[80]. Titin molecules are formed from the largest polypeptides found in nature [118]. Titin

is the third most abundant protein in sarcomere after actin and myosin [72]. It constitutes

about 10% of the total muscle protein mass [64]. About 90% of titin's mass consists of

repeating immunoglobulin-C2 (Ig-domains) and �bronectin-III (Fn-3) domains [72]. The

resting 10% of its mass consists of non-repetitive sequences as N2B, N2A and PVEK region

(see �gures 4.2 and 4.1).

Figure 4.1: Titin's domains and titin's parts in its structure. Modi�ed from [98].

The exact shape and properties of single titin molecules slightly varies with concrete

species. On average, the main structure and characteristic properties remain similar. 90%

of its polypeptide mass is organized into modular repetitive units. One molecule of titin

can be up to 1µm long [118]. For instance in [66], the mean contour length of titin is

stated as 0.87µm + / − 0.08. The diameter of this protein is about 4nm [119]. Titin

91
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Figure 4.2: Sarcomere structure and the titin structure in the skeletal and heart muscle.
The picture was adapted from [30].

weights 3.0− 3.7 MDa (million-dalton) [66] or as published in [31] 4.2 MDa.

Titin plays a number of important roles in sarcomere. From a mechanical point of view,

for its nature and the characteristic behaviour in sarcomere, titin is commonly denoted as a

molecular spring. Titin as a molecular spring in�uences distinct biomechanical properties

of sarcomere not only during contraction. As a spring, titin contributes signi�cantly to the

contraction, elasticity and viscous e�ect of sarcomere notwithstanding if the sarcomere is in

activated or deactivated state. The diversity in myo�brillar passive elasticity among species

is associated with di�erent titin isoforms. Furthermore, in comparison among striated and

cardiac muscles, the observed passive forces in cardiac muscle are higher in comparison to

skeletal muscle [60].

Moreover, titin a�ects the rest lengths of sarcomere, operating range of sarcomere's

lengths and passive elastic properties of sarcomere[119]. Titin as a passive force producer

is responsible for restoring muscle length after release [67] of deactivated muscles. Titin is

also important for maintaining structural integrity of sarcomere. In particular, it anchors

and maintains myosin thick �laments in the central position of sarcomere and ensures a
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balance of forces in the two halves of sarcomere during contractile cycles [31]. The crucial

part of titin a�ecting the passive production of force in sarcomere is found in I-band region

of sarcomere.

Besides other things, titin also interacts with a majority of sarcomere proteins [118].

Titin can be also involved in signal transduction [72]. Nowadays, titin is also believed to

be important regulator of active force especially during eccentric contraction as explained

at the end of this chapter.

4.1 Repetitive building blocks of titin

Immunolgobulin and �bronectin-3 domains are common building blocks of many extra-

cellular proteins as well as group of intracellular proteins associated with the contractile

apparatus of muscles [118]. Arrangement of Ig and Fn-3 domains is assumed to be serial as

in chain. Titin isoforms in cardiac and skeletal muscle contain between 240 and 300 of Ig-

and Fn-like domains [118] with each domain in length of ∼ 4nm [118], [31]. Ig and Fn-3

interdomain mobility and structural stability directly a�ect passive mechanical properties

of muscles. As stated in [66], the only point of attachment among the titin's component

(single oligomers) molecules are globular heads of single oligomers. The rest building parts

along titin's contour length does not form any connections between neighbouring molecules

among oligomers.

4.2 Titin in Sarcomere

In I-band part of saromere, the titin is anchored at one side to the Z-line. At the other

side, the titin is anchored to M-line. In A-band, titin is strongly attached to the thick

myosin �lament.
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Figure 4.3: Structure of titin Ig domains as solved by x-ray crystalography. These domains
are representative for proximal Ig domain segment I1, distal Ig domain segment I27, and
the segment in A-band M5. The picture is adapted from [118].

4.2.1 Titin in I-band

In the I-band of sarcomere, the titin forms the elastic connection between the myosin

�laments and Z-line. This part of titin strongly in�uences the passive force production

(elasticity) in sarcomere namely during stretch notwithstanding if the sarcomere is acti-

vated or not. This part of titin comprises only from Ig domains and unique sequences.

I-band part of titin does not contain Fn-3 domains [118]. Ig domains are arranged in

tandem at two parts of titin: the distal region near to myosin �lament and proximal

region near to Z-line. The proximal tandem near to Z-disk contains of 15 Ig domains [31].

The distal tandem near to A-band contains of 22 Ig domains [31]. Between the distal and

proximal region there is N2-PEVK region containing unique non-repetitive sequences of

titin.

N2-PEVK region can be further divided into PEVK region and speci�c N2A, N2B

regions. This part contains approximately 18-residue1-containing PEVK segment. PEVK

unique sequence comprises of a proline (P)-, glutamate (E)-, valine (V)- and lysine (K)-

rich domains [66], [31]. The contour length of PEVK region is ≈ 826nm [31].

1wikipedia:In chemistry, residue is the material remaining after distillation, evaporation, or filtration.
Residue may also refer to an atom or a group of atoms that forms part of a molecule, such as a methyl
group. It may also denote the undesired by-products of a chemical reaction.
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All skeletal muscle isoforms contain in I-band the N2A element. All isoforms of muscle

contain also variable number of additional Ig domains in proximal tandem Ig segment and

variable number of additional PEVK residues. The cardiac muscle might contain in I-band

region two types of titin: N2B titin, containing N2B speci�c segment, and N2BA titin,

containing speci�c N2B and N2A segments. N2BA titins are less sti� [31].

Ig-domains in this part of titin are believed to serve as "molecular springs" and on the

other hand N2-PEVK is believed to have the property of titin modulation.

4.2.2 Titin in A-band of sarcomere

In A-band region of sarcomere, the titin is the internal part of myosin �lament. In this

region, titin is mostly formed by Immunoglobulin and Fibronection-3 domains [31]. The

A-band region of titin does not participate in passive force production under physiological

conditions [64].

4.3 Titin Mechanics

In the absence of external forces, the I-band region of titin is highly folded [72]. During

the stretch, titin parts in I-band region extend and develop passive forces according to

their characteristic elastic properties. Other parts of titin except the part of titin in I-band

seem to be inextensible [72] under normal physiological conditions. Nevertheless, these

parts have capability of extension in the presence of higher external forces.

Although, in some articles the titin is referred also as a bidirectional spring (for example

in [72]) exerting force upon press, the titin molecule is mostly considered as unidirectional

spring producing force only and virtually by stretch of external force - the case of eccentric

contraction namely. If it is under the press, it is considered that it behaves as a free band -

the case of concentric contraction. During the isometric contraction, the titin is considered

as it does not change its length (approximately). Therefore, during isometric contraction it

might contribute to the total sarcomere force production only in a case if it was stretched
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before the sarcomere was activated or if the isometric contraction follows after eccentric

contractions.

Titin's extensible region consists of tree spring-like subsegments (Ig-domains, PEVK

and N2A,B regions ) with distinct extensible properties [31]. Single molecule experiments

as well as experiments with multiple titin molecules revealed that titin molecules exhibit

properties of nonlinear entropic spring with partial unfolding during the stretch at high

forces and refolding at low forces during the release [64]. In some cases and articles, the

unfolding of titin parts are believed to be a cause of viscoelastic properties namely due to

Ig-domains unfolding [85].

Measured data and theoretical models suggested that titin molecules behave as inde-

pendent worm-like chains. Single experimental molecule studies con�rmed that worm-

like-chain model (WLC) can describe entropic elasticity of titin. Worm-like-chain model

su�ciently describes the force-length relationship of titin. WLC model was with suc-

cess applied to describe elasticity of single titin molecule, its parts, as well as bulk of titin

molecules. The good compliance for data �t with WCL model suggest that multi-molecular

titin chains act in parallel or nearly parallel arrangement of independent chains [66]. The

mathematical WLC model is more profoundly introduced further in chapter 5.

4.3.1 Single titin molecule mechanics

The extension of titin's parts depends on the amount of external force and the amount

of extension. Therefore, at speci�c extension of titin, the extension of particular parts

dominate.

Ig-domain/segment extension - low forces

At low forces, i.e. at the start of stretch, the extension of tandemly connected Ig-domains

dominates. Extension of the tandem Ig segments in short to intermediate long sarcomeres

results from the unbending of sequences that serially link Ig domains [31]. During the

stretch, the Ig-domains extend, unfold and straighten themselves [72]. It is assumed that
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the Ig-domains extend, in average, uniformly. When the single sarcomere is stretched to

the intermediate sarcomere lengths ( 2.0− 2.6µm for soleus muscle ), the Ig-segments are

found to be already greatly extended [31].

PVEK domain extension

As forces acting on titin arise, random coil sequences within the PEVK segment begin also

extend. PEVK region is the major source of extensibility in titin in intermediate to long

sarcomere lengths [31],[85]. In highly stretched sarcomeres, the PEVK region was found

to extend up to 750nm [31].

Extension of N2B unique sequence

At higher forces, the random coil sequences in the N2B (cardiac speci�c segment) element

extend also [72], [31]. N2B as the third spring element in cardiac titins is then the major

source of extensibility at the upper range of physiological sarcomere lengths in the heart

[31].

4.3.2 Unfolding and refolding of single protein

Individually folded domains are common parts of proteins [11]. Application of mechanical

force to biological polymer produces conformations that are di�erent in comparison to

those which were investigated and achieved by chemical or thermal denaturation [26].

Mechanical force induced conformational transitions (unfolding) are therefore considered

as physiologically important [26]. As individual domains unfold, the force produced by

polymer chains relaxes. Hence, the viscoelastic properties of titin are believed to be namely

due to Ig-domains unfolding [85].

Spontaneous unfolding

The native state of proteins is the most stable and therefore proteins rarely unfold spon-

taneously [11]. The spontaneous unfolding of isolated Ig domain and Fn-3 domain is esti-
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mated to occur at rate 10−3 to 10−4s−1 [11]. On the other hand, the refolding is typically

much faster with rates in the range of 1 to 100s−1. Therefore, the spontaneous unfolding

of individual Ig domains and other part of titin is highly unlikely.

Unfolding indicated by stretch

The single-molecule experiments showed that application of force by stretching the molecules

of titin results in unfolding of Ig-domains by breaking the inter and intra-sheet bonds [31].

Unfolding of Ig domains during the stretch shows characteristic "saw-tooth" pattern in

titin's force-length relationship (see �g. 4.4) .

Figure 4.4: Typical response to force of protein unfolding achieved by Atomic force micro-
scope. The graph is adapted from [26].

The measured data of force-extension relationship contains force peaks which cor-

respond to individual domain unfolding [66]. These force peaks are typically roughly

equidistant in single molecule stretching [66]. These peaks can be noticeable even in multi-

molecular measurement [66]. Experimental measurements such as [64] indicate that various

globular domains such as Ig domain, N2 region, PVEK region in titin require di�erent un-

folding forces due to di�erences in the activation energies for their unfolding [64].

The average force of unfolding is shown to depend on the pulling rate [11]. Unfolding

force of Ig-domains varies with speed of stretch. The unfolding forces were measured in

the range 150− 300pN for stretches speed in the range 1− 1000nms−1 [31].

The single molecule experiments suggested that unfolding of Ig-domains evince also
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probabilistic behavior of unfolding without exceeding some force threshold value. Whereas

the experiments on a bulk of titins molecules demonstrated that it is unlikely for Ig-domains

to be unfolded under normal physiological conditions [85]. The Ig-domains unfold with a

probability that increases with increasing force and passing time [30].

The exact properties of titin's domain is nowadays still a subject of intensive research.

Due to this fact, the available information might be in contrary. Some authors therefore

also assumed that the titin parts are already unfolded before the stretch (for example [67]).

Or, as stated in [72], the unfolding of individual Ig domains is highly unlikely. Or, under

physiological loading conditions, unfolding is unlikely to be major source of (visco)elasticity

[117].

Refolding Refolding is not observed in presence of force [85]. Once the Ig-domain is

unfolded, it remains in unfolded state until a low force is reached during release [31].

Hysteresis of titin/sarcomere

On account of unfolding/refolding of titin's domains during stretch, titin is also considered

to be the main source of sarcomere hysteresis. Stretch and consequent release of single

titin molecule show hysteresis properties [67]. This is likely due to the domain di�erent

folding/unfolding rates (see �gure 4.5).

Figure 4.5: Measured single titin molecule hysteresis. The graph is adapted from [67].
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4.3.3 Changing of mechanical properties of titin molecule

The performed experiments showed that mechanical properties of titin molecule are mod-

ulated by various factors. Titin interacts with a majority of sarcomere proteins [118] and

chemicals, which leads to modulation of titin's mechanical properties. Before all, mechan-

ical properties of titin can be modi�ed by various Ca2+ concentration and by phosphory-

lation. Further, mechanical properties vary among the species on account of the number

of unique sequences in sarcomeres.

Calcium binding

There is an evidence [17] that titin changes its mechanical properties upon chemical acti-

vation by calcium. According to latest available measurement and proposals (for example

[17]), �uorescence microscopy showed that individual Ig domains change their mechanical

properties and structure in the presence of calcium ions. Fluorescence microscopy showed

that calcium binding is responsible of Ig 27 structure change [17]. A conformational change

in I27 is attributed to enhanced mechanical stability. This can lead to the increase in a

force demanded to extend and unfold the Ig domains. The measured di�erence in force

production with and without calcium can be seen in �gure 4.6.

Figure 4.6: Unfolding of seven (of eight possible) distal cardiac Ig domains with atomic
force microscopy. Broken line represent 200pN . Left part of graph shows control force-
length curve without presence of calcium. Right part of graph shows force-length curve
with presence of calcium. The graph was adapted from [17].

The next structural domain of titin, the PEVK segment, binds calcium with hight

a�nity [31]. After calcium is binded to PVEK, experiments showed that calcium induced
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conformational changes reduced the bending rigidity of the PEVK segment[75].

4.4 Binding of titin to actin �lament - a clue to mod-

i�cation of classical Huxley's cross-bridge model

and hint to explanation of eccentric contraction

When activated sarcomere is stretched by external force (eccentric contraction), according

to classical cross-bridge theory the force production should cease to exist behind the overlap

of thin and thick �laments. This does not correspond with observed experiments, where

the force rise up during the stretching of sarcomere. Further, when activated sarcomere is

stretched and then left to relax to isometric contraction with new corresponding length, the

new value of produced force is higher than predicted by classical cross-bridge theory. This

phenomenon related to eccentric contraction and force enhancement phenomenon might

be explained by nowadays observed and investigated "hidden" properties of titin.

The experimental measurements indicated that the behavior of passive forces di�er

in active and passive states of sarcomere, i.e. in presence of high resp. low calcium

concentration. As discussed and experimentally observed in [80] and [40], although there

are some changes in force regulation due to phosphorylation and calcium binding to titin

domains, the resulted forces in and after stretch are still bigger than the forces expected

by classical cross-bridge theory and purely stretched titin molecules.

As a crucial modi�cation of titin's mechanical properties it seems to be that the titin

is able to bind at actin by PVEK or N2A region [40], [80], [43]. This might be a result

of modulation of "free spring" (titin) length. As a result of this assumption, sarcomere is

able to produce more force during the eccentric contraction [40], [80], [43] since the local

deformation achieved by stretch of titin parts is much higher than local deformation of

detached and deactivated titin.

In brief summary, titin changes namely its material properties in activated saromere

by the presence of calcium in two ways [43]:
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Figure 4.7: Titin-induced force enhancement. A: Left part of picture represents stretch
of deactivated half-sarcomere. Right part of picture represents stretch of activated half-
sarcomere (eccentric contraction). B: The e�ects of titin's modulated properties illustrated
in force-length graph. Adapted from [43].

1. by changing its material properties,

2. by changing its free spring length.

The scheme of proposed titin mechanism is depicted in �gure 4.7.

The theoretical model of the titin binding to actin is the main subject of this work

and is discussed further in the text in chapters 5, 6, 7. In conclusion to this chapter,
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it is important to highlight here how the titin contribution to the force production is

considered regarding to the rest types of contraction. During concentric contraction, the

titin is assumed to be attached at actin. But in this case, it is considered as it produces no

force, since the distance of its both end is shortened and the titin is considered to behave

as a free band. During isometric contraction, it is again considered as it is attached but is

neither stretched or shortened, therefore produces again no force.

Quick summary of chapter

Titin is the third most abundant protein in sarcomere. It has various physiolog-

ical and mechanical properties important for sarcomere. It maintains sarcomere

structural integrity. It is virtually exclusively source of passive forces in sarcomere.

Further, it is important stabilizer for sarcomere and regulator of active force. It

anchors myosin in the sarcomere. Titin restores sarcomere relaxed length. Latest

research indicated that the role of the titin during contraction might be much more

important than originally thought. It seems like the titin can also actively contribute

to the force regulation namely during eccentric contraction. Latest results found new

properties of titin's force modulation namely by chemical modulation and further by

binding to actin, which results in decrease of titin's free length.



Chapter 5

Mathematical Models - A Brief

Overview

Regular structure of muscles has always been a challenge and motivation to develop an easy

and transparent model describing properties of muscle contraction. During the decades,

a vast variety of models have been proposed in the range from molecular level to tissue

level. More concretely, this rage comprises from the scales of nanometeres up to scale of

centimeters/metres. Regardless the scale, the models at each level are (must be) still a

compromise among inclusion of all aspects and mathematical model complexity. Especially,

if the mathematical models should describe all muscle properties, then the muscle models

need to contain mechanical, physiological and structural properties [34] as well as properties

of chemical reaction.

On account of the models related to skeletal muscle contraction mechanics, there can be

found at least one possible simpli�cation of mathematical models regarding to the number

of spatial variables. Since the molecular motors act on proteins in a shape of �laments,

which imposes the movement on a "line", the mathematical models can be in most cases

usually one dimensional in spatial variable with the second time variable. Besides this,

another reason to develop models only with one spatial variable is also the fact that it is

much easier to compare the theoretical results with experimental data, which were obtained

104
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from the experiments conducted on contractile activity only in one direction as well [125].

This chapter is intended to present some of the selected important models for better

comprehension of the aims of this work. The following introduced models are presented as

published in literature with their achieved results.

5.1 Single myosin molecule mechanics

5.1.1 Force production of single cross-bridges

The mathematical descriptions of single myosin molecule elasticity are trivial models re-

lating force-extension properties according to particular sti�ness of single cross-bridges.

But it is worthwhile to express it here, because then the comprehension namely of term of

power-stroke might be much more clearer. Further, it might help to understand, why the

single myosins acting in ensemble are able to produce di�erent values of elastic forces by

which they contribute to the resulting magnitude of the active forces in sarcomere.

Let's recall here the already presented model of magnitude of step-size of a single cross-

bridge after power-stroke:

ds = dw − de, (5.1)

where ds is resulted step (shortening, shift of actin �laments) conducted by single cross-

bridge after power-stroke, dw is the magnitude of power-stroke (assumed to be constant)

and de is the elongation of cross-bridge's elastic part. de depends on initial position of

cross-bridge and on the external force. de can be zero and under special condition it might

be negative to express the acting against the direction of active contractile activity.

The force F produced by single cross-bridge might be then simply expressed as:

F = k(de)de, (5.2)
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where k is the sti�ness of single cross-bridge. Regarding to the value of de, the force might

be zero or under special condition negative as explained above.

5.1.2 Strongly bound duration

One of the processes a�ecting the properties of contraction is the time, which single cross-

bridge stays weakly and consequently strongly bounded to actin. This time might be

expressed as [120] :

τon = τ−ADP + τ+ATP , (5.3)

where τon is time that myosin spends strongly bound to the actin �lament, τ−ADP is

constant for ADP release and τ+ATP is the time of ATP binding.

Figure 5.1: Strongly vs. weakly bound duration. The picture was modi�ed from [120].

It can be further rewritten in the terms of rate constant k−ADP , k+ATP [120]:

τon =
1

k−ADP + 1
[ATP ]k+ATP

(5.4)

which says that at low concentration of [ATP ] , the contraction is limited by unbind-

ing, whereas at high concentration of [ATP ] the needed time spent at strong bound is
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determined mainly by ADP release, which is consistent with measurements [120].

5.2 State models of molecular motors

Mathematical models of molecular motors describe mostly their properties on molecular

level, i.e. on the scale of nanometers. There is a wide variety of di�erent models. Among

the most common approaches belong for instance models based on Langevin equation,

Brownian (continuum) ratchets models, Fokker-Planck equation, discrete stochastic mod-

els, atom molecular dynamics and state models [74], [125]. Classical Huxley's cross-bridge

theory is primarily based namely on state models. More concretely, classical Huxley's

cross-bridge is two state model.

Figure 5.2: Diagram of a four state model with states A, B, C, D and kinetic rates ki, i =
1, .., 8.

State models usually facilitate the description of the connection between biochemical

cycle and movement of molecular motor. Therefore, these kinds of model are often called

mechanohemical models. In general, the term "state" can be any property of molecular

motor. The number of states in model depends only on the amount of the studied proper-

ties. States models then describe transitions among studied states. Although the transition

between two states might behave as "discrete steps", the transitions are often treated as

continuous.
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The example of a four state model with stated A, B, C, D is depicted in picture 5.2.

This four state model can be easily described by a set of ordinary di�erential equations as

in equations 5.5, where on the left side are time derivatives of states determined by the

matrix of kinetic rates on the right side. The set of equations as 5.5 is often accompanied

by the condition of conservation as in this case would be A+B +C +D = 1. More about

state models can be found in [78], [77].

d

dt



A

B

C

D


=


−k1 − k8 k2 0 k7

k1 −k2 − k3 k4 0

0 k3 −k4 − k5 k6

k8 0 k5 −k6 − k7


︸ ︷︷ ︸

matrix of kinetic rates



A

B

C

D


(5.5)

5.3 Hill's model of the force-velocity relationship

Notwithstanding the Hill's equation is not the main subject in presented work, it is worth-

while to introduce it here with more attention. One of the main reason to introduce here

Hill's equation is among the others that the Hill's formula played also its key role, when

Huxley has derived his mathematical model of cross-bridge. In particular, Huxley set the

kinetic rates f, g in his model according to the results achieved by Hill in his article The

heat of shortening and the dynamic constant of muscle form year 1938 [44]. Nowadays,

it can bee shown that these two models are closely related and the values of coe�cients

a�ecting the resulted shape of Hill's curve have their origin in actomyosin kinetics as can

be seen for example more profoundly in [110].

Hill's model [44] relates force and velocity of isotonic concentric contraction of muscle

�bre. Hill's force-relationship describes a steady-state property of muscle during isotonic

concentric contraction. The example of force and length evolution during isotonic concen-

tric contraction is depicted in �gure 5.3. Hill's model was proposed before the sarcomere

structure, i.e. �laments overlap and actomyosin interaction, was known. Therefore, this
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type of model is often considered and used as purely empirical without deeper insight into

molecular mechanism of muscle contraction.

Figure 5.3: Length and force during isotonic contraction, which started from isometric
contraction. Time course of the length response to a force step during an isotonic quick
release. The shape of phases 1-2-3 is caused by transient behaviour of elastic element in
muscle and cross-bridge transient behaviour. The phase 4 is characterized by linear slope
during steady-state isotonic shortening. The picture was adapted from [110].

In the end of 1930s, Hill noticed in his experiments that during the isotonic contraction

of muscle, the relation between constant contraction velocity of shortening and the load P

(force) is su�ciently expressed by the force-velocity hyperbolic formula [44]:

(P + a)(v + b) = (P0 + a)b = const., (5.6)

where P is the external load of muscle during isotonic concentric contraction, v is

the constant rate of muscle shortening/contraction. Coe�cients a and b are constants

determined by experimental data. P0 is maximum force achieved in isometric contraction

(v = 0). a, b, P0 coe�cients are characteristic for studied type of muscle. Accordingly, the

exact curve and the constants of Hill's equation are obtained from curve-�tting of measured

force- velocity data. The exact shape of force-velocity relationship is a�ected by �ber type

of a single species and actomyosin kinetics [110]. Further, the constant a was found to

match closely to an empirically derived thermal constant of shortening heat [44]. At that
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time, the form of Hill's equation impressed astonishingly by its simplicity.

The Hill's equation describes only the part capturing isotonic quick releases in the

range of 0 − Fmax, where Fmax (P0) is maximal isometric force. Before an isotonic quick

release, the muscle is activated at �xed length. Therefore, the initial state is isometric

contraction. Then the muscle is suddenly released to a lower and constant external load,

i.e. isotonic load. After a while and after characteristic transitional changes in velocity, the

muscle reaches steady state with steady velocity moving against adjusted known constant

external force (see �g. 5.3).

Figure 5.4: Relation between load and speed of shortening in isotonic contraction. The
curve is calculated from the equation (P + 14.35)(v + 1.03) = 87.6. Hence a = 14.35,
b = 1.03cm/sec = 0.27length/sec. The graph with its description is adapted from [44].

Hill's equation at low and high loads At low loads about 5%Fmax, the measured ve-

locities exceeded those predicted by the Hill's hyperbola. And contrary, at the extrapolated

zero load, Hill's equation underestimates the value of vmax. Further, the Hill's formula does

not describe accurately enough the force-velocity relationship for loads greater than 80%

of isometric force [110].

To conclude, Hill's equation is still the predominant method used to characterize muscle



CHAPTER 5. MATHEMATICAL MODELS - A BRIEF OVERVIEW 111

Figure 5.5: The dashed line and closed circles depict power output (= F.v) of muscle. The
solid line and open circles is force-velocity relationship. The graph is adapted from [110]
where it was modi�ed originally from [44].

performance, although it is purely empirical and lacks precision in predicting velocities

at hight and low loads [110]. Before all, this model captures the muscle property that

the muscle shortens faster against light loads than it shortens against the heavy loads.

The fact that the muscles shorten rapidly under light load and vice versa was known

before Hill's work [10]. Although the Hill's equation was deduced purely out of empirical

measurements, interestingly the latest measured data and cross-bridge kinetics gives to

this equation meaningful sense [110].

Regardless the discrepancies as noted above, the Hill's equation is still accurate enough

to describe the contraction velocities in the force range of 0.05 − 0.8Fmax [110]. The

property of muscle that is often searched by Hill's equation is maximum power output of

muscle. This maximum lays close to 0.3Fmax [110], which is in the range as noted above.

Disadvantage of Hill type of mathematical model is that it does not re�ect or connect

microstructure of muscle. On the other hand, these type of models are still widely used

to describe or simulate behaviour of skeletal muscle as "black box" since the numerical

implementation is easier to compare to Huxley model.
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In comparison to Huxley's model, the Hill's equation may stay popular till nowadays

also because of its relative simplicity. Therefore it is still used to understand the basics of

animal locomotion and to design of muscle-powered devices like bicycles [110], [32], where

it helps to keep the shortening velocity near the value of the maximal power.

5.4 Huxley's cross-bridge model and Huxley type of

models

The 1957 cross-bridge model of muscle contraction proposed by A. F. Huxley was primarily

developed to help to explain the molecular origin of muscle contraction. Due to this reason,

in comparison with Hill type of models, the models based on Huxley's approach have an

advantage of better possibilities of integration of physiological properties on molecular level.

Although the 1957 Huxley's theoretical proposals on molecular mechanism of contraction

did not have the exact experimental support for next few decades, his work paved the way

of muscle research direction. The main ideas of his work persisted till nowadays enriched

and supported by actual results from experiments and theoretical proposals.

Figure 5.6: Historical diagram showing the arrangement of the �laments, which was sug-
gested during the 1950s. Note that in comparison to recent schemes as in picture 2.3 on
page 36 and in picture 4.2 on page 92 the titin �laments are completely missing. Further,
the single actin �laments were assumed to connect both Z-lines across sarcomere. The
pictures was adapted from Huxley's 1957 article [48].

Since Huxley published his original model in 1957, a lot of modi�cations of this model

were published as reactions on actual state of art in physiology or as proposals on solution

of unclear properties of muscle physiology. The importance of original Huxley's article



CHAPTER 5. MATHEMATICAL MODELS - A BRIEF OVERVIEW 113

Figure 5.7: Diagram illustrating the mechanism of contraction (tension generation) as
suggested by Huxley in 1957 [48]. The part of a �bril which is shown is in the right-hand
half of an A band, so that the actin �lament is attached to a Z line which is out of the
picture to the right. The arrows give the direction of the relative motion between the
�laments when the muscle shortens. The picture with its description is adapted from [48].

might be substantiated by the numbers of its citations. Till July 2016, it was 1704 times

cited in Scopus or 2272 times cited in Web Of Science databases.

The common assumptions for the Huxley's type of models are [45], [48], [87], [128]:

• the assumption that the cross-bridges are independent force generators,

• the assumption that at any instant of time each cross-bridge has possibility to bind

with signi�cant probability (one binding site preferred) only one actin binding site,

• the myosin heads, even on the same myosin molecule (same cross-bridge), do not

compete for the same binding site on actin,

• the binding of one head does not a�ect the kinetics for any transition of another

head.

In original Huxley's 1957 paper, Huxley solved and presented results only for steady-

states examples of isometric contraction and isotonic concentric contraction with constant

velocity. The original Huxley's model as published in his 1957 article has a form as follows

[48]:
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∂n

∂t
= (1− n)f − ng (5.7)

−v∂n
∂x

= f − (f + g)n, (5.8)

where variable n Huxley de�ned as the proportion (distribution) of all sites at which myosin

is combined with the actin with corresponding variable x. The variable x Huxley de�ned

as the position relative to the equilibrium position of myosin site (see �gure 5.7). v is

the velocity of contraction, where the positive values of contraction represent concentric

contraction, zero velocity is isometric contraction and negative values of velocity represents

eccentric contraction (stretch). t is obviously time. f and g express kinetic rates of binding

respective unbinding of myosins to actin.

Through the literature, the Huxley's de�nition of variable x de�ned by word equilibrium

might lead to confusing interpretation especially on account of the meaning of mechanical

equilibrium in classical mechanic. Therefore, to clarify it, let's simply understand the vari-

able x as the displacement of free end of spring from its relaxed state, i.e. as displacement

in simple case of force F production described by 1D Hooke's law F = kx, where k(x) is

the sti�ness of considered spring.

The equation 5.7 in Huxley's model represents nothing else than the state model with

two states: bound and unbound states of considered cross-bridges. The second equation

5.8 in Huxley's model describes the steady-state form of distribution n of connected cross-

bridges with considered value of contraction velocity v. The exact shape of distribution n

might be denoted as one of the central points in cross-bridge theory because the shape of

distribution n strongly a�ect the main mechanical properties of muscles.

Probably more famous form of Huxley's equation describing the distribution n is the

equation in a form:

∂n(x, t)

∂t
− v(t)

∂n(x, t)

∂x
= f(x)(1− n(x, t))− g(x)n(x, t). (5.9)
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This equation allows to simulate also transient states of muscle contraction. The source of

this equation is again referred as the original Huxley's 1957 article [48] although the equa-

tion in this form is not presented in original Huxley's 1957 paper since Huxley considered

(probably) only steady-state of muscle contraction as already mentioned above. On the

other hand, the relation between equation 5.9 and equations 5.7, 5.8 is straightforward since

in particular equation 5.8 express steady-state form of equation 5.9. Further, the equation

5.7 describes the time evolution of n distribution in a case of isometric contraction, i.e. in

a case where v = 0.

On account of the mathematical forms of kinetic rates f, g, Huxley has chosen the ki-

netic rates of binding/unbinding rates to �t the experimental data of concentric contraction

as measured by Hill in 1938 on myo�brils. The rates f(x), g(x) then have forms as follows

[48]:

f(x) =


0 −∞ < x < 0,

f1
x
h

0 < x < h,

0 h < x <∞,

(5.10)

g(x) =

 g2 −∞ < x < 0,

g1
x
h

0 < x <∞,
(5.11)

where h represents the largest cross-bridge lengths at which a single myosin molecule can

bind to an actin [48]. f1, g1, g2 are constants. Depicted rates can be seen in �gure 5.8. The

meaning of the rates regarding the physiology might be expressed as the cross-bridges can

bind only in range x ∈ [0, h] with binding rate f(x). Theoretically, once the cross-bridge is

attached, its displacement x may change also to the values outside interval [0, h] due to the

contractile activity. Therefore and for mathematical convenience the unbound rate g(x)

is de�ned in interval (−∞,∞). The increase of unbound rate de�ned by g2 >> g1 has a

meaning of rapid unbound to prevent the force production in reverse direction. Note, that
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according to rates as de�ned by Huxley, it was not assumed that cross-bridge can not bind

with zero displacement x.

Figure 5.8: The shapes of kinetic rates: f - bounding rate, g unbinding rate as proposed
by Huxley in [48].

Based on the de�ned cross-bridge distribution n(x, t), Huxley derived the tension (force)

production by muscle in a form [48]:

P =
msk

2l

∫ ∞
−∞

n(x, t)xdx, (5.12)

where P is the tension (force) in muscle, m is the number of attached cross-bridges per

cubic centimetre, l is the distance among binding sites on actin �laments. k is the sti�ness

of cross-bridge. s is the sarcomere length.

Further important relationship in cross-bridge theory is description of muscle energetics.

The total rate of energy liberation, E, per cubic centimetre of muscle Huxley expressed as

[48]:

E =
me

l

∫ ∞
−∞

f(x)(1− n(x, t))dx, (5.13)
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where e is liberated energy per one site per one cross-bridge conformation cycle.

5.4.1 Common modi�cations of Huxley's model

Through the decades till now, the original Huxley's model was modi�ed and improved in

many ways. There can be found hundreds of articles since Huxley published his original

work. It should be hard to summarize these results, but some of the modi�cation appear

more often than others.

The �rst common modi�cation is related to the number of myosin head states. As

demonstrated for example in [15], [16], more than two important states of myosin heads

can be found through the myosin head working cycle. Therefore, one of the most common

way of improvement is to take into account another states of myosin heads. This results

to the expansion of the original Huxley's description of evolution of distribution n about

another equations representing further considered states. This extension can be in general

described by the set of equations in forms:

∂ni
∂t
− v(t)

∂ni
∂x

=
N∑

j=1,j 6=i

fji(x)nj −
N∑

j=1,j 6=i

fij(x)ni, (5.14)

N∑
i

ni = 1, (5.15)

where ni represents the distribution of the i−th state. fij represents the rate parameters

of transition from i to j state. N is the number of studied states.

Another way of improvement can be determined by various physiological, physical,

chemical restriction or thermodynamic restriction. These modi�cation usually lead to

special shapes of kinetic rates. As an example can be shown the modi�cation with partial

derivation of kinetic rates as used in [45]:

∂n

∂t
− v(t)

∂n

∂x
= [f(x) + g′(x)](1− n)− [g(x) + f ′(x)]n (5.16)
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The next common modi�cation is also to deal with Huxley equation as with material

derivation:

Dn

Dt
=
∂n

∂t
+ v

∂n

∂x
(5.17)

5.4.2 Results of Huxley's model

The results of Huxley's pioneering work are depicted in �gures 5.9 and 5.10.

Figure 5.9: Results for Huxley's 1957 n distribution for various values of velocity v. The
top part shows the distribution for v = 0, i.e. for isometric contraction. Adapted from
[48].
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The �gure 5.9 shows the shapes of distribution during concentric contraction. The

graph in top part depicts distribution for isometric case. The rest of graphs in �gure 5.9

depicts the shape of distribution n for various magnitudes of velocity during concentric

contraction.

The results in �gure 5.10 compare the tension (force) of muscle during isotonic concen-

tric contraction obtained from Huxley's model with results obtained by Hill's equation.

Figure 5.10: Huxley's model comparison to Hill's model as published in [48]. The con-
tinuous line is Hill's model. The circles are results of Huxley's model. The graph depicts
results of concentric isotonic contraction.

5.4.3 Conclusion on Huxley's type of models

To conclude on Huxley type of models, it can be stated that these models more or less

succeeded in the description of concentric contraction and isometric contraction including



CHAPTER 5. MATHEMATICAL MODELS - A BRIEF OVERVIEW 120

main mechanical and energetic properties of skeletal and heart muscle. Huxley's type

of models have great potential to su�ciently describe the molecular origin of mechanical

processes at nanometres-scale and projects it up to micrometers-meters scale.

Till nowadays, the main problem of classical Huxley's model is the description of

history-dependent properties of contraction. Namely it has a problem to su�ciently ex-

plain history-dependent properties as phenomena called force enhancement following after

eccentric contraction and phenomena called force depression followed after concentric con-

traction.

5.5 Zahalak's Distribution Moment Model

Zahalak's model is based on classical Huxley's cross-bridge theory with two sliding �la-

ments. His model, developed during 1980s, was proposed to better describe a response

on muscle stretch (eccentric contraction). Among the main aims of his work was also to

simplify the numerical solution of original Huxley's model consisting of partial di�erential

equation(s) by the approximation of ordinary di�erential equations [128].

But still, it is worth to notice that Zahalak's model considered only two main �laments.

The third the most abundant protein titin in sarcomere is in Zahalak's model still neglected

due to the fact that the role of the titin in sarcomere was not exactly known in 1980s. In

any case, this model is till nowadays one of the most successful in description of the

eccentric contraction, which is the main reason to introduce here this model. Even though

this model is widely used to successfully describe or simulate eccentric contraction, it does

not explain the eccentric contraction su�ciently. Also, this model still considers linear

elasticity of cross-bridges, even Zahalak mentioned the possible use of non-linear elasticity

in [129]. Again, the exact non-linear elasticity properties of single cross-bridges were not

known in 1980s.

The detailed derivation of Zahalak's distribution-moment model is in-depth introduced

in [128]. In the following lines are presented the basic ideas of Zahalak's model. For better

insight into this model, the texts [128], [129], [130], [132], [131] contain more detailed
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information. In brief, the �rst pivotal proposal of original distribution-moment model

as derived in [128] was an introduction of distribution-moments of Huxley's distribution

n(x, t) in a form:

Mλ(t) =

∫ ∞
−∞

xλn(x, t)dx, (5.18)

bλ =

∫ ∞
−∞

xλf(x)dx, (5.19)

whereMλ is λ-th moment of bond-distribution n(x, t) and bλ is λ-th moment of bonding rate

function for λ = 0, 1, 2, .... The second pivotal step in Zahalak's model is the approximation

of Huxley's distribution n(x, t) in a form of Gaussian distribution [128]:

n(x, t) ≈ M0(t)√
2πσ(t)

e
− [x−µ(t)]2

2σ2(t) , (5.20)

where

µ(t) =
M1(t)

M0(t)
, (5.21)

σ(t) =

√√√√{M2(t)

M0(t)
−
[
M1(1)

M0(t)

]2}
. (5.22)

After speci�c modi�cation as in [128], the values of �rst three distribution-moments

Mλ might be described by the set of ordinary di�erential equations:

dM0

dt
= b0 − F0(M0,M1,M2), (5.23)

dM1

dt
= b1 − F1(M0,M1,M2)− v(t)M0, (5.24)
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dM2

dt
= b2 − F2(M0,M1,M2)− 2v(t)M1, (5.25)

where the exact forms of the functions F1, F2, F3 depend on the forms of rate functions

f, g and approximate form of n(x, t) [128]. v(t) represents the velocity of contraction.

Zahalak's Distribution-Moment model With the respect to proposed shape of n(x, t)

and the shapes of the kinetic rates in the forms [128]:

f(x) =


0 −∞ < x < 0,

f1(
x
h
) 0 < x < h,

0 h < x <∞,

(5.26)

g(x) =


g2 −∞ < x < 0,

g1(
x
h
) 0 < x < h,

g1(
x
h
) + g3(

x
h
− 1) h < x <∞,

(5.27)

the �nal form of the set of the three ordinary di�erential equations might be written as

[128], [129]:

Mλ

dt
= βλ − φλ − λu(t)Mλ−1, λ = 0, 1, 2, ... (5.28)

where M−1 is de�ned to be zero and

u =
v

h
(5.29)

ξ =
x

h
(5.30)

βλ =

∫ ∞
−∞

ξλf(ξ)dξ (5.31)

φλ =

∫ ∞
−∞

ξλ[f(ξ) + g(ξ)]n(ξ, t)dξ (5.32)

n(ξ, t) ≈ M0(t)√
2πq(t)

e−
[ξ − p(t)]2

2q2(t)
(5.33)
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p(M0,M1) =
M1

M0

(5.34)

q(M0,M1,M2) =
√

(M2/M0)− (M1/M0)2 (5.35)

In this approach Mλ, where λ = 0, 1, 2, have a following meanings [129]:

1. M0 is proportional to the instantaneous sti�ness of the contractile mechanism,

2. M1 is proportional to the instantaneous force generated by the muscle,

3. M2 is proportional to the total elastic energy instantaneously stored in the cross-

bridges.

The results of distribution-moment model depicting the response of muscle on stretch

is depicted in �gure 5.11 as published in [128]. For comparison with measured data see

�gure 2.16 on page 50, �gure 2.17 on page 51, �gure 2.18 on page 51 and �gure 2.19 on

page 52.

To conclude on distribution-moment approximation of Huxley's model, lets cite here

Zahalak [128]: "The distribution moment approximation is, of course, no substitute for

the full partial di�erential equations in cases where detailed and precise calculations of the

complete kinetics model response are necessary." From this citation is obvious that even the

distribution-moment model claims good reputation on description of muscle contraction

including eccentric contraction, it is still not the most appropriate model.

5.6 Mathematical Models of Titin

5.6.1 Worm-like-chain model

Worm-like chain model (WLC) is the most often used mathematical model as a force-length

relationship for description of the titin �laments as well as for another proteins as DNA

for example. The WLC model describes the molecule as a deformable continuum. Worm-

like chain model describes purely elastic properties of titin in stretch. This model was
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Figure 5.11: Results of Zahalak's distribution model as published in [128]. The picture
depicts tension-length for a muscle subjected to constant-velocity stretches starting from
isometric states corresponding to various initial lengths and stimulus rates. The interrupted
curves represents isometric force of various activation. The thin curves are stretches labelled
with corresponding velocities in mm s−1.

successfully used to describe the bunch of �laments as well as single �laments (molecules)

and as well as a single parts of titin molecule - for instance chain comprising just of a few

Ig-domains [67], [64], [66], [17].

Worm-like-chain model was derived in a form [9], [84]:

F =
kBT

A

(
z

L
+

1

4(1− z
L

)2
− 1

4

)
, (5.36)

where F is the entropic restoring force, A is apparent persistence, L is chain's contour

length, z is shortest end-to-end length among ends of chain (z ∈ [0, L)). kB is the Boltz-
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mann constant and T is absolute temperature. z
L
is the fractional extension of studied

chain.

Through the literature, the de�nition of the quantity of persistence length A might be

confusing. Sometimes, the persistence length is even wrongly mixed up with the quantity of

sti�ness. Therefore, for better comprehension of this quantity, lets cite here some de�nitions

from literature:

• Persitence length is a measure of the bending rigidity of the chain [67].

• Persistence length is a measure of the distance over which the polymer retains memory

of a direction [11].

The values of persistence length are of the size of a single amino acid [11]. For example,

the mechanical data suggest that the apparent overall persistence length of full-length titin

may be up to 1.5 nm. Fitting the WLC model to measured force-extension curve gives

persistence length of I27 domain A = 0.39±0.07 nm [11]. The persistence length of PEVK

varies in wide range 0.3− 2.1nm [31] with mean value around 1.5nm [31].

5.6.2 Unfolding and refolding of proteins

The biggest challenge in modelling of titin in sarcomere is the description of the dynamic

of the Ig-domains unfolding and other titin's part unfolding. Further challenge is to con-

nect this unfolding description with WLC model or another model describing mechanical

properties of titin. The unfolding of titin's parts leads to the increase of contour length L

of a chain which is followed by the decrease of force. The contour length increment ∆L,

after Ig-domain unfolded, was measured as ∆L = 28.4± 0.3nm [11].

Although some models of unfolding already exist for example based on energetics or

probability approach, still no su�cient model exists (was not found in literature). In the

most majority of cases, the unfolding of protein is simulated by Monte-Carlo simulation

(for instance [11], [85]).
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In trivial cases, the easiest way to model the titin's force decay during the stretch might

be also modelled by exponential function as for example used in [85]:

F (t) = F0 + A1e
− t−t0

t1 + A2e
− t−t0

t2 + A3e
− t−t0

t3 , (5.37)

where Ai are decay amplitudes, t is time, ti are time constant.

Two state models - folded and unfolded states

According to [11], the increase or decrease in the number of unfolding and refolding states

can be modelled as two-state Markovian process with folding rate kf and unfolding rate

ku. These rates can be determined by the activation energies ∆G and reaction lengths ∆x:

ku(F ) = ωe
−(∆Gu−F∆xu)

kBT , (5.38)

kf (F ) = ωe
−(∆Gf+F∆xf )

kBT , (5.39)

where ω is the natural frequency of oscillation and ∆x is the distance of the reaction

length over which the force must be applied to reach the transition state. F is external

force. kB is Boltzmann constant and T absolute temperature.

The formulas of kinetic rates ku, kf noted above have origin in Bell's [7] and Evans'

[22] works. Based on these articles, the number of unfolding/folding domains might be

simulated by mathematical formula [7], [22], [65], [117]:

dN = Nω0e
−Ea−F∆x

kBT dt, (5.40)

where dN is the number of broken bonds or domains unfolded/ folded during the dt polling

interval, N is the number of available bonds or folded domains. ∆x is the distance along

the unfolding/folding occurs, ω0 is constant called attempt frequency or natural vibration

frequency [22] with value ω0 = 108s−1 [7], F is the external force, Ea is the activation
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energy for unfolding (energy barrier of bond [22]), T is absolute temperature and kB is

Boltzmann constant.

As the examples of the magnitude of the values of quantities de�ned above, the value

of Ea = 28pNnm was used in [65] for modelling of unfolding of 70 globular domain and

760−nm pre-unfolded segment analogous to skeletal muscle PEVK segment. For re-folding

the value of Ea was set to 82pN nm [117]. The value of product of kBT was in [117] set

to 4.14pNnm. The value of ∆x for unfolding was in [117] set to 0.28nm for the case of

unfolding and 8nm in the case of re-folding.

Although this model has a strong physical background with aim of re�ecting the bound

force of molecules etc., in the comparison with experiments is often still "only �tted"

by adjusting of variables noted above. The values of mentioned model variables varies

through the literature. As can be seen for example [117], where the variables Ea and ∆x

are considered as "user-adjustable".

Refolding To complete the brief overview of folding/unfolding models, the refolding of

Ig domains might be well described also by equation [11]:

Nrefolded

Ntotal

= 1− e−tk0
f , (5.41)

where k0f corresponds to refolding rate under zero applied force.

5.6.3 Three �lament model - stochastic model of IG domain un-

folding

The �rst simulations and model considering three �lament model was published in [108].

In this text [108], the Huxley's theory was extended with WLC model, where the unfold-

ing/folding of titin IG domains was realized by proposed stochastic function and WLC

parameters as contour length and persistence length were changed according to.
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Stochastic model for the length of a half sarcomere was proposed in a form [108]:

HSL = Nprox
u lproxu + (Nprox −Nprox

u )lproxf + lPEV K + ldist + d, (5.42)

where lproxu is the length of unfolded proximal IG domain, lproxf is the length of folded prox-

imal IG domain. Nprox
u is the discrete random variable Nprox

u characterizing the unfolding

process of the number of proximal IG domains. The parameter d represents half of the A-

band length. lPEV K is the length of the PEVK region. ldist is the length of the inextensible

end �laments. The computation of unfolding process using the equation 5.42 was realized

by Monte-Carlo simulation.

The results of eccentric contraction simulations achieved by this approach can be seen

in �gure 5.12 as published in [108]. The results depict the simulation of sarcomere stretch

from initial length of 2.4µm to �nal length of 3µm. In �gure 5.12, the resulting force is

normalized to the corresponding isometric force at 3µm. In mentioned text, the simulation

was conducted for velocity of 100nm s−1 per sarcomere. For comparison with measured

data see �gure 2.16 on page 50, �gure 2.17 on page 51, �gure 2.18 on page 51 and �gure

2.19 on page 52.
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Figure 5.12: The results of eccentric contraction simulation as achieved with stochastic
function as presented in [108]. The top panel depicts the forces from regular cross-bridge
as simulated in [108]. The second panel depicts results considering three �laments. The
last panel depict corresponding length of sarcomere. For comparison with measured data
see �gure 2.16 on page 50, �gure 2.17 on page 51, �gure 2.18 on page 51 and �gure 2.19
on page 52.
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Quick summary of chapter

The most successful theoretical models explaining sarcomere (muscle) contraction are

based on cross-bridge theory and two-sliding-�laments theory. The �rst mathemati-

cal model was proposed by A.F. Huxley in 1957. Since then, his model was modi�ed

in many ways to incorporate actual data arising from experiments and theoretical

proposals during years. Up to now, the mathematical models based on classical

Huxley's model more or less succeeded in description of concentric and isometric

contraction.

Till nowadays, some phenomenons of muscle contraction are still not su�ciently

explained based on cross-bridge theory and Huxley's model. These phenomenons are

namely history-dependent properties of contraction as force decrease following after

concentric contraction and force enhancement following after eccentric contraction

and eccentric contraction itself. Although some models were proposed regarding

noted problems, none of them was widely accepted as universal tool.

Recent experiments suggested that the role of the third structural protein of sar-

comere, titin, might play more important role than originally thought in cross-bridge

theory. These experiments also suggested the way and hint, which way the original

cross-bridge theory and its mathematical model could be successfully enhanced.



Chapter 6

Proposed Three Filament

Cross-Bridge Model

In the following lines, modi�ed cross-bridge model was derived from scratch based on the

summary in preceding introductory chapters. The main aims were to relate the active force

production to the degree of actin-myosin overlap rather than to the sarcomere length as

in classical cross-bridge theory. Further pivotal aim was to embody the non-linear elastic

properties of single cross-bridges as measured in [62], [63] into the model. On account

of this modi�cation, the goal was also to include the "buckled" cross-bridges, which are

attached to actin �laments but produce rather passive force than active force. One of the

crucial and important intended modi�cation was also that the classical cross-bridge theory

was extended about titin properties as suggested in [40] (see �gures 6.1 on page 132 and

4.7 on page 102).

6.1 Derivation of the Three Filament Cross-bridge

Model

In the following text, the derivation of the model was related predominantly to the half-

sarcomere level due to the fact that the sarcomere is symmetric. Nevertheless, the consid-

131
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Figure 6.1: Conceptual model of titin's force regulation during eccentric contraction as
proposed and published in [40]. Nowadays experimental research indicate that titin actively
bind to actin and further titin increase its sti�ness in the presence of calcium ions. Both of
these new emerging properties give to the titin more important role than originaly thought
in classical cross-bridge theory.

eration of the whole sarcomere does not change the resulted mathematical model.

The main aim was to derive the mathematical model according to the cross-bridge

theory, where the sarcomere is able to produce the force FS. FS denotes the force, which

is the half-sarcomere able to develop on Z-line. It is assumed that force FS is the sum

of active force FCB and passive force FT . FCB expresses the force, which is produced

as a result of power-strokes of cyclically binding/unbinding cross-bridges and consequent

shift of actin �laments in actin-myosin overlap. This force is also considered to include

the forces emerging due to buckled/bended states of cross-bridges. FT denotes the force,

which is produced by bunch of titin �laments upon stretch. Derived model takes into

account only active state of sarcomere. Therefore, titins are considered to be bounded to
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actin as described in preceding chapters and depicted in �gure 6.1. Force FS produced by

half-sarcomere can be then expressed as:

FS = FCB + FT . (6.1)

Forces FS as well as FCB and FT are supposed to be perpendicular to Z-line. Directions of

these forces are in the direction to the centre of sarcomere. Further, it can be introduced

the external force FE, which denotes the sum of the external forces acting on the same

Z-line as the half-sarcomece force FS. Forces FS and FE lie in one line, but these forces

have opposite direction. Under assumptions noted above, three main types of contraction

are traditionally stated regarding to the sarcomere contractile activity:

1. FS > FE concentric contraction ⇒ shortening of the sarcomere.

2. FS = FE isometric contraction ⇒ sarcomere develops the same amount of force as

external force, no contraction/stretching of sarcomere occurs.

3. FS < FE eccentric contraction ⇒ the sarcomere undergoes the stretching done by

external force, which is higher than the mechanisms in sarcomere are able to exert.

6.1.1 Active force: force FCB generated by cross-bridges in actin-

myosin overlap

To describe the active force su�ciently, two levels of active force production had to be

considered; at �rst, the properties of single cross-bridge force production, secondly, the

properties of the force production exerted by the ensemble of cross-bridges. For the sim-

plicity, it is assumed here that the sti�ness of actin �laments is much higher than the

sti�ness of the ensemble of cross-bridges. Therefore, the consideration on actin elasticity

can be neglected. This is also one of the standard simpli�cations of cross-bridge models.
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Single cross-bridge mechanics

To describe the mechanical properties of single cross-bridge, the variable x is introduced. In

comparison to classical Huxley's model, the variable x is here de�ned in little bit di�erent

manner. In the following text, x represents the shortest end-to-end distance between two

ends of single cross-bridge. The �rst considered end is the end by which the cross-bridge

is attached at myosin �lament. The second end is the end of the cross-bridge which is able

to attach at actin �laments.

When cross-bridge is fully stretched, the end-to-end variable x equals to the contour

length of single cross-bridge. It might be to worth to notice that the contour length and

therefore x as well are considered to be increased, when the cross-bridge is stretched. In

comparison to classical cross-bridge model, the variable of x as de�ned above allows to

include the force achieved by power-stroke and stretch of cross-bridges during contractile

activity as in Huxley's model. In addition, it allows also to include the force produced by

buckled or bended cross-bridges (see �gure 3.13 on page 80).

Further, let's denote the force produced by single cross-bridge as fcb = fcb(x). It is

assumed here that fcb(x) expresses the force-x relationship of a single cross-bridge according

to the experimental results presented in [62], [63], [90] and as depicted here in �gure 6.2.

Since the single cross-bridge can be also oriented in the direction in which it produces

the force against the direction of concentric contraction, the variable x must be further

speci�ed on account of its sign. Therefore, let's assume that in case where two ends of

cross-bridge are one above the other, it is assumed here that x = 0. Further, it is assumed

here that if the cross-bridge is in the wrong direction and therefore exerts the force against

the direction to sarcomere's shortening, the value of end-to-end distance is x < 0. The most

important values of end-to-end distance for contraction are when x > 0. In this case it is

assumed here that the cross-bridge is oriented in the right way to produce force according

to the sense of sarcomere shortening. In this case cross-bridge with x > 0 produces force

in the direction to the centre of sarcomere.

To particularize the force fcb(x) production of cross-bridges with concrete values of x, it
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Figure 6.2: Force-x end-to-end relationship of single cross-bridge. In comparison to original
measured data as published in [62], [63] the x-axis was moved according to the length of
S2 part of cross-bridge. This modi�cation allowed to use the end-to-end distance of cross-
bridge's ends (compare with �gures 3.13 and 3.14 on page 80).

is worth to state here another important assumption. At �rst, it is not assumed here that

the cross-bridge with x < 0 can stretch its elastic element by the power-stroke against the

shortening and this way produce the force against the direction of concentric contraction.

But it is assumed here that single cross-bridge can produce the force in opposite direction

to shortening by its buckled/bended state according to its force-x relationship (see �g. 6.2).

Therefore, in this case, the elastic element of cross-bridge is not stretched once the cross-

bridge gets attach. But is it considered here that the elastic element of cross-bridge with

x < 0 can be stretched due to contractile activity namely by fast concentric contraction.

On account of this, likely more probable situation is that the cross-bridge detaches before

this situation can occur.

Further, the buckled/bended state of cross-bridge can be understand as the cross-bridge

got attached with smaller distance x than its contour length. In this case the cross-

bridge also undergoes power-stroke, but this power stroke can not contribute to active

force generation because its elastic element was not stretched. A result in this case is only

passive force due to cross-bridge's buckled state. This force acts against the mechanism

of shortening as measured in [62], [63]. It is worth to notice also that it is thought here

that even though buckled/bended cross-bridges can not contribute to active force, they
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still consume ATP during their cycle.

Once the contour length of cross-bridge is the same as x end-to-end distance, the

cross-bridge contributes to active force production by the stretch of its elastic element.

According to �gure 6.2, the cross-bridge starts to contribute to active force once its x

end-to-end distance is approximately higher than 38− 40[nm], which is approximately the

length of its S2 part [62]. When the attached cross-bridge after power-stroke has the same

distance as 38− 40[nm], it is no more buckled, but its elastic element is still not stretched.

In this case, the cross-bridge produce zero force - after power stroke it is just fully stretched.

Huxley's interval h: Further, to describe the binding properties of single cross-bridge

su�ciently, two constants a, b must be introduced:

1. a is the maximal x end-to-end distance after the power-stroke by which the cross-

bridge can be found in wrong (opposite) direction acting against the concentric con-

traction. Under assumptions as noted above a < 0.

2. b expresses the maximal x end-to-end distance after power-stroke by which the cross-

bridge can be found in the right direction according to sarcomere active force pro-

duction. Under assumption as noted above b > 0.

After an introduction of parameters a and b, another important parameter (interval) h

can be introduced:

h = (a, b). (6.2)

Interval h (Huxley's h parameter [48]) is the range of end-to-end distances x ∈ h by

which the single attached cross-bridge can be found immediately after power-stroke. The

single cross-bridge with x distance outside of interval h can be found only due to contractile

activity during concentric and eccentric contraction. In these cases x distance might be

changed due to contractile activity when cross-bridge was already attached. In the case of

isometric contraction, the distance x is not thought to be found outside of interval h. The
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important thing is that during cross-bridge's working cycle, once the single cross-bridge

detaches during any kind of contraction, it can rebind again only with x distance within

interval h.

Based on these assumptions, theoretically and for the simplicity, the range of distances

x is (−∞,∞) with condition that immediately after power-stroke the values of x can be

located only inside interval h. Whereas when the cross-bridge detaches, then it can be

found theoretically with arbitrary value of x end-to-end distance x ∈ (−∞,∞). The value

of x = x0 in case where the cross-bridge is only fully stretched but produces no force, i.e.

fcb(x0) = 0, lies also inside h.

The exact values of parameters a, b might be the subject of discussion. But at least the

value of b might be estimated based on the information noted in introductory chapters.

Under assumption that in the case of x0 which satis�es fcb(x0) = 0 and under assumption

that the magnitude of power-stroke dw is constant, the value of parameter b might be

estimated as:

b = x0 + dw. (6.3)

Hence, in the case x = b the elastic element of cross-bridge is at maximal stretch exerting

maximal force fcb(b) due to power-stroke activity. The values x > b can be achieved only

by external forces during eccentric contraction.

The exact value of a is hard to estimate. In literature might be found that sarcomere

during activity contains cross-bridges in buckled state, but it is hard to propose any value

of a based on these information. For simplicity, let's assume here that maximal possible

value of |a| equals to the contour length of S2, i.e. parameter a has approximately value of

−40nm. The attach of single cross-bridge at x = a is though to be here highly improbable

but possible.

Single cross-bridge states: Further in this text, the attached cross-bridge with partic-

ular x end-to-end distance is assumed to be after power stroke, still attached and producing
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force according to its force-x relationship. This presumption allows to use only two states

model with attached and unattached states of cross-bridges. Although it is known that

during the working cycle the cross-bridge undergoes a few of states, for simplicity it is

considered here just two-state model. The model can be easily extended to capture more

states as in equations 5.14 on page 117. It might be worthwhile to notice that in the case

of addition of another bounded states as for example pre-power-stroke weak bound state,

the range of particular intervals h must be adjusted to the length of cross-bridge according

to considered state.

Two states mentioned here represent two states of myosin cross-bridge as follows:

1. Nux unattached free cross-bridge before any conformation changes and before any

activity,

2. Nax attached strongly bound cross-bridge after power-stroke with its particular x

end-to-end distance producing force according to its force-x end-to-end distance re-

lationship.

Figure 6.3: Diagram of two states model with states Nax and Nux with bound kinetic rate
fx and unbound kinetic rate gx.

The schematic diagram of transition between attached and detached states is depicted

in �gure 6.3. The kinetic rates fx[s−1] and gx[s−1] describe the transition of amount (part)

of cross-bridges between these two states. The values of kinetic rates are known to be

dependent on various factors as concentration of Ca2+, ATP and also, namely gx, show

load-dependent manner. The mathematical description of transition of amount of cross-

bridges between two states Nax, Nux with particular x end-to-end distance and particular
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rates fx, gx can be described by the set of equations in a form:

d

dt
Nux = gxNax − fxNux, (6.4)

d

dt
Nax = fxNux − gxNax, (6.5)

Nux +Nax = 1 (6.6)

where the last equation 6.6 expresses the preservation condition of number of cross-bridges.

In this case, the equation 6.6 de�nes that the Nax, Nux are proportions of attached, resp.

unattached states at particular x distance.

For the description of sarcomere force production it is important only the propor-

tion/number of attached cross-bridges Nax. The consideration of only two states and

condition as in equation 6.6 allows to simplify the description of Nax in a form of one

equation:

d

dt
Nax = (1−Nax)fx − gxNax. (6.7)

Mechanics of Ensemble of Cross-Bridges

Myosin II as non-processive molecular motor acts only in ensemble with another myosins

(cross-bridges). Although it is assumed that every cross-bridge in ensemble acts indepen-

dently, the resulted force production and contractile activity of sarcomere is an e�ect of

simultaneous activity of a great amount of cross-bridges. More speci�cally, the number of

attached cross-bridges on the level of single sarcomere is considered in the range of units.

Whereas on the level of the whole muscle, the source of the resulted force generation is

attachment of millions of cross-bridges.

x end-to-end distance distribution n(x, t)

To describe the great amount of attached cross-bridges, let's introduce here x end-

to-end distance distribution na(x, t). Distribution na(x, t) describes the proportions of
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cross-bridges which are attached to actin �laments with particular x end-to-end distances

at concrete time t.

Under consideration that the cross-bridges bind with end-to-end distances x within

range of interval x ∈ h, the equation 6.7 can be used to extend the description of attached

cross-bridges along the interval h by distribution na(x, t) in a form:

d

dt
na(x, t) =

(
1

|h|
− na(x, t)

)
f(x)− g(x)na(x, t). (6.8)

The term 1
|h| in equation above help to guarantee the condition of number of cross-

bridges which changed to:

∫ b

a

na(x, t)dx+

∫ b

a

nu(x, t)dx = 1, (6.9)

where nu(x, t) is the distribution of x end-to-end distances of unattached cross-bridges. The

equation 6.8 describes time-evolution of distribution of attached cross-bridges only and

purely during isometric contraction. In comparison to classical Huxley description as

in equation 5.7 on page 114, the equation satis�es the normalization condition 6.9. Let's

denote further the distribution na(x, t) only as n(x, t).

From equation 6.8 follows that in steady state of isometric contraction the distribution

of the number of attached cross-bridges with particular x can be computed as:

ns(x) =
1

|h|
f(x)

f(x) + g(x)
, (6.10)

where ns(x) is the steady state distribution of a number (proportion) of attached cross-

bridges with particular x end-to-end distances.
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Velocity of contraction v

Before the mathematical formula 6.8 could be extended also for the cases of eccentric and

concentric contraction, the variable of contraction velocity v and variable of length l of

actin-myosin �laments overlap must be introduced.

In this text, the velocity of contraction v(t) is related to the activity of sarcomere in

the following common sense. The shortening speed of sarcomere is designated by positive

values of velocity. Therefore, if the half-sarcomere undergoes concentric contraction, the

velocity of contraction is v > 0. If the half-sarcomere is stretched by external force FE

(eccentric contraction), the velocity of contraction is described with negative values v < 0.

Through the literature, some texts might be found that de�ne the velocities just in opposite

manner. Obviously, for the isometric contraction the velocity is v(t) = 0.

E�ect of contractile velocity on a (half) sarcomere length The length change

of a single (half) sarcomere is then:

dlS
dt

= v(t), (6.11)

where lS is a (half) sarcomere length.

E�ect of contractile velocity on a single attached cross-bridge The direction

of contractile velocity has following e�ect on a change of x end-to-end distance of a single

attached cross-bridge. If the sarcomere undergoes concentric contraction, single cross-

bridge shortens according to velocity v. On the other hand, if the sarcomere is stretched by

velocity of v during eccentric contraction, the single cross-bridges are elongated according

to time course of this velocity. By the de�nition of the sign of velocity as noted above, the

change of x end-to-end distance of a single cross-bridge due to contractile activity can be

simply expressed as:

dx

dt
= −v(t). (6.12)
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E�ect of contractile velocity on distribution n(x, t) After assumptions noted

above, the e�ect of contraction velocity on distribution of attached cross-bridges n(x, t)

might be expressed as:

−v(t)
∂n(x, t)

∂x
, (6.13)

where the term 6.13 describes the change of the x end-to-end distances of a number of

cross-bridges n(x, t) by contraction velocity v(t).

E�ect of contractile velocity on a magnitude of actin-myosin overlap l The

length l of actin-myosin �laments overlap changes according to sarcomere contractile ac-

tivity. The degree of actin-myosin overlap is much more important for description of active

force production than the length of sarcomere. The reason is that the degree of actin

myosin overlap is one of the crucial factors that dictates the number cross-bridges which

can be attached.

The degree of actin-myosin overlap changes in the following manner. In the case of

concentric contraction, the magnitude of actin-myosin overlap increases until it reaches its

maximum. Due to the bare zone on myosin �laments (see �gure 3.16 on page 82), this

maximum does not increases once the actin �laments reach myosin �lament bare zone,

although the shortening of sarcomere can still continue. The e�ect of bare zone on myosin

�laments is the plateau region in Gordon's graph (see �gure 2.9 on page 45).

On the other hand, during the eccentric contraction the degree of actin-myosin overlap

decreases until it reaches zero. Around the length of sarcomere about 3, 4µm the actin-

myosin overlap completely disappears.

On account of velocity de�nition and information noted above, the change of overlap l
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during contractile activity can be described as:

dl

dt
=



0 l ∈ (−∞, 0),

v(t) l ∈ [0, lmax],

0 l ∈ (lmax, lmax + lplato],

not de�ned l > lmax + lplateau,

(6.14)

where l denotes the magnitude of actin-myosin �laments overlap, lmax expresses the

maximal possible value of actin-myosin overlap, lplateau denotes the (half) length of bare

zone on myosin �lament.

The range l ∈ [0, lmax] represents the descending limb in Gordon's graph. The range

l ∈ (lmax, lmax + lplato] represents the plateau region of Gordon's graph. The region of

overlap l > lmax + lplateau represents the ascending limb of Gordon's graph. Through the

literature, it is not clear what exactly is happening in this region and there is only a

few assumptions about it. In this region the actin �laments might encounter the actin

�laments from counter part of sarcomere and consequently the Z-lines might encounter

myosin �laments, which leads to the observable decrease in force production as showed by

ascending limb of Gordon's graph. Due to the reason that the mentioned mechanisms of

force decrease beyond l > lmax + lplateau are unclear, the range of overlap l > lmax + lplateau

can not be considered in presented work.

Modi�ed Huxley's equation

It is assumed that the shape of distribution n(x, t) depends on the kinetics rates f(x), g(x)

and the velocity v(t). By the use of previously derived mathematical forms 6.8 and 6.13, the

time-evolution of distribution n(x, t) during contractile activity of sarcomere with velocity

v(t) can be mathematically captured by transport equation with sources on right side in a

form:
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Modi�ed Huxley's equation

∂n(x, t)

∂t
− v(t)

∂n(x, t)

∂x
=

(
1

|h|
− n(x, t)

)
f(x)− n(x, t)g(x) (6.15)

In comparison to classical Huxley's equation 5.9 on page 114, the derived equation 6.15

di�ers only in one term 1
|h| , which help to normalize the distribution n(x, t) by the term

6.9 for the case of isometric contraction. But here, the equation 6.15 as well as original

Huxley's equation encounters a problem.

The problem, and probably not widely known, of this equation is that due to the source

term on right side, it violates the balance law of number of cross-bridges during concentric

and eccentric contraction. It other words it means that condition 6.9 extended for the full

theoretical possible range of x ∈ (−∞,∞) is in general not valid:

∫ ∞
−∞

n(x, t)dx+

∫ ∞
−∞

nu(x, t)dx 6= 1. (6.16)

Still, the original Huxley's equation is widely used in cross-bridge theory to model force

production of muscles. In the same way, the equation 6.15 is in the following text used for

the description of dynamic of attached cross-bridges during contractile activity of (half)

sarcomere. The possible correction of mentioned error is proposed further in the text.

The shapes of kinetic rates f(x) and g(x) Through the history of the cross-bridge

theory model evolution and related amount of published papers, the shapes of bounding

and unbinding kinetics rates f(x), g(x) might be denotes as one of the most common

subjects of change. Therefore the great amount of proposals on the shapes of these rates

can be found.

Unbound kinetic rate g(x) In this text, the form of unbound rate g(x) is assumed

to be the sum of functions describing the unbinding of cross-bridges by ATP and due to

unbinding of applied load on cross-bridges. Under assumption of uniformly distributed
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concentration of ATP in sarcomere, the e�ect of ATP unbinding must be same for every

cross-bridge. This leads to the description of this process by function:

gATP ([ATP ]), (6.17)

where the value of gATP ([ATP ]) is dependent on the concentration of [ATP ] inside sar-

comere.

From experiments is apparent that bound time of cross-bridge decreases with increased

external load applied on cross-bridge. To capture this e�ect, let's assume here that this

part of unbound rate can be described by formula:

gL(fcb(x)) = R|fcb(x)|Q (6.18)

where gL represents the part of g(x) which is dependent on external load of single cross-

bridges. R,Q are constants and |fcb(x)| is absolute value of cross-bridge's force. The �nal

proposed form of unbinding kinetic rate g(x) is assumed here in a form:

g(x, [ATP ]) = gATP ([ATP ]) +R|fcb(x)|Q. (6.19)

In comparison to classical Huxley description as unbound rate 5.11 on page 115, the equa-

tion 6.19 is able to distinguish among the cross-bridges, which are released by binding of

ATP molecules, and among the cross-bridges, which were detached forcibly.

Bound kinetic rate f(x) The estimation of bound kinetic rate f(x) regarding to

physiological background is much harder. At �rst, let's recall here assumption that cross-

bridges can bind only within interval x ∈ h and observation from experiments that the

cross-bridges attached in wrong direction can be found in activated sarcomeres. Still,

based on the summary in preceding introductory chapters, it is hard to propose any shape

of kinetic rate f(x). Therefore, let's tacitly assume that the probability of attachment

decreases as the value of x approaches the value of the parameter a of interval h = [a, b].
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On the other hand, let's assume that the most of the cross-bridges attach in the proper

direction according to concentric contraction. Based on these assumptions, the binding

kinetic rate f(x) is described here in a shape of log-normal distribution in a form:

f(x, [Ca2+]) =


x ≤ a 0

x ∈ h = (a, b) fCa([Ca
2+]) 1

|x−b|σ
√
2π
e−

(ln|x−b|−µ)2

2σ2

x ≥ b 0

, (6.20)

where fCa is considered to be constant dependent on the concentration of [Ca2+].

Dependency of rates g(x), f(x) on concentration of ATP,Ca2+ The sarcomere

activity is known to be dependent namely on the concentration of ATP and Ca2+. In

particular, the introduction of Ca2+ into sarcomere triggers the contraction. Brie�y, it

means that the kinetic rate f(x) is dependent on Ca2+. On the other hand, the detaching

rate g(x) is known to be dependent on the concentration of ATP . Again, through the

literature, a lot of proposals about description of mentioned dependencies can be found.

Therefore, let's assume that the these dependencies might be described in a forms (or by

similar equations):

fCa = ACa
[Ca2+]

[Ca2+]max
or fCa = ACa(1− e−[Ca

2+]), (6.21)

gATP = AATP
[ATP ]

[ATP ]max
or gATP = AATP (1− e−[ATP ]), (6.22)

whereACa, AATP are constants, [Ca2+]max, [ATP ]max are maximal concentration of Ca2+, ATP .

Active force FCB in actin-myosin overlap

The active force FCB, which is able to be exerted by cross-bridges in overlap of actin-myosin

�laments, is here assumed to be dependent namely on these factors:

• the shape of the x end-to-end distance distribution n(x, t),
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• the magnitude of actin-myosin �laments overlap l,

• the single cross-bridge force-x end-to-end distance relationship,

• the number of available cross-bridges mcb in a whole (half) sarcomere.

Under these assumptions, the force FCB, which is cross-bridge cycling capable to develop

can be written as:

Active force FCB produced by cross-bridges activity

FCB = mcb
l

lmax

∫ ∞
−∞

fcb(x)n(x, t)dx, (6.23)

where l represents the magnitude of actin-myosin overlap, fcb(x) describes force-x-distance

relationship as presented in �g. 6.2. n(x, t) is x-distance distribution.

Another form of force production can be de�ned as:

FCB = mcb
l

lmax

∫ ∞
−∞

xkcb(x)n(x, t)dx, (6.24)

where the term kcb expresses the sti�ness of single cross-bridge.

6.1.2 Another quantities describing properties of cross-bridge

mechanism

Based on the preceding assumption can be proposed another quantities, which might help

to allow better insight into sarcomere contractile activity.

Proportion of attached cross-bridges in cross-section of actin-myosin overlap

N(t) = mcb
1

lmax

∫ ∞
−∞

n(x, t)dx (6.25)
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Number of attached cross-bridges

Na(t) = mcb
l

lmax

∫ ∞
−∞

n(x, t)dx, (6.26)

Sti�ness of cross-bridge mechanism

K(t) = mcb
l

lmax

∫ ∞
−∞

k(x)n(x, t)dx (6.27)

Potential elastic energy stored in cross-bridge mechanism

Ep(t) = mcb
l

lmax

∫ ∞
−∞
|x| |kcb(x)n(x, t)|dx, (6.28)

where the absolute values refer to a fact that cross-bridges might be connected in wrong

direction according to sense of (concentric) contraction.

ATP molecules input The number of consumed ATP molecules (power input) in par-

ticular time t is:

d

dt
NATP = mcb

l

lmax

∫ ∞
−∞

n(x, t)gATP ([ATP ])dx. (6.29)

The sum of consumed ATP molecules during the whole process of contractile activity

is:

NATP =
mcb

lmax

∫ τ

0

l(t)

∫ ∞
−∞

n(x, t)gATP ([ATP ])dxdt, (6.30)

where τ is the end time of contractile activity (deactivation of sarcomere).
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6.1.3 Preservation of cross-bridges error in classical Huxley's

cross-bridge model

Although the correction of mentioned error is not the main aim of presented work, the

following lines introduces the possible repair of this problem.

The reason of the error in balance law of conservation of cross-bridges in original Hux-

ley's and modi�ed Huxley's equation can be in brief demonstrated as follows. Let's recall

here equations 6.4 and extend it formally for the range of x ∈ (−∞,∞). Further, by the

addition of equation 6.15, we get the following set of equations:

d

dt
nu(x, t) = g(x)n(x, t)− f(x)nu(x, t), (6.31)

∂n(x, t)

∂t
− v(t)

∂n(x, t)

∂x
=

(
1

|h|
− n(x, t)

)
f(x)− n(x, t)g(x). (6.32)

This set of equations describes the dynamic of a number of attached cross-bridges n(x, t)

and simultaneously the dynamic of a number unattached cross-bridges nu(x, t) during con-

tractile activity. Brie�y, the balance error arises during concentric and eccentric contractile

activity because the part of the cross-bridges unbind outside the interval h. By the de�ni-

tion of kinetic rate f(x) above, the cross-bridges detached outside interval h can not attach

again according to mathematical description in equations set above. Simultaneously, these

cross-bridges are "substituted" by the cross-bridges "produced" by the source term on right

side of equation 6.32. This leads to the fact that the number of cross-bridges in described

system is increasing whenever the distribution n(x, t) is shifted outside interval h. The

increasing number of cross-bridges in sarocmere makes obviously no sense.

Further fact is that this error is unseen without the consideration of distribution of

unattached cross-bridges, because the steady state distribution of attached cross-bridges

contains again the same number of cross-bridges as before contractile activity due to the

special form of source term on right side of equation 6.32.

The e�ect of this discrepancy might leads to various conclusions, which must be ex-
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amined more properly. It is obvious that e�ect of this error in�uence the description of

sarcomere activity namely during transient states. It might be also worthwhile to consider,

if this error could have any impact on the shape of distribution n(x, t) in steady states after

contractile activity, which could lead to explanation of phenomenons as force depression.

The possible correction might be considered as follows. Let's consider equations 6.4,

6.5 and extend them formally again for the range of x ∈ (−∞,∞).

d

dt
nu(x, t) = g(x)n(x, t)− f(x)nu(x, t), (6.33)

d

dt
n(x, t) = f(x)nu(x, t)− g(x)n(x, t). (6.34)

The sum of unattached cross-bridges Nu at time t is:

Nu(t) =

∫ ∞
−∞

nu(x, t)dx. (6.35)

Under strong simpli�cation, let's assume that the cross-bridges which can bind inside in-

terval h with particular x end-to-end distance are uniformly distributed along this interval.

Therefore at any instant of time the distribution of unattached cross-bridges is Nu(t)
|h| . This

assumption leads to the possible modi�cation of equation 6.34 to the form

d

dt
n(x, t) = f(x)

Nu(t)

|h|
− g(x)n(x, t). (6.36)

Under the same assumption as noted in preceding part of this chapter, this equation

can be formally extended to the form:

∂

∂t
n(x, t)− v(t)

∂

∂x
n(x, t) = f(x)

Nu

|h|
− g(x)n(x, t). (6.37)

To conclude on assumptions on correction of balance law error in classical Huxley's

equation and modi�ed Huxley's equation, the equation 6.15 might be substituted by the

set of equations:
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Modi�ed Huxley's equation taking into account the preservation of cross-

bridges in sarcomere

d

dt
nu(x, t) = g(x)n(x, t)− f(x)nu(x, t), (6.38)

Nu(t) =

∫ ∞
−∞

nu(x, t)dx, , (6.39)

∂

∂t
n(x, t)− v(t)

∂

∂x
n(x, t) = f(x)

Nu(t)

|h|
− g(x)n(x, t). (6.40)

6.1.4 Passive force: force FT generated by the bunch of titin

�laments

Single titin mechanics In sarcomere, as a main source of passive force are believed to

be titin �laments. Recent experiments supported the idea that the role of titin is much

more important in sarcomere than originally thought in classical cross-bridge theory. Based

on experiments, it was proposed the way of titin's active regulation of sarcomere contractile

activity. Let's recall here the two main ideas [40], [43]:

Titin's regulation mechanism of contractile activity

1. titin increases its sti�ness in a presence of [Ca2+] (see results of experiments in

�gure 4.6 on page 100 ).

2. upon activation of sarcomere, titin actively binds at actin �laments by its speci�c

segment N2A. This leads to the decrease of its free length (see scheme of this

mechanism in �gure 4.7 on page 102 and in �gure 6.1 on page 132).

Both of mentioned titin's regulation mechanism have impact namely on eccentric con-

traction. At �rst, the force exerted upon titin stretch is higher because its sti�ness is

increased by [Ca2+]. As the second, local deformation in activated sarcomere upon stretch

of bounded titin is higher than the local deformation of the whole unattached titin �lament

in deactivated sarcomere. Therefore, although the much shorter part of titin takes a part
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in contractile activity, the resulted force upon stretch is considered to be much higher than

of unattached titin in deactivated sarcomere.

Obviously, this force can not be no more neglected namely during eccentric contraction.

In comparison to classical two-sliding �lament theory, there is a need to consider another

important force arising from modi�ed titin's properties namely during stretch of sarcomere.

To ful�l also the assumptions about other two kinds of contractile activity, let's assume

that during isometric contraction titin changes its properties as described above. But in this

case no length change of sarcomere occurs. Therefore also titin, although already attached,

is not stretched and therefore its special properties can not be apparent. Further, because

the titin is believed to behave like one-directional spring, during concentric contraction it

is believed to behave as a free band producing no force or maybe producing negligible force

acting against shortening by its buckled state.

The part of single titin �lament with properties as discussed above might be then

described as:

Fwlc =


0 lT ≤ 0,

kBT
A

(
lT
L

+ 1

4(1− lT
L
)2
− 1

4

)
lT ∈ (0, L),

not de�ned lT ≥ L,

(6.41)

where Fwlc is force described by wlc model, lT is shortest end-to-end distance of titin's

ends. L is titin's contour length. A is persistence length, kB is Boltzmann constant and T

is absolute temperature.

Single titin's part unfolding As noted in introductory chapters, the titin's parts

as Ig domains unfold once these parts are stretched above some threshold value of stretch.

The result of unfolding is the increase of contour length of studied chain, which results in

decrease of produced force. Therefore, to describe the contour length L change of a single

studied chain, let's assume that this can be captured by equations:
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L = NfIgLf +NuIgLu, (6.42)

NfIg +NuIg = NIg. (6.43)

where NfIg is number of folded Ig domains, Lf is contour length of single folded Ig domain,

NuIg is number of unfolded Ig domains, Lu is contour length of single unfolded Ig domain.

NIg is a number of Ig domains.

As discussed in chapter 5.6.2, the simulation of unfolding and refolding of titin's parts

is one of the most challenging part of considered problem. Based on the equation 6.43,

the change dNfIg + dNuIg = 0 can be modelled for example by the equations presented in

section 5.6.2. But this part of model must be still examined more properly.

Further, experiments on titin revealed that persistence length A of single titin chain

also changes during unfolding/refolding. The change of persistence length is then function

of grater amount of parameters as:

A = A(NfIg, NuIg, lT , [Ca
2+], ...) (6.44)

Obviously, this relation must be subjected to more profound research.

Bunch of titin mechanics It is known that the all myosins �laments are not perfectly

centered in sarcomere. From this fact follows that the single titins in bunch of titins

does not have the same value of extension lT at the beginning of contractile activity.

Under assumption that the distribution of lT at the beginning contractile activity might

be described by normal distribution, the mechanics of bunch of titin �laments might be

described as:

FT = NT

∫ ∞
−∞

Fwlc(lT )
1

σT
√

2π
e
− (lT−µT )2

2σ2
T dlT , (6.45)
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where NT is number of titins �laments in sarcomere.

6.2 Three Filament Cross-Bridge Model of Sarcomere

This section summarizes the presented deduced equations from the assumptions noted

above into arranged sets of equations. The derived cross-bridge model can be written in

two forms:

1. Dynamic model describing behaviour of (half) sarcomere during the contractile ac-

tivity of any kind of contraction, where the type of contraction is determined by the

value of contractile velocity,

2. steady-state model describing steady-state (relaxed) states of activated (half) sarcom-

ere before and after contractile activity or reference steady-states during contractile

activity.

6.2.1 Dynamic form of Three Filament Cross-Bridge Model

The dynamic form cross-bridge model is described by the set of equations in a form:

Three �laments cross-bridge model

FS = FCB + FT (6.46)

FCB = mcb
l

lmax

∫ ∞
−∞

fcb(x)n(x, t)dx (6.47)

FT = NT

∫ ∞
−∞

Fwlc(lT )
1

σT
√

2π
e
− (lT−µT )2

2σ2
T dlT (6.48)

∂n(x, t)

∂t
− v(t)

∂n(x, t)

∂x
=

(
1

|h|
− n(x, t)

)
f(x)− n(x, t)g(x) (6.49)

f(x, [Ca2+]) =


x ≤ a 0

x ∈ h = (a, b) fCa([Ca
2+]) 1

|x−b|σ
√
2π
e−

(ln|x−b|−µ)2

2σ2

x ≥ b 0

(6.50)
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g(x, [ATP ]) = gATP +R|fcb(x)|Q (6.51)

dl

dt
=



0 l ∈ (−∞, 0)

v(t) l ∈ [0, lmax]

0 l ∈ (lmax, lmax + lplato]

not de�ned l > lmax + lplato

(6.52)

dlT
dt

=


0 lT ∈ (−∞, 0)

−v(t) lT ∈ [0, L)

not de�ned lT ≥ L

(6.53)

dlS
dt

= v(t) (6.54)

Fwlc =


0 lT ≤ 0

kBT
A

(
lT
L

+ 1

4(1− lT
L
)2
− 1

4

)
lT ∈ (0, L)

not de�ned lT ≥ L

(6.55)

L = NfIgLf +NuIgLu (6.56)
d

dt
NfIg = NfIg(lT , Ea, Fwlc,∆xf , ...) (6.57)

d

dt
NuIg = NuIg(lT , Ea, Fwlc,∆xu, ...) (6.58)

A = A(NfIg, NuIg, lT , [Ca
2+], ...) (6.59)

To employ the derived correction on error of conservation of number of cross-bridges in

sarcomere, the equation 6.49 might be substituted by the following set of equations:

Three �laments cross-bridge model with corrected preservation of number

of cross-bridges

d

dt
nu(x, t) = g(x)n(x, t)− f(x)nu(x, t), (6.60)

Nu(t) =

∫ ∞
−∞

nu(x, t)dx, (6.61)

∂

∂t
n(x, t)− v(t)

∂

∂x
n(x, t) = f(x)

Nu(t)

|h|
− g(x)n(x, t). (6.62)
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6.2.2 Steady-state model

Steady-state version of the model can be used to describe the steady-states before and

after contractile activity, when the sarcomere stays still activated. This model can be also

used to observe the "reference" relaxed states of sarcomere during dynamic simulations.

Namely the comparison of force-time relationships of dynamic and steady-state simulation

could enable more profound insight into considered problem.

The steady state form of the cross-bridge model has a form:

Steady-state three �laments cross-bridge model

FSS = FCBS + FTS (6.63)

FCBS = mcb
l

lmax

∫ ∞
−∞

fcb(x)ns(x)dx (6.64)

FTS = NT

∫ ∞
−∞

Fwlc(lT )
1

σT
√

2π
e
− (lT−µT )2

2σ2
T dlT , (6.65)

ns(x) =
1

|h|
f(x)

f(x) + g(x)
(6.66)

f(x, [Ca2+]) =


x ≤ a 0

x ∈ h = (a, b) fCa([Ca
2+]) 1

|x−b|σ
√
2π
e−

(ln|x−b|−µ)2

2σ2

x ≥ b 0

(6.67)

g(x, [ATP ]) = gATP ([ATP ]) +R|fcb(x)|Q (6.68)

l =



0 l ∈ (−∞, 0)∫ τ
0
−v(t)dt+ l0 l ∈ [0, lmax]

lmax l ∈ (lmax, lmax + lplato]

not de�ned l > lmax + lplato

(6.69)

lT =


0 lT ∈ (−∞, 0)∫ τ
0
−v(t)dt+ lT0 lT ∈ [0, L)

not de�ned lT ≥ L

(6.70)

lS =

∫ τ

0

v(t)dt+ lS0 (6.71)
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Fwlc =


0 lT ≤ 0

kBT
A

(
lT
L

+ 1

4(1− lT
L
)2
− 1

4

)
lT ∈ (0, L)

not de�ned lT ≥ L

(6.72)

L = NfIgLf +NuIgLu (6.73)

NfIgS = NfIgS(lT , Ea, Fwlc,∆xf , ...) (6.74)

NuIgS = NuIgS(lT , Ea, Fwlc,∆xu, ...) (6.75)

A = A(NfIg, NuIg, lT , [Ca
2+], ...) (6.76)

Maximal sarcomere active force Fmax The maximal active force, which is the inner

mechanism of sarcomere able to develop by itself, is at maximal overlap during isometric

contraction. In this case l
lmax

= 1. According to the equation 6.64 the maximal force per

(half) sarcomere can be expressed as:

Fmax = mcb

∫ ∞
−∞

fcb(x)ns(x)dx. (6.77)

The maximal possible overlap of actin and myosin �laments is in the plateau region of

Gordon's graph as shown in �gure 2.9 on page 45. Therefore, this region is characteristic

with maximal possible forces of isometric contraction.

Maximal concentric contraction velocity According to the force-velocity relation-

ship as depicted for example in �gure 2.6 on page 42, the maximal velocity of concentric

contraction is at zero-load. Accordingly, the maximal velocity of (half) sarcomere shorten-

ing might be obtained from relationship:

vmax ⇐⇒ mcb
l

lmax

∫ ∞
−∞

fcb(x)n(x, t)dx = 0 = FCB (6.78)
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6.2.3 Initial and boundary conditions:

To accomplish especially the dynamic form of the model, the initial and boundary con-

ditions and their meanings must be introduced. The initial and boundary conditions

presented in next lines represent the case, where the sarcomere mechanism is activated

from its relaxed state at particular length.

Initial and boundary conditions for equation 6.49 describing the dynamic of the number

of attached cross-bridges are then:

n(x, 0) = 0 ∀x, (6.79)

n(−∞, t) = 0, (6.80)

n(∞, t) = 0. (6.81)

If the simulation should start from the steady-state of activated sarcomere, then the initial

conditions for equation 6.49 has a form as expressed by equation 6.66.

Initial condition for equation 6.52 is l0, where l0 is the initial overlap of actin-myosin

�laments overlap. The initial condition for equation 6.54 is initial (half) sarcomere length

lS0. Note that l0 and lS0 are dependent and must satisfy the the geometry of sarcomere.

lS0 must be chosen according to initial overlap or vice versa.

Initial condition for equation 6.53 of titin stretch lT0 is a little bit tricky. It is obvious

that with increasing initial length of deactivated sarcomere the initial length of titin in-

creases as well. The problem is that under assumptions on self-modi�ed activity of titin

noted above the sarcomere once activated the titin changes its free length by binding to

titin. Due to the fact that various segments of titin have di�erent sti�ness, the unattached

titin might be expected to extend non-uniformly before attached. Therefore, the impact

of this e�ect on initial length lT0 of attached titin need to be more examined. For the sim-

plicity, lT0 is always assumed to be zero, which might be expected around ideal sarcomere

length.

The last initial conditions are on account of equations 6.57 and 6.58. The initial con-



CHAPTER 6. PROPOSED THREE FILAMENT CROSS-BRIDGE MODEL 159

dition of these equations are values of folded and unfolded parts of titin. These initial

condition must re�ect the condition NfIgS +NUIgS.



Chapter 7

Simulation and results

The purpose of simulations was to test the derived three �lament cross-bridge for all kind

of contractions and special cases of these considered contractions at the scale of half-

sarcomere. Obviously, according to the main goal of submitted thesis, the main aim was

to simulate the properties of eccentric contraction and its intrinsic phenomenon called

force enhancement. In addition, it was also necessary to simulate the cases of isometric

and concentric contraction to show that the proposed three �lament cross-bridge is in

concordance with results, which are traditionally believed as su�ciently understood by

classical Huxley's model and classical two sliding-�lament theory.

The main aim was rather to test the concept of the model than to obtain the same

absolute values of studied quantities as in wide variety of measured experimental data

in literature. Also due to this reason, all results of forces were normalized according to

maximal force as expressed by equation 6.77 on page 157.

In particular, the graphical results of following simulations are presented in next pages:

1. simulation of isometric contraction,

2. simulation isotonic concentric contraction,

3. simulation of sudden shortening (special case of concentric contraction),

4. simulation of eccentric contraction followed by phenomena of force enhancement,

160
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5. simulation of sudden stretch (special case of eccentric contraction),

6. special cases and properties of force enhancement.

Namely on account of problematic models of titin's parts unfolding, the proposed three

�lament cross-bridge model had to be simpli�ed. Therefore, the bunch of titins were

substituted by single representative titin (wlc) description. Accordingly, all conducted

simulations were simulated only for physiological condition, where the unfolding of titin

domains are not considered. This applied restrictions namely on account of small stretches

during eccentric contractions.

The simpli�ed dynamic and steady-state model then have following forms:

Simpli�ed Three Filaments Cross-Bridge Model

FS = FCB + FT (7.1)

FCB = mcb
l

lmax

∫ ∞
−∞

fcb(x)n(x, t)dx (7.2)

Fwlc =


0 lT ≤ 0

kBT
A

(
lT
L

+ 1

4(1− lT
L
)2
− 1

4

)
lT ∈ (0, L)

not de�ned lT ≥ L

(7.3)

∂n(x, t)

∂t
− v(t)

∂n(x, t)

∂x
=

(
1

|h|
− n(x, t)

)
f(x)− n(x, t)g(x) (7.4)

f(x, [Ca2+]) =


x ≤ a 0

x ∈ h = (a, b) fCa([Ca
2+]) 1

|x−b|σ
√
2π
e−

(ln|x−b|−µ)2

2σ2

x ≥ b 0

(7.5)

g(x, [ATP ]) = gATP ([ATP ]) +R|fcb(x)|Q (7.6)

dl

dt
=



0 l ∈ (−∞, 0)

v(t) l ∈ [0, lmax]

0 l ∈ (lmax, lmax + lplato]

not de�ned l > lmax + lplato

(7.7)
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dlT
dt

= −v(t) (7.8)

dlS
dt

= v(t) (7.9)

Simpli�ed Steady-State Three Filaments Cross-Bridge Model

FSS = FCBS + FTS (7.10)

FCBS = mcb
l

lmax

∫ ∞
−∞

fcb(x)ns(x)dx (7.11)

FTS = FT =


0 lT ≤ 0

kBT
A

(
lT
L

+ 1

4(1− lT
L
)2
− 1

4

)
lT ∈ (0, L)

not de�ned lT ≥ L

(7.12)

ns(x) =
1

|h|
f(x)

f(x) + g(x)
(7.13)

f(x, [Ca2+]) =


x ≤ a 0

x ∈ h = (a, b) fCa([Ca
2+])([Ca2+]) 1

|x−b|σ
√
2π
e−

(ln|x−b|−µ)2

2σ2

x ≥ b 0

(7.14)

g(x, [ATP ]) = gATP ([ATP ]) +R|fcb(x)|Q (7.15)

l =



0 l ∈ (−∞, 0)∫ τ
0
−v(t)dt+ l0 l ∈ [0, lmax]

lmax l ∈ (lmax, lmax + lplato]

not de�ned l > lmax + lplato

(7.16)

lT =


0 lT ∈ (−∞, 0)∫ τ
0
−v(t)dt+ lT0 lT ∈ [0, L)

not de�ned lT ≥ L

(7.17)

lS =

∫ τ

0

v(t)dt+ lS0 (7.18)
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Based on simpli�ed sets of equations, the following properties and quantities of con-

traction were simulated:

Studied properties in simulations

FS force developed by half-sarcomere on Z-line, equation 7.1,a)

FCB force in actin-myosin overlap, equation 7.2,b)

Fdl force in cross-section of actin-myosin overlap, i.e. 1
lmax

∫∞
−∞ fcb(x)n(x, t)dx,c)

FT force exerted by attached titin �laments to actin, equation 7.3,d)

v(t) speed of contraction (v(t) is input parameter of dynamic model),e)

magnitude of contraction
∫ τ
0
v(t)dt,

• in the case of eccentric contraction, the value of titin stretch lT equals to
the absolute value of the magnitude of contraction,

f)

l magnitude of actin-myosin �laments overlap,g)

FSS sarcomere steady-state force according to particular magnitude of stretch
and overlap, equation 7.10,

h)

FCBS steady-state (reference isometric) cross-bridge force, equation 7.11,i)

Ndl
mcb

number of attached cross-bridges in cross-section of actin-myosin overlap,
equation 6.25 on page 147,

j)

N
mcb

number of attached cross-bridges in actin-myosin overlap, equation 6.26 on
page 148,

k)

lS length of half-sarcomere, equations 7.9 and 7.18,l)

n(x, t), time evolution of x end-to-end distribution during contractile activity,
equation 7.4.

m)

Table 7.1: Studied properties in simulations.
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7.1 Model parameters and half-sarcomere properties

dw 8 nm
a −40 nm
b 47.61262352 nm
|h| 87.61262352 nm
lmax 725 nm
lplateau 550 nm
L 400 nm
A 1.4895e− 19
T 329.15 K
µ 1.55
σ 0.22
fCa 120
gATP 120
R 0.8
Q 2

Table 7.2: Parameters of three �lament cross-bridge model related to half-sarcomere.

Approximation of single cross-bridge force fcb(x) The measured force-x relationship

of single cross-bridges was approximated by following function:

fcb(x) =


fcb(x) = p1x

9 + p2x
8 + p3x

7 + p4x
6+

+p5x
5 + p6x

4 + p7x
3 + p8x

2 + p9x+ p10, −∞ < x ≤ x0,

kcb(x− x0), x0 < x <∞,

(7.19)

where

pi = [1.268e− 13, 1.005e− 12,−4.022e− 10,−2.728e− 09, 4.298e− 07,

1.998e− 06,−0.0001525,−0.0006885, 0.04358,−2.456], (7.20)

kcb = 1.4 pN/nm, (7.21)

x0 = 39.6126235204314 nm. (7.22)
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Initial and boundary conditions For all simulations were used following initial and

boundary conditions.

Initial and boundary conditions for modi�ed Huxley's equation 7.4:

n(x, 0) = 0 ∀x, (7.23)

n(−∞, t) = 0, (7.24)

n(∞, t) = 0. (7.25)

Initial overlap of actin-myosin �laments was set to the value corresponding to estimated

edge of plateau and descending limb of Gordon's graph. This re�ects the physiological

situation, where the contraction starts at maximal overlap. Therefore, in the cases of

concentric contractions, the overlap can not increase any further. On the other hand, in

the case of eccentric contraction, the overlap immediately starts to decrease. The estimated

value of initial actin-myosin overlap was then set to:

l0 = 725 nm. (7.26)

The initial value of titin stretch lT was set to zero for all simulated cases:

lT0 = 0 nm. (7.27)

Half sarcomere initial length on account of initial actin-myosin overlap l0 was estimated

to:

lS0 = 1200 nm. (7.28)
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Basic properties Selected basic properties according to chosen parameters of sarcomere

are depicted in �gure 7.1.
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Figure 7.1: Selected properties of sarcomere and its parameters.
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7.2 Isometric Contraction
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Figure 7.2: Properties of isometric contraction.
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Figure 7.2: Properties of isometric contraction.



CHAPTER 7. SIMULATION AND RESULTS 169

(m) n(x, t) time evolution during isometric contraction v = 0 nm s−1.

Figure 7.2: Properties of isometric contraction.
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Comments on results of isometric contraction simulation

The graphical results of isometric contraction are presented namely to show that the mod-

i�ed three �lament cross-bridge model does not break the parts of classical cross-bridge

theory and two sliding �lament theory, which are traditionally believed to be su�ciently

explained by original Huxley's model. In the case of isometric contraction, the velocity of

contraction is zero v = 0. Therefore, no geometrical properties as actin-myosin overlap l,

titin stretch lT , sarcomere length lS changed. Accordingly, only dynamic properties, which

can be observed, are sarcomere force FS and n(x, t) evolution in a course of time reaching

their steady-state values after a while.

The force FS as depicted in �gure 7.2a is in this case only result of active force, i.e. of

cross-bridge cycling, without any contribution of passive forces exerted by titins. Although

the titin �laments are believed to be also modi�ed according to proposed mechanism in

[40], they are not stretched and therefore exert no force. The graphical results of sarcomere

force FS during isometric contraction can be compared for example to measured results as

in �gure 2.8 on page 44.
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7.3 Concentric Isotonic Contraction
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Figure 7.3: Properties of concentric contraction.
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Figure 7.3: Properties of concentric contraction.
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(m) n(x,t) evolution during concentric contraction with velocity of v = 200 nm s−1.

Figure 7.3: Properties of concentric contraction.
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Comments on the results of isotonic concentric contraction simulation

The concentric contraction of muscles is characterized with force decrease once the contrac-

tion is triggered from initial isometric state. The parameters in original Huxley's model

were tuned up according to Hill's curve depicting force-velocity relationship of isotonic con-

centric contraction. On account of results of Huxley's model, the concentric contraction

is traditionally regarded as su�ciently understood in cross-bridge theory and two sliding

�laments theory. The exception in su�cient explanation of this kind of contractile activ-

ity is the history dependent phenomenon called force depression following after concentric

contraction, where the resulted force is smaller than the isometric force at corresponding

sarcomere length (actin-myosin overlap).

The main aim of presented simulation results of concentric contraction was to show

that the derived three �lament cross-bridge model is in concordance with already achieved

results and does not break the parts of cross-bridge theory, which are already considered to

be su�ciently understood. Unfortunately, it is worth to notice here that the derived three

�lament cross-bridge model also do not contribute to the explanation of force depression.

The force-time relationship of simulated isotonic concentric contraction with a speed

of 200 nms−1 of half-sarcomere is depicted in �gure 7.3a. The force decrease is a result

of the e�ect of n(x, t) distribution change due to applied velocity. More concretely, the

impact of velocity on n(x, t) distribution is that the cross-bridges are shifted to the region

of x end-to-end distances, where the resulted summarized force of single cross-bridges is

smaller than in distribution of isometric state.

The time evolution of distribution n(x, t) of the number of attached cross-bridges with

particular x distances during concentric contraction is depicted in �gure 7.3m. Beside other

results, the time evolution of n(x, t) distribution showed that after contractile activity, the

shape of distribution reached the same shape as before the contractile activity was triggered

from isometric state. It might be worthwhile to notice here that the shape of distribution

during contractile activity and after contractile activity might be skewed by the mentioned
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balance error on the conservation of the number of cross-bridges. The results of force-time

relationship in �gure 7.3a might be compared with experimentally measured results as in

�gure 2.12 on page 47 and in �gure 2.13 on page 47.

Since the simulation represented the contraction in the region of the plateau of Gor-

don's graph, the actin-myosin �laments overlap stayed constant at its maximal value all the

time - see �gure 7.3g. Therefore, after the contractile activity ceased, the sarcomere force

increased again to its maximal value. This not re�ects the measured data which is char-

acteristic with mentioned force depression. This discrepancy in comparison to measured

data also indicates the direction of possible next research.

The results depicted in �gures 7.3j and 7.3k might look as a paradox, because they

showed that during the course of concentric contraction the number of attached cross-

bridges is higher in comparison to isometric state, but the force is smaller than in isometric

state. The explanation of this is as indicated above. Although the model predicted more

attached cross-bridges than in isometric state, the distribution of the number of these cross-

bridge is shifted by velocity to such extent of x distances that the resulted force is still

smaller. The results of this is a fact that in a representative cross-section of actin-myosin

overlap is produced less force - see the �gure 7.3c than in isometric state.

Note that exactly these results of the number of attached cross-bridges as in �gures

7.3j and 7.3k are skewed by the mentioned error on the conservation of cross-bridges in

proposed model as well as in classical Huxley's model. Nevertheless, the nature of the force

decrease by shifted n(x, t) distribution is valid and showed the principle of force decrease

during transient state of concentric contraction.

On account of integrated modi�ed properties of titin �laments into derived three �la-

ment cross-bridge model, the force as predicted by model during the concentric contraction

is still only the result of cross-bridges activity. The titin, although considered modi�ed by

Ca2+ and attached to actin �laments, is considered to produce no force, because it is

rather buckled as a free band (one-directional spring) than stretched during this kind of

contraction. Therefore it produces zero force - see �gure 7.3d. Obviously, it might be

considered that the buckled states of titins might contribute to the phenomenon of force
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depression. But this e�ect must be studied more profoundly on account of its physiological

background.



CHAPTER 7. SIMULATION AND RESULTS 177

7.3.1 Sudden shortening
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Figure 7.4: Properties of contraction during sudden shortening.
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(m) n(x, t) time evolution during simulation of sudden shortening with v = 1800 nm s−1.

Figure 7.4: Properties of contraction during sudden shortening.
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Comments on results of sudden shortening of a half-sarcomere

Sudden shortening is a special case of concentric contraction, where the sarcomere is sud-

denly subjected to quick shortening change starting from its initial isometric contraction

state. After this quick release, the sarcomere undergoes quick shortening in its length

with simultaneous quick decrease of force. Since the sudden shortening is the special case

of concentric contraction, all depicted graphs describe basically the same properties as in

discussion on preceding results of concentric contraction.

Again, the main aim of these results was to show that proposed three �lament cross-

bridge model is also able to simulate this special case of contraction. The results of force

evolution during sudden shortening as in �gure 7.4a and sarcomere length change as in

�gure 7.4l can be compared to experimentally obtained results as in �gure 2.15 on page 49.
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7.4 Eccentric Contraction (stretch of half-sarcomere)
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Figure 7.5: Properties of eccentric contraction.
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(m) n(x, t) time evolution during eccentric contraction with v = −200 nm s−1.

Figure 7.5: Properties of eccentric contraction.
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Comments on graphical results of eccentric contraction simulation

The results of eccentric contraction simulation are the most important results of submitted

dissertation thesis. To recall the basic properties in brief, the eccentric contraction as

observed in experiments on all hierarchical levels of skeletal muscles is characterized with

force increase once the contraction is triggered from its initial isometric contraction. As

soon as the contractile activity ceases, the force is characterized with force decay to lower

steady-state magnitude of force - see experimental results as in �gures 2.16 on page 50,

2.17 on page 51, 2.18 on page 51, 2.20 on page 53. In experiments, the value of steady-state

force following after eccentric contraction is higher than the reference isometric force at

corresponding length of sarcomere (actin-myosin overlap).

The explanation of force in a course of time during transient state of eccentric contrac-

tion and the following magnitude of stead-state force after eccentric contraction remains

insu�ciently understood in classical cross-bridge theory and two-sliding �laments theory

till nowadays. By the use of the derived three �lament cross-bridge model, the main aim of

presented following results of simulation of eccentric contraction was to contribute to the

explanation of the underlying mechanism that a�ect the shape of force-time relationship

during stretch of skeletal muscles as measured in experiments.

The results of simulation of eccentric contraction (stretch) performed by external force

with speed of v = −200nm s−1 on half-sarcomere are depicted in �gures 7.5a - 7.5m.

Whereas in preceding simulations of isometric and concentric contraction the titin force FT

remained zero because the titin was not stretched or it was rather buckled (one-directional

spring), in the case of eccentric contraction the attached titin part as proposed in [40] is

supposed to exert force FT upon stretch.

The resulted force-time relationship FS(t) of eccentric contraction of a half-sarcomere

is depicted in �gure 7.5a. Since the titin force FT is not zero in this case, the resulted force

FS is a sum of active force FCB (see �gure 7.5b) and passive force FT (see �gure 7.5d).

The magnitude of titin stretch is here supposed to be equal to the absolute value of the

magnitude of stretch (contraction) - see �gure 7.5f, where is depicted the magnitude of

contraction. Although at �rst glance the titin force FT might look linear, in a fact it is
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described by the non-linear worm-like chain model (equation 7.3 on page 161). Therefore,

for small stretches the titin force might be also approximated with linear elastic model.

Simultaneously with the increasing titin force during the half-sarcomere stretch, the

cross-bridge mechanism exerts the force FCB as depicted in �gure 7.5b. The force-time

relationship of force FCB is in this case a�ected namely by two factors:

• by the velocity of stretch,

• by the change of the degree of actin-myosin overlap during contraction.

As can be seen in �gure 7.5b, the cross-bridge force FCB �rstly quickly increases. This is

a result of the shift of the attached cross-bridges to the extent of x-end-to-end distances,

where the single cross-bridges produce higher force according to their force(fcb)-x end-to-

end distance relationship (as measured in [62], [63], described by equation 7.19 on page

164). Therefore during eccentric contraction, the force in a representative cross-section

through the actin-myosin overlap (force per dl) is higher than the force in a representative

cross-section of actin-myosin overlap during isometric contraction - see �gure 7.5c. The

shift of n(x, t) distribution to range of x end-to-end distances with higher values of x

is depicted in �gure 7.5m, where is presented the n(x, t) distribution evolution during

eccentric contraction.

The shift of the distribution n(x, t) to the range of x end-to-end distances with higher

values of x has an impact also on the number of the attached cross-bridges. In particular,

since the cross-bridges are more stretched and according to the de�nition of unfolding rate

g(x) (equation 7.16 on page 162), greater amount of cross-bridges starts to unfold quicker

than in isometric state. This leads to the decrease in a number of attached cross-bridges.

This is depicted in �gure 7.5j, where is depicted the proportion of the attached cross-bridges

in a representative cross-section of actin-myosin overlap (number of attached cross-bridges

per dl).

Although the less of cross-bridges are attached in a representative cross-section of actin-

myosin overlap during eccentric contraction, the force per cross-section (per dl) of actin-

myosin overlap is higher than in isometric state - see �gure 7.5c. This is the result of the
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shift of the cross-bridges to the such extent of x end-to-end distances, where the sum of

forces generated by single cross-bridges is higher than in isometric state, although less of

cross-bridges is attached. This e�ect is further explained and showed in �gures 7.6 and

7.7.

More particular, the �gure 7.6 shows the shapes of n(x, t) distribution of the number

(proportion) of attached cross-bridges during eccentric contraction for speeds of stretch v =

100, 150, 200, 300 nm s−1. For better comparison, the shape of distribution n(x, t) = ns(x)

of isometric contraction is depicted as well. For the simplicity, the sum of the attached

cross-bridges in isometric state is expressed and evaluated as Niso = 100%. As can be

seen in �gure 7.6, the numbers of attached cross-bridges N100, N150, N200, N300, where the

subscripts denote the associated speed, are decreasing with the increasing speeds of stretch.
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Figure 7.6: Proportion of the number of cross-bridges in n(x, t) distribution during stretches
of speeds v = 0, 100, 150, 200, 300 nm s−1.

Simultaneously with the increasing speed of stretch, the shape of distribution n(x, t)

is shifted to the range of x end-to-end distances with higher values of x. The �gure 7.7

demonstrates that although the number of cross-bridges is decreasing with the increasing
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speed of stretch, the sum of force distribution expressed as:

∫ ∞
−∞

fcb(x)n(x, t)dx (7.29)

is increasing with the speed of stretch. Again for the simplicity, the value of the force of the

reference isometric distribution was denoted as Fiso = 100%. The values of F100, F150, F200, F300

for speed of stretches v = 100, 150, 200, 300 nm s−1 show increasing manner (see results in

�gure 7.7). Obviously, it might be expected that after some threshold value of speed, the

force
∫∞
−∞ fcb(x)n(x, t)dx would begin to decrease until zero because of the likely decreas-

ing number of attached cross-bridges to zero. The results from �gures 7.6 and 7.7 are also

summarized in table 7.3.
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Figure 7.7: Force distribution fcb(x)n(x, t) during stretches of speeds v =
0, 100, 150, 200, 300 nm s−1.

Besides the shift of distribution n(x, t) due to contractile activity, the second important

e�ect on account of force FCB evolution during eccentric contraction is that the degree of

actin-myosin overlap decreases as the sarcomere is being stretched by velocity v(t). The

increase in sarcomere length by stretch is depicted in �gure 7.5l and the associated decrease

of actin-myosin overlap is depicted in �gure 7.5g. This has the second important e�ect on
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the evolution of FCB, namely that the number of cross-bridges that can attach decreases -

see �gure 7.5k. Consequently, once the force FCB is quickly increased due to the distribution

shift, it starts to decrease due to the decreasing number of attached cross-bridges. This

e�ect of decreasing force FCB as depicted in �gure 7.5b can not be observed in experiments

on muscles, myo�brils and sarcomeres due to the fact that the decrease in FCB due to

decreasing a-m overlap is "hidden" by the increase of force FT due to stretch of titin.

speed of stretch N number of attached cross-bridges force in distribution
v [nm s−1] N =

∫∞
−∞ n(x, t)dx F =

∫∞
−∞ fcb(x)n(x, t)dx

0 100% 100%
100 97.590% 117.3577%
150 96.832% 125.3021%
200 95.936% 132.2359%
300 93.726% 143.2189%

Table 7.3: The number and force of attached cross-bridges in a representative cross-section
through the actin-myosin overlap for di�erent values of speed of stretch of a half-sarcomere.

As already noted above, the eccentric contraction begins with quick increase of force

once the muscle is stretched from its initial isometric state. The magnitude of this quick

increase depends on the value of speed. For comparison, this can be seen in �gures 7.8a

- 7.8d, where are the results of half-sarcomere eccentric contraction simulations for speed

of stretches of v = 100, 150, 200, 300nm s−1 for the magnitudes of stretches (contraction)

of 60, 120, 180nm. From these results, it is apparent that magnitude of the quick increase

in force at the beginning of eccentric contraction is increasing with the increasing speed of

stretch.

The results 7.8a - 7.8d also show that the magnitude of force decay after the contractile

activity ceases is higher for higher speeds of stretch. This e�ect can be clari�ed again

on account of the magnitude of distribution shift to the higher values of x end-to-end

distances. Therefore, as showed in �gures 7.6 and 7.7, the di�erence between force produced

by isometric distribution and force produced by distribution in stretch is increasing with

speed of stretch. Consequently, the magnitude of force decay that is a results of n(x, t)
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distribution recovery (relax) to its isometric state is greater for higher speeds. The shape

of force-time relationships in �gures 7.8a - 7.8d can be compared to the experimentally

achieved results as presented in �gures 2.17 on page 51, 2.18 on page 51, 2.20 on page 53.
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with speeds of −100,−150,−200,−300 nm s−1.
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Comparison between classical Huxley's approach based on the two-sliding

�lament and derived three �lament cross-bridge model

Regarding the results of eccentric contraction, it might be worthwhile to depict the dif-

ferences between classical Huxley's two sliding �laments approach and presented three

�laments approach. The di�erence between those two approaches is demonstrated in �g-

ure 7.9. This �gure depicts the simulation of eccentric contraction performed by derived

three �lament model with blue line. The black line shows the result of simulation without

considering the titin, i.e. the black line depicts the classical two sliding �lament approach.
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Figure 7.9: Comparison between classical two sliding �lament theory (classical Huxley's
approach) and three �lament theory (proposed three �lament cross-bridge model).

As can bee seen in this �gure, both of these approaches has the same initial isometric

force (dashed green line). Further, both of these approaches have the same reference iso-

metric force (dashed red line) at corresponding length of sarcomere (actin-myosin overlap)

following after the contractile activity ceases. The di�erence between those two approaches

shows that the simulation based on classical two-sliding �laments approach relaxes to-

wards the steady-state value of force equalled to reference isometric force at corresponding

length of sarcomere. This is not in concordance with observed measured results. Whereas

the simulation based on proposed three �lament approach as proposed in [40] ends with

steady-state force which is higher than reference isometric force and even higher than ini-

tial isometric force, which better re�ects the observed measured results in experiments on

all levels of muscle hierarchy.
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7.4.1 Properties of steady-state force enhancement

The intrinsic property associated with eccentric contraction is phenomenon called force

enhancement. To recall this phenomenon, force enhancement is a steady-state property

of muscle, where the stretched muscle produces higher force than at corresponding length

during isometric contraction [35], [40], [43]. The di�erence between the value of steady-

state force after stretch and the value of isometric force at corresponding length is a value

of steady-state force enhancement. The force enhancement is depicted in the result of

simulation in �gure 7.10 or in experimentally achieved results as in �gure 2.19 on page 52.
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Figure 7.10: Demonstration of force enhancement achieved in simulation. The blue line
represents the force-time relationship during eccentric contraction. The black line repre-
sents the isometric force at sarcomere length corresponding to the length of sarcomere after
stretch.

To test the derived three �lament cross-bridge model also on account of basic properties

of steady-state force enhancement, the following two main properties of steady-state force

enhancement were tested [37]:

1. the magnitude of steady-state force enhancement is increasing with magnitude of

stretch,

2. the magnitude of steady-state force enhancement is independent on the magnitude

of the speed of stretch.



CHAPTER 7. SIMULATION AND RESULTS 192

The simulation of �rst mentioned property is depicted in �gures 7.11a - 7.11d. The �g-

ures are results of simulations, where the half-sarcomere was stretched for the magnitude

of stretches 60, 120, 180 nm with various speeds of v = 100, 150, 200, 300 nm s−1. The

red, yellow and violet lines represent the force-time relationships of eccentric contrac-

tion performed for 60, 120, 180 nm. The dashed blue line represents the initial isometric

force. The black line represents the reference steady-state isometric force at correspond-

ing length of half-sarcomere (actin-myosin overlap). The green lines represent achieved

values of steady-state force enhancements associated to particular magnitudes of stretch.

The values FE60, FE120, FE180 of achieved force enhancements for mentioned magni-

tude of stretches are normalized according to maximal isometric force. The �gures 7.11a

- 7.11d clearly show that the value of force enhancement is increasing with magnitude of

stretch. This is consistent with measured experiments. The summary of the values of force

enhancement for various stretches in presented in table 7.4.

magnitude of stretch nm steady state force enhancement
60 20.1%
120 45.9%
180 84.2%

Table 7.4: Summary on the values of force enhancement for magnitudes of stretches of
60, 120, 180 nm simulated with speeds of stretches of v = 100, 150, 200nm s−1.

The second mentioned property of steady-state force enhancement that the value of

steady-state force enhancement is independent on the speed of stretch is depicted in �g-

ures 7.12a - 7.12c. In particular, these �gures show that the forces during transient state of

eccentric contraction simulated for the same magnitude of stretch but with various speeds

relax to the same value of stead-state force after stretch. The �gures 7.12a - 7.12c also

clearly show that the magnitude of initial quick increase in force during eccentric contrac-

tion increases with the magnitude of speed as already mentioned above. This is also valid

for the size of force decay after the contractile activity ceases. Therefore in �gures 7.12a -

7.12c can be seen that the size of force decay increases with the increasing speed of stretch.
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(b) Force enhancements achieved by speed
v = −150 nm s−1

for stretches of magnitudes 60, 120, 180 nm.
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(c) Force enhancements achieved by speed
v = −200 nm s−1

for stretches of magnitudes 60, 120, 180 nm.
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Figure 7.11: Simulation of force enhancements conducted for stretches of 60, 120, 180 nm
with speeds −100,−150,−200,−300 nm s−1.
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Figure 7.12: Force enhancements performed for stretches of 60nm, 120nm, 180nm with
speeds of −100,−150,−200 nm s−1.
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7.4.2 Sudden stretch
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Figure 7.13: Properties of contraction during sudden stretch.
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Figure 7.13: Properties of contraction during sudden stretch.
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Figure 7.14: n(x, t) time evolution during simulation of sudden stretch v = −1800 nm s−1.
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Comments on the results of the sudden stretch of a half-sarcomere Sudden

stretch is a special case of eccentric contraction, where the muscle is suddenly stretched

from its initial isometric contraction. After quick stretch, the sarcomere undergoes quick

increase in length - see �gure 7.13l and simultaneously quick increase in force - see �gure

7.13a. Since the sudden stretch is a special case of eccentric contraction, all properties

described in preceding part on eccentric contraction are also valid for these results of

simulation.

Because the sudden stretch is performed only for small length change of sarcomere

(actin-myosin overlap) as well as for small titin stretch, the force that dominates in force-

time relationship comes from the attached cross-bridges - see �gure 7.13b. Although the

titin is also stretched, its force increase is negligible - see �gure 7.13d. Therefore, after

stretch the force relaxes to the steady-state force, which is slightly higher than initial

force. The results of simulation can be compared to the measured results as depicted in

�gure 2.23 on page 55.



Chapter 8

Conclusion and summary on

the achieved results

In conclusion on the main topic of submitted work, let's quickly recall here the main

aims of the thesis. The presented work dealt with theoretical model of skeletal sarcomere

(muscle) contraction based on widely admitted classical cross-bridge theory and two sliding

�lament theory. The main topic of these classic theories is to explain the muscle contractile

activity as it arises from the cyclical interaction of two proteins actin and myosin. The �rst

mathematical model of cross-bridge theory was published by A.F. Huxley already in 1957.

Since then, a lot of modi�cations of Huxley's original model were published to actual state

of art in physiology at considered time.

To conclude on account of a long history of these models, it might be stated that models

based on cross-bridge theory more or less succeeded in the description of concentric and

isometric contraction including energetics of these contractions. Till nowadays, the most

challenging part of cross-bridge theory remains the explanation of the nature of eccentric

contraction and contraction history-dependent phenomenons as force enhancement follow-

ing after eccentric contraction and force depression following after concentric contraction

[35], [41], [43].

Therefore, the main e�ort of this dissertation thesis was to contribute to the possible
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explanation of mentioned remaining problems of cross-bridge theory. Predominantly, the

work was focused on the problems related to the explanation of the nature of eccentric

contraction and its intrinsic phenomenon called force enhancement. Accordingly, one of the

most necessary parts of presented work was also to carefully collect the actual information

in physiology gained namely in last two decades in experiments on single sarcomeres, single

cross-bridges (myosin II), single titin �lament and its segments. Because the protein myosin

II is molecular motor, a considerable part of text was devoted to the comprehension of these

amazing natural mechanisms. The detailed collecting of mentioned information was also

the most time-consuming part of work.

Consequently, based on the acquired information, the mathematical model based on

Huxley's approach was derived from scratch with a strong attention to physiological back-

ground of considered problem. Therefore, one of the main results of presented work is also

modi�ed classical Huxley's cross-bridge model with precisely de�ned parameters regarding

the latest possible results in physiology. The derived modi�ed model in its dynamic form

is on page 154. The steady-state form of proposed model is on page 156.

In comparison to classical cross-bridge theory and classical two-sliding �lament theory,

the classical Huxley's cross-bridge model was modi�ed in particular in following manner:

1. the active force production in mathematical description was related directly to the

degree of actin-myosin �laments overlap rather than to sarcomere length,

2. the experimentally measured mechanical properties of single cross-bridges [62], [63],

[90] were used in the model,

3. the single cross-bridge elastic properties were described rather by shortest x end-

to-end distances between single cross-bridge's ends than by spring with elongation

x,

4. the newly observed special properties of titin �laments were added to model as pro-

posed in [17], [40], [43] - crucial modi�cation related to eccentric contraction,
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5. the Huxley's equation describing the evolution of distribution n(x, t) of attached

cross-bridges was slightly modi�ed to allow the use of the normalized distribution

n(x, t),

6. probably not widely known the error of conservation law of the number of cross-

bridges in classical as well as in modi�ed model is discussed,

7. the kinetic rate f(x) and interval h were proposed in manner to allow the attachment

of cross-bridges oriented in wrong direction according the sense of the concentric

contraction direction and in buckled/bended state,

8. the computation of consumed ATP molecules was connected rather with kinetic rate

g(x) than f(x),

9. the form of considered kinetic rate g(x) allows to compute forcibly detached cross-

bridges vs. cross-bridges detached by ATPase activity,

10. the equations of another properties of mechanism were proposed for better insight

into muscle contractile activity.

According to the �rst mentioned modi�cation, the active force production was related

directly to the degree of actin-myosin overlap in contrary to classical Huxley's model, where

the force is related to the length of the whole (half) sarcomere including passive I-band

region. It was believed here that this modi�cation could contribute namely to the better

estimation of the produced force by cross-bridges. Further it allows better estimation of the

number of attached cross-bridges followed by the possible better estimation of energetic

properties of the contractile processes as estimation of the number of consumed ATP

molecules.

The second and third mentioned modi�cations were on a single cross-bridge level. Non-

linear property of single cross-bridge elasticity as measured in [90], [62], [63] was integrated

into the cross-bridge model. According to this modi�cation, the variable x was de�ned as

the shortest end-to-end distance of single cross-bridge's ends rather than as spring with
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elongation x. The description of mechanical properties with end-to-end distance is also

common approach in physics of proteins. The description with end-to-end distance also

allows to incorporate into model the cross-bridges, which are attached in bended/buckled

states and in wrong direction according to the sense of concentric contraction.

The fourth mentioned modi�cation is the crucial step for the support of the newly pro-

posed explanation of the nature of eccentric contraction. Regarding to this modi�cation,

the pivotal adjustment of classical model was the inclusion of the third �lament titin into

the classical cross-bridge model as proposed in [40]. This crucial modi�cation supposes

that during the all kind of contraction the resulted force, which is the inner mechanism

in sarcomere able to develop, is always sum of active and passive force sources. More

speci�cally, it is sum of forces produced by cross-bridges cycling and newly observed titin

elastic properties, which play more signi�cant role in sarcomere than originally considered

in classical cross-bridge theory and two sliding �lament theory. This modi�cation resulted

in enhancement of classical cross-bridge model especially on account of still challenging

explanation of eccentric contraction, which is followed by the phenomena of force enhance-

ment, where the steady-state force of activated sarcomere after stretch is much higher than

in related isometric state with the same length of sarcomere (with the same degree of actin

myosin overlap).

The �fth and sixth modi�cations were proposed on classical Huxley's equation for

description of the dynamic of attached cross-bridges. The original equation was changed in

a manner to allow normalization of distribution n(x, t) of attached cross-bridges according

to the sum of the number of attached and detached cross-bridges in (half) sarcomere. In

connection with this modi�cation, it was pointed out that classical Huxley's equation and

modi�ed Huxley's equation in a mathematical form of transport equation with sources

violates the balance law on the preservation of the number of cross-bridges. On account of

this problem, the possible way of correction of this error was proposed. Still, this problem

need to be examined with more attention, because it might be the key for the resolution of

another remaining problems of cross-bridge theory as for example of phenomena of force

depression. The equations proposed for this correction are on page 155.
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The seventh, eight and ninth modi�cations were related to the bound and unbound

kinetic rates f(x), g(x). The proposed bound rate f(x) can be considered as the weakest

part of proposed model because it was proposed rather phenomenologically. Nevertheless,

the shape of this function as proposed here allows to include the cross-bridges with wrong

orientation according to the sense of concentric contraction, which are often reported in

literature. In comparison to classical Huxley's model, the use of this form of f(x) also

allows to describe the distribution n(x, t) as continuous function. The resulted shape of

distribution then might look more "physically" although this assumption is very arguable

since the shape of distribution is probably impossible to verify with measured data.

The unbound kinetic rate g(x) was proposed as the sum of the e�ects describing cross-

bridge unbinding due to APTase activity on single cross-bridges and due to the e�ect of

load, where the single cross-bridges might be forcibly detached before completion of their

biochemical cycle. On account of this modi�cation, the computation of consumed ATP

molecules during contractile activity was related rather to function g(x) in contrary to clas-

sical Huxley's model. The proposed shape of kinetic rate g(x) thus allows to estimate the

number of cross-bridges detached by ATP molecules and number of cross-bridges forcibly

detached by external load.

Similarly to classical model, the last modi�cations of model were on account of de-

scription of another mechanical properties. Namely, the relationships for sti�ness, elastic

energy etc. were derived and changed to satisfy the mathematical form of proposed three

�lament cross-bridge model.

To test the modi�ed classical Huxley's cross-bridge model, the following numerical

simulations were conducted:

1. simulation of isometric contraction,

2. simulation of isotonic concentric contraction,

3. simulation of sudden shortening (special case of concentric contraction),

4. simulation of eccentric contraction followed by phenomena of force enhancement,
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5. simulation of sudden stretch (special case of eccentric contraction),

6. special cases and properties of force enhancement.

It must be emphasized that proposed model is to complex and had to be simpli�ed

namely on account of simulation of titin's part unfolding. Therefore, the simulated situa-

tions and ranges of contractile length were selected with respect on physiological conditions,

where it is assumed that unfolding of titin's Ig-domains does not occur. The reason for

this was the imperfections in models describing the unfolding of proteins, which usually at

the end leads to "user adjustable" parameters. The simpli�ed model with its parameters

is on page 161.

Accordingly, the simulation of eccentric contraction was conducted only for small stretches,

where the unfolding of titin's parts need not to be considered. The aim of all results was

rather to test the concept of proposed model than to achieve the results with the same

absolute values in comparison to wide variety of experimentally measured data.

Although the simulation of isometric and eccentric contraction were not the main topic

of presented work, it was necessary to show that the modi�ed cross-bridge model also con-

form to these parts of cross-bridge theory, which are traditionally considered as su�ciently

explained by classical Huxley's model. The results of simulation of isometric contraction

are depicted in �gures 7.2 on page 167. The time-evolution of distribution of attached

cross-bridges during isometric contraction is depicted in �gure 7.2m on page 169. The

results of simulation of concentric contraction are depicted in �gures 7.3 on page 171. The

time-evolution of distribution of attached cross-bridges during concentric contraction is

depicted in �gure 7.3m on page 173. The results of simulation of sudden shortening of

sarcomere are depicted in �gures 7.4 on page 177 and in �gure 7.4m on page 179.

The main conclusion of the simulation results of isometric and concentric contraction

is that the proposed three �lament cross-bridge model does not break the parts of cross-

bridge theory, which are traditionally considered as su�ciently understood by original

classical Huxley's model. The shape of force-time relationships of sarcomere force produc-

tion achieved by these simulations might be easily compared with experimentally measured
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results on the scales of the whole muscle, myo�brile and single sarcomere. On account of

concentric contraction, it must be pointed out that modi�ed model as well as original Hux-

ley's model does not describe phenomenon of force depression following after shortening of

muscle.

The important results of eccentric contraction are introduced in section 7.4. The various

properties of eccentric contraction are depicted in �gures 7.5 on page 182 and in �gures 7.8

on page 189. Besides other conclusions presented in discussion, the results clearly showed

that fast increase in force during transient state of eccentric contraction is predominantly

caused by the change of the shape of distribution n(x, t). In this kind of contraction,

the distribution n(x, t) is moved to the ranges of x, where the single cross-bridges pro-

duce higher force upon stretch although less of cross-bridges are attached in this kind of

contraction than in others types of contraction.

Another important result is that the simulations performed only for the ranges of physi-

ological condition, where the unfolding of titin's segments are not considered, clearly shows

that the force decay at the end of transient state of eccentric contraction arises from the

gradual change of n(x, t) distribution to steady-state. The model further showed that the

steady state shape of distribution after contractile activity correspond to the shape of iso-

metric distribution. Nevertheless it might be worthwhile to notice, that studied properties

in transient state of contractions are skewed by the mentioned error of conservation of

number of cross-bridges. In any case, it might be concluded that at small stretches of

sarcomere, the unfolding of titin's Ig domains is not necessary to describe force decay at

the end of contractile activity. Whereas at higher stretches, the force decay at the end

of transient state of eccentric contraction is likely the simultaneous e�ect of titin part's

unfolding together with gradual change of distribution as described above.

The most important results of presented work are simulations of properties of phenom-

ena of force enhancement depicted in section 7.4.1 in �gure 7.10 on page 191, further in

�gures in 7.11 on page 193 and in �gures 7.12 on page 194. The main conclusions resulting

from these graphical results of performed simulation on steady-state force enhancement are

the main results of presented dissertation thesis and can be summarized into two points:
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1. the concept of proposed modi�cations in classical cross-bridge theory and two slid-

ing �lament theory as proposed in [40] conforms to the basic observable properties

of eccentric contraction. More speci�cally, the simulations of eccentric contraction

show the two most characteristic properties of eccentric contraction. At �rst, the

results show the mechanism of the property that the quick increasing magnitude of

sarcomere's force during transient state of eccentric contraction depends on the speed

of stretch, which signi�cantly a�ects the shape of distribution n(x, t). Secondly, the

simulations of eccentric contraction are consistent with the fact that the resulted

magnitude of steady-state force enhancement increases with increasing magnitude

of stretch. This is consequence of the self-modi�ed properties of titin as showed in

achieved results.

2. The second important conclusion based on the results is that the phenomena of force

enhancement experimentally measured at all levels of muscle structural hierarchy has

its origin on the scale of half-sarcomere (scale of the hundreds of nm and units of

µm). This conclusion overshadows the theories as sarcomere length non-uniformities

in myo�briles or proposals on additional special states in cross-bridge's biomechanical

cycle etc.

In conclusion, modi�ed Huxley's cross-bridge model is able to contribute namely to

the explanation of the eccentric contraction and its intrinsic phenomena of force enhance-

ment. Further, on account of the proposed modi�cations, the processes already successfully

explained by original Huxley's model remained unchanged or improved. The crucial mod-

i�cation of the classical model has showed the way of the addition of special properties of

titin �laments into the classical cross-bridge model. In comparison to classical theories,

this modi�cation as proposed in [40] also changes the general view on the mechanism of

eccentric contraction.

The mentioned imperfections of the model also de�ne the direction of the next possible

research. Especially, the model of the titin's part must be enhanced in the way to include

namely kinetics of unfolding and refolding of Ig-domains. Further, the impact of the balance
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law error of the number of cross-bridges in model should be more carefully examined. The

main task of this discrepancy might be to resolve the question if the shape of distribution

n(x, t) in steady-states after contractile activity has really the same shape as in the case

of initial state (isometric contraction).

The modi�cation and proposals in presented three �lament cross-bridge model were

proposed with respect to the experimental results of force-time relationships of considered

kind of contractile activities. It might be worthwhile to improve the model also with respect

to the experimentally measured results of energetic properties of muscles. For instance, the

comparison with measured consumption of ATP molecules could also help to better tune

up the shape of binding/unbinding rate functions f(x), g(x). Regarding to the description

of force-length relationship of single cross-bridges, it might be worthwhile to consider the

description of this property also by worm-like chain model since this model is in general

successful in the description of forces generated by proteins.



Bibliography

[1] R. Ait-Haddou and Walter Herzog. Force and motion generation of myosin motors:
muscle contraction. Journal of Electromyography and Kinesiology, 12:435�445, 2002.

[2] Hind A. AL-Khayat. Three-dimensional structure of the human myosin thick �la-
ment: clinical implication. Global Cardiology Science and Practise, 36:280�302, 2013.

[3] R. Dean Astumian. Thermodynamics and kinetics of molecular motors. Biophysical
Journal, 98:2401 � 2409, 2010.

[4] Josh E. Baker. Free energy transduction in a chemical motor model. Journal of

Theoretical Biology, 228:467�476, 2004.

[5] C.J. Barclay, R.C. Woledge, and N.A. Curtin. Inferring crossbridge properties from
skeletal muscle energetics. Prgress in Biophysics and Molecular Biology, 2010.

[6] Jan Baxa, Jan Bene², Marek Brandner, Jan Br·ha, ji°í Egermajer, Ji°í Ferda, Alena
Joná²ová, Petra Kochová, Hana Kopincová, Stanislav Kormuda, Milena Králí£ková,
Jana K°e£ková, Ji°í K°en, Václav Li²ka, Vladimír Luke², Hynek Mírka, Martin Pe²ta,
Pavel Pitule, Eduard Rohan, Josef Rosenberg, Tomá² Skalický, Pavel Sou£ek, Zbyn¥k
Tonar, Vladislav T°e²ka, Radek Tupý, Jan Vimmr, and Ond°ej Vy£ítal. Experi-

mentální chirurgie - nové technologie v medicín¥, II. díl: Biomechanika. Univerzita
Karlova v Praze, Léka°ská fakulta v Plzni, Husova 3, 306 05 Plze¬, 2013.

[7] George I. Bell. Models for the speci�c adhesion of cells to cells. Science, 200(618):618�
627, 1978.

[8] Bernhard Brenner. The stroke size of myosins: a reevaluation. Journal of Muscle

Research and Cell Motility, 27:173�187, 2006.

[9] C. Bustamante, J.F. Marko, E.D. Siggia, and S. Smith. Entropic elasticity of α-phage
dna. Science, 9 September 1994.

208



BIBLIOGRAPHY 209

[10] Vincent J. Caiozzo. Plasticity of skeletal muscle phenotype: mechanical conse-
quences. Muscle & Nerve, 26:740�768, August 9 2002.

[11] Mariano Carrion-Vazquez, Andres F. Oberhauser, Susan B. Fowler, Piotr E. Marsza-
lek, Sheldon E. Broedel, Jane Clarke, and Julio M. Fernandez. Mechanical and
chemical unfolding of a single protein: A comparision. Proceedings of the National

Academy of Sciences of the United States of America, 96(7):3694�3699, 1999.

[12] Leslie Chin, Pengtao Yue, James J. Feng, and Chun Y. Seow. Mathematical simula-
tion of muscle cross-bridge cycle and force-velocity relationship. Biophysical Journal,
91:3653�3663, November 2006.

[13] Lenka Cihalova. Biomechanical models of tissue and their implementation into human

body. PhD thesis, University of West Bohemia, Plze¬, Czech Republic, 2008.

[14] Robert Cimrman. Mathematical modeling of biological tissue. PhD thesis, University
of West Bohemia, Plze¬, Czech Republic, 2002.

[15] Roger Cooke. The actomyosin engine. The FASEB Journal, 9:636�642, May 1995.

[16] T.A.J. Duke. Molecular model of muscle contraction. Proceedings of the National

Academy of Sciences of the United States of America, 96:2770�2775, March 1999.

[17] Michael M. DuVall, Jessica L. Gi�ord, Matthias Amrein, and Walter Herzog. Altered
mechanical properties of titin immunoglobulin domain 27 in presence of calcium.
European Biophysics Journal, 42:301 � 307, 2013.

[18] Thomas J. Eddinger. Myosin heavy chain isoforms and dynamic contractile proper-
ties: skeletal versus smooth muscle. Comparative Biochemistry and Physiology Part

B, 119:425�434, 1998.

[19] K. A. P. Edman, G. Elzinga, and M. I. M. Noble. Enhancement of mechanical
performance by stretch during tetanic contraction of vertebrate skeletal muscle �bres.
Journal of Physiology, 1978.

[20] K.A.P Edman and T. Tsuchiya. Strain of passive elements during force enhancement
by stretch in frog muscle. Journal of Physiology, 490(1):191�205, 1996.

[21] Thorsten Erdmann, Philipp J. Albert, and Ulrich S. Schwarz. Stochastic dynamics
of small ensembles of non-processive molecular motors: The parallel cluster model.
The Journal of Chemical Physics, 139, 2013.



BIBLIOGRAPHY 210

[22] Evan Evans and Ken Ritchie. Dynamic strength of molecular adhesion bonds. Bio-
physical Journal, 72:1541�1555, 1997.

[23] John A. Faulkner, Lisa M. Larkin, Dennis R. Cla�in, and Susan V. Brooks. Age-
related changes in the structure and function of skeletal muscles. Clinical and Ex-

perimental Pharmacology and Physiology, 34:1091�1096, 2007.

[24] Richard Phillips Feynman. There's plenty of room at the bottom: An invitation to
enter a new �eld of physics. Caltech Engineering and Science, 23(5):22�36, 1960.

[25] Je�rey T. Finer, Robert M. Simmons, and James A. Spudich. Single myosin molecule
mechanics: piconewton forces and nanometer steps. Nature, 368:113�119, 1994.

[26] Thomas E. Fisher, Piotr E. Marszalek, and Julio M. Fernandez. Stretching single
molecules into novel conformation using the atomic force microscope. Nature struc-

tural biology, 7(9):719�724, Semptember 2000.

[27] Michael A. Geeves. Stretching the lever-arm theory. Nature, 415:129�128, January
10 2002.

[28] A. M. Gordon, E. Homsher, and M. Regnier. Regulation of contraction in striated
muscle. Physiological Reviews, 80(2):853�924, 2000.

[29] A.M. Gordon, A.F. Huxley, and F.J. Julian. The variation in isometric tension with
sarcomere length in vertebrate muscle �bre. J. Physiol, 184:170�192, 1966.

[30] Henk Granzier, Yiming Wu, Labeit Siegfried, and Martin LeWinter. Titin: Physi-
ological function and role in cardiomyopathy and failure. In Heart Failure Reviews,
volume 10, pages 211�223. Springer Science + Business Media, 2005.

[31] Henk L. Granzier and Siegfried Labeit. Titin and its associated proteins: the third
myo�lament system of the sarcomere. Advances in Protein Chemistry, 71:89�119,
2005.

[32] Irving P. Herman. Physics of the Human Body. Springer, 2007.

[33] Jens A. Herzog, Tim R. Leonard, Azim Jinha, andWalter Herzog. Are titin properties
re�ected in single myo�brils? Journal of Biomechanics, 45:1893 � 1899, 2012.

[34] Walter Herzog. Consideration on the theoretical modelling of skeletal muscle con-
traction. In Walter Herzog, editor, Skeletal Muscle Mechanics, From Mechanisms to

Function. John Wiley & Sons, LTD, 2000. ISBN 0-471-49238-8.



BIBLIOGRAPHY 211

[35] Walter Herzog. The nature of force depression and force enhancement in skeletal
muscle contraction. European Journal of Sport Science, 2001.

[36] Walter Herzog. History dependence of skeletal muscle force production: Implication
for movement control. Human Movement Science, 23:591�604, 2004.

[37] Walter Herzog. Mechanism of enhanced force production in legthening (eccentric)
muscle contraction. Journal of Applied Physiology, 116(11):1407�1417, June 1st 2014.

[38] Walter Herzog. The role of titin in eccentric muscle contraction. The Journal of

Experimental Biology, 217:2825�2833, 2014.

[39] Walter Herzog and Rachid Ait-Haddou. Consideration on muscle contraction. Jour-
nal of Electromyography and Kinesiology, 12:425�433, 2002.

[40] Walter Herzog, Tim Leonard, Venus Joumaa, Michael DuVall, and Appaji Pan-
changam. The three �lament model of skeletal muscle stability and force production.
Tech Science Press, 9(3):175�191, 2012.

[41] Walter Herzog and Tim R. Leonard. Force enhancement following stretching of
skeletal muscle: a new mechanism. Journal of Experimental Biology, 205:1275�1283,
2002.

[42] Walter Herzog, Tim R. Leonard, and J. Z. Wu. The relationship between force
depression following shortening and mechanical work in skeletal muscle. Journal of

Biomechanics, 33(6):659�668, June 2000.

[43] Walter Herzog, Krysta Powers, Kaleena Johnston, and Michael DuVall. A new
paradigm for muscle contraction. Frontiers in Physiology, 6(174), 2015.

[44] A. V. Hill. The heat of shortening and the dynamic constants of muscle. Proceedings
of the Royal Society of London B: Biological Sciences, 126(843):136�195, October
10th 1938.

[45] Terrell L. Hill, Evan Eisenberg, and YI-Der Chen. Some self-consistent two-state
sliding �lament models of muscle contraction. Biophysical Journal, 15:335�372, April
1975.

[46] Johnaton Howard and James A. Spudich. Is the lever arm of myosin a molecular
elastic element? Proceedings of the National Academy of Sciences of the United



BIBLIOGRAPHY 212

States of America, 1996. Appendix to article: Taro Q. P. Uyeda, Paul D. Abramson,
and James A. Spudich. The neck region of the myosin motor acts as a lever arm to
generate movement. Proceedings of the National Academy of Sciences of the United
States of America, pages 4459�4464, April 1996. Biophysics.

[47] http://biomhs.blogspot.cz.

[48] Andrew F. Huxley. Muscle structure and theories of contraction. Progress in bio-

physics and biophysical chemistry, 7:255�318, 1957.

[49] Andrew F. Huxley. Review lecture: Muscular contraction. Journal of Physiology,
243:1�43, 1974.

[50] Andrew F. Huxley. Biological motors: Energy storage in myosin molecules. Current
Biology, 8:485�488, 1998.

[51] Andrew F. Huxley. Cross-bridge action: present views, prospects, and unknows.
Journal of Biomechanics, 33:1189 � 1195, 2000.

[52] Andrew F. Huxley. Mechanics and models of the myosin motor. Philosophical Trans-
action of the Royal Society B: Biological Sciences., 355:433�440, 2000.

[53] Andrew F. Huxley and R. Niedergerke. Structural changes in muscle during contrac-
tion; interference microscopy of living muscle �bres. Nature, 173(4412):971 � 973,
1954.

[54] Andrew F. Huxley and R.M. Simmons. Proposed mechanism of force generation.
Nature, 22:533 � 538, 1971.

[55] Andrew F. Huxley and S. Tideswell. Filament compliance and tension transients in
muscle. Journal of Muscle Research and Cell Motility, 17:507�511, 1996.

[56] Hugh E. Huxley. The mechanism of muscular contraction. Science, 164:1356�1366,
1969.

[57] Hugh E. Huxley and J. Hanson. Changes in the cross-striations of muscle during
contraction and stretch and their structural interpretation. Nature, 173 (4412):971�
973, 1954.

[58] Hugh Esmor Huxley. Electron microscope studies of the organisation of the �laments
in striated muscle. Biochimica et Biophysica Acta, 12:387�394, 1953.



BIBLIOGRAPHY 213

[59] V. Joumaa, T.R. Leonard, and Walter Herzog. Residual force enhancement in my-
o�brils and sarcomeres. Proceedings of The Royal Society B, 275:1411�1419, 2008.

[60] Venus Joumaa, D.E. Rassier, Tim R. Leonard, and Walter Herzog. The orign of
passive force enhancement in skleletal muscle. American Journal of Physiology, 2008.

[61] Frank Jülicher. Force and motion generation of molecular motors: A generic de-
scription. In Transport and Structure: Their Competitive Roles in Biophysics and

Chemistry. Springer, Berlin 1999.

[62] Motoshi Kaya and Hideo Higuchi. Nonlinear elasticity and an 8-nm working stroke
of single myosin molecules in myo�laments. Science, 329:686�689, 6 August 2010.

[63] Motoshi Kaya and Hideo Higuchi. Sti�ness, working stroke, and force of single-
myosin molecules in skeletal muscle: elucidation of these mechanical properties via
nonlinear elasticity evaluation. Cellular and Molecular Life Sciences, 70:4275�4292,
2013.

[64] Miklos S.Z. Kellemayer, Steven B. Smith, Carlos Bustamante, and Henk L. Grazier.
Complete unfolding of the titin molecule under external force. Journal of Structural
Biology, 122:197�205, 1998.

[65] Miklos S. Z. Kellermayer, Steven B. Smith, Carlos Bustamante, and Henk L.
Granzier. Mechanical fatigue in repetitively stretched single molecules of titin. Bio-
physical Journal, 80:852�863, February 2001.

[66] Miklos S.Z. Kellermayer, Carlos Bustamante, and Henk L. Granzier. Mechanics and
structure of titin oligomers explored with atomic force microscopy. Biochimica et

Biophysica Acta, 1604:105�114, 2003.

[67] Miklos S.Z. Kellermayer, Steven B. Smith, Henk L. Granzier, and Carlos Bustamante.
Folding-unfolding transitions in single titin molecules characterized with laser tweez-
ers. Science, 276:1112�1116, May 16 1997.

[68] Kazuo Kitamura, Makio Tokunaga, and Toshio Yanagida. A single myosin head
moves along an actin �lament with regular steps of 5.3 nanometers. Nature, 397, 14
January 1999.

[69] Stefan Klumpp, Theo M. Nieuwenhuizen, and Reinhard Lipowsky. Movements of
molecular motors: Ratchets, random walks and tra�c phenomena. Physica E: Low-

dimensional Systems and Nanostructures, 29, Issues 1-2:380�389, October 2005.



BIBLIOGRAPHY 214

[70] Hana Kockova. Biomechanical models of living tissues and their industrial applica-

tions. PhD thesis, University of West Bohemia, Plze¬, Czech Republic, 2007.

[71] Anatoly B. Kolomeisky and Michael E. Fisher. Molecular motors: A theorist's per-
spective. Annual Review of Physical Chemistry, 58:675�95, 2007.

[72] Aikaterini Kontrogianni-Konstantopoulos, Maegen A. Ackermann, Amber L. Bow-
man, Solomon V. Yap, and Robert J. Bloch. Muscle giants: Molecular sca�olds in
sarcomerogenesis. Physiological Reviews, 89:1217�1267, 2009.

[73] F. Jon Kull and Sharyn A. Endow. Force generation by kinesin and myosin cytoskele-
tal motor proteins. Journal of Cell Science, (126):9�19, 2013.

[74] Alexei Kurakin. Self-organization versus watchmaker: Molecular motors and protein
translocation. BioSystems, 84:15�23, 2005.

[75] Dietmar Labeit, Kaori Watanabe, Christian Witt, Hideaki Fujita, Yiming Wu, Sun-
shine Lahmers, Theodor Funck, Siegfried Labeit, and Henk Granzier. Calcium-
dependent molecular spring elements in the giant protein titin. Proceeding of the

National Academy of Sciences of the United States of America, 100(23), November
11 2003.

[76] Ganhui Lan and Sean X. Sun. Mechanical models of processive molecular motors.
Molecular Physics, 110:1017�1034, May 2012.

[77] Carlos A. Lazalde and Lloyd Barr. Four-state models of contraction of smooth muscle.
ii. properties of the solution and identi�cation. Mathematical Biosciences, 112:31�54,
1992.

[78] Carlos A. Lazalde and Lloyd C. Barr. Four-state models and regulation of contraction
of smooth muscle. i. physical consideration, stability, and solutions. Mathematical

Biosciences, 112, Issue 1:1�30, 1992.

[79] Tim R. Leonard, Mark DuVall, and Walter Herzog. Force enhancement following
stretch in a single sarcomere. American Journal of Physiology Cell Physiology, 2010.

[80] T.R. Leonard and W. Herzog. Regulation of muscle force in the absence of actin-
myosin-based cross-bridge interaction. Am J Physiol Cell Physiol, 299:C14�C20,
2010.



BIBLIOGRAPHY 215

[81] Xiumei Liu and Gerald H. Pollack. Stepwise sliding of single actin and myosin
�laments. Biophysical Journal, 86:353�358, January 2004.

[82] R. W. Lymn and E.W. Taylor. Mechanism of adenosine triphosphate hydrolysis by
actomyosin. Biochemistry, 10(25):4617�4624, 1971.

[83] Lorenzo Marcucci and Toshio Yanagida. From single molecule �uctuation to muscle
contraction: A brownian model of a.f. huxley's hypotheses. PloS ONE, 7(7), 2012.

[84] John F. Marko and Eric D. Siggia. Stretching dna. Macromolecules, 28:8759�8770,
1995.

[85] Ave Minajeva, Michael Kulke, Julio M. Fernandez, and Wolfgang A. Linke. Unfolding
of titin domains explains the viscoelastic behavior of skeletal myo�brils. Biophysical
Journal, 80:1442�1451, 2001.

[86] D.L. Morgan. New insight into the behavior of muscle during active lenghtening.
Biophysical Journal, 57(2):209�221, 1990.

[87] Alf Månsson, Dilson Rassier, and Georgios Tsiavaliaris. Review article: Poorly un-
derstood aspects of striated muscle contraction. BioMed Research International,
2015:1�28, 2015.

[88] Yasuhiro Imafuku Neil Thomas and Katsuhisa Tawada. Molecular motors: thermo-
dynamics and the random walk. Proc. Royal Society London, B 268:2113 � 2122,
2001.

[89] Benno M. Nigg and Walter Herzog. Biomechanics of the Musco-skeletal System. John
Wiley & Sons, third edition edition, 2006.

[90] Takayuki Nishizaka, Hidetake Miyata, Hiroshi Yoshikawa, Shin'ichi Ishiwata, and
Kazuhiko Kinosita. Unbinding force of a single motor molecule of muscle measured
using optical tweezers. Nature, 377:251�254, September 21 1995.

[91] Andres F. Oberhauser, Piotr E. Marszalek, Mariano Carrion-Vazquez, and Julio M.
Fernandez. Single protein misfolding events captured by atomic force microscopy.
Nature structural biology, 6(11):1025�1028, November 1999.

[92] Christopher B. O'Connell, Matthew J. Tyska, and Mark S. Mooseker. Myosin at
work: Motor adaptations for a variety of cellular functions. Biochimica et Biophysica

Acta, 1773:615�630, 2007.



BIBLIOGRAPHY 216

[93] Gerald O�er and K. W. Ranatunga. A cross-bridge with two tension-generating steps
simulatates skeletal muscle mechanics. Biophysical Journal, 105:928�940, Augurst
2013.

[94] Ray W. Ogden, Giuseppe Saccomandi, and Ivonne Sgura. Computational aspects of
worm-like-chain interpolation formulas. Computers and Mathematics with Applica-

tions, 53:276�286, 2007.

[95] Ivan Pavlov, Rowan Novinger, and Dilson E. Rassier. The mechanical behaviour
of individual sarcomeres of myo�brils isolated from rabbit psoas muscle. American

Journal of Physiology Cell Physiology, 297:C1211�C1219, 2009.

[96] Gabriella Piazzesi, Massimo Reconditi, Marco Linari, Leonardo Lucii, Pasquale
Bianco, Elisabetta Brunello, Valerie Decostre, Alex Stewart, David B. Gore,
Thomas C. Irving, Malcolm Irving, and Vincenzo Lombardi. Skeletal muscle per-
formance determined by modulation of number of myosin motors rather than motor
force or stroke size. Cell, 131:784�795, November 6 2007.

[97] Gerald H. Pollack. Muscles & Molecules Uncovering the Principles of Biological

Motion. Ebner & Sons Publishers, 1990. ISBN: 0-9626895-0-5.

[98] Lucas G. Prado, Irina Makarenko, Christian Andresen, Martina Krüger, Chris-
tiane A. Opitz, and Wolfgang A. Linke. Isoform diversity of giant proteins in re-
lation to passive and active contractile properties of rabbit skeletal muscles. Journal
of General Physiology, 126(November 5):461�480, 2005.

[99] Dilson E. Rassier. The mechanisms of the residual force enhancement after stretch of
skeletal muscle: non-uniformity in half-sarcomeres and sti�ness of titin. Proceedings
of The Royal Society, 2012.

[100] Dilson E. Rassier and Walter Herzog. Force enhancement following an active stretch
in skeletal muscle. Journal of Electromyography and Kinesiology, 12:471�477, 2002.

[101] Ivan Raymet and Hazel M. Holden. Myosin sibfragment-1: structure and function of
a molecular motor. Current Opinion in Structural Biology, 3:944�952, 1993.

[102] Ivan Raymet, Hazel M Holden, Michael Whittaker, Christiopher B. Yohn, Michael
Lorenz, Holmes C. Kenneth, and Milligan A. Ronald. Structure of the actin-myosin
complex and its implication for muscle contraction. Science, 261:58�65, July 2 1993.



BIBLIOGRAPHY 217

[103] Matthias Rief, Mathias Gautel, Alexander Schemmel, and Hermann E. Gaub. The
mechanical stability of immunoglobulin and �bronectin iii domains in the muscle
protein titin measured by atomic force microscopy. Biophysical Journal, 75:3008 �
3014, 1998.

[104] Richard Rokyta. Fyziologie pro bakalá°ská studia v medicín¥, p°írodov¥dných a t¥lový-

chovných oborech. ISV nakladatelství, 2000. ISBN 80-85866-45-5.

[105] Caspar Ruegg, Claudia Veigel, Justin E. Molloy, Stephan Schmitz, John C. Sparrow,
and Rainer H.A. Fink. Molecular motors: Force and movement generated by single
myosin ii molecule. Physiology, 17:213�218, October 2002.

[106] C. J. De Ruiter, W. J. M. Didden, D. A. Jones, and A. De Haan. The force-
velocity relationship of human adductor pollicis muscle during stretch and the e�ects
of fatigue. Journal of Physiology, 526(3):671�681, 2000.

[107] G. Schappacher-Tilp, A. Jinha, and W. Herzog. Mapping the classical cross-bridge
theory and backward steps in a three bead laser trap setup. Mathematical Bio-

sciences, 229:115�122, 2011.

[108] Gudrun Schappacher-Tilp, Timothy Leonard, Gertrud Desch, and Walter Herzog.
A novel three-�lament model of force generation in eccentric contraction of skeletal
muscles. PLoS ONE, 10(3):e0117634, 03 2015.

[109] James R. Sellers. Myosins: a diverse superfamily. Biochimica, 1496:3�22, 2000.

[110] Chun Y. Seow. Hill's equation of muscle performance and its hidden insight on
molecular mechanism. The Journal of General Physiology, pages 561�573, 2013.

[111] Ludmila Skubiszak. Geometrical conditions indispensable for muscle contraction.
International Journal of Molecular Sciences, 12:2138�2157, 2007.

[112] James A. Spudich. Molecular motors: forty years of interdisciplinary research. Molec-

ular Biology of the Cell, 22(21):3936�9, 2011.

[113] James A. Spudich. One path to understanding energy transduction in biological
systems. Nature Medicicne, 18:1478 �1482, 2012.

[114] Bertrand C. W. Tanner, Thomas L. Daniel, and Michael Regnier. Sarcomere lattice
geometry in�uences cooperative myosin binding in muscle. PLoS Computational

Biology, 3(7):1195�1211, July 2007.



BIBLIOGRAPHY 218

[115] Cambridge Institute for Medical Research The Myosin Home Page hosted by
the Myosin Group at RC Laboratory of Molecular Biology. http://www.mrc-
lmb.cam.ac.uk/myosin/myosin.html.

[116] D. De Tommasi, N. Milliardi, G. Puglisi, and G. Saccomandi. An energetic model for
macromolecules unfolding in stretching experiments. Journal of The Royal Society,
10(88), 2013.

[117] K. Trombitás, Y. Wu, M. McNabb, M. Greaser, M. S. Z. Kellermayer, S. Labeit,
and H. Granzier. Molecular basis of passive stress relaxation in human soleus �bers:
Assessment of the role of immunoglobulin-like domain unfolding. Biophysical Journal,
85:3142�3153, November 2003.

[118] Larissa Tskhovrebova and John Trinick. Properties of titin immunoglobulin and
�bronectin-3 do. Journal of Biological Chemistry, 279:46351�46354, November 5
2004.

[119] Larissa Tskhovrebova and John Trinick. Roles of titin in the structure and elasticity
of the sarcomere. Journal of Biomedicine and Biotechnology, 2010:7, 2010.

[120] Matthew J. Tyska and David M. Warshaw. The myosin power stroke. Cell Motility

and the Cytoskeleton, 51:1�15, 2002.

[121] Taro Q. P. Uyeda, Paul D. Abramson, and James A. Spudich. The neck region of the
myosin motor acts as a lever arm to generate movement. Proceedings of the National
Academy of Sciences of the United States of America, pages 4459�4464, April 1996.
Biophysics.

[122] Roanald D. Vale and Ronald A. Milligan. The way things move: Looking under the
hood of molecular motor proteins. Science, 88:88�95, 2000.

[123] Sam Walcott and Walter Herzog. Modeling residual force enhancement with generic
cross-bridge models. Mathematical Biosciences, 216:172�186, 2008.

[124] Sam Walcott, David M. Warshaw, and Edward P. Debold. Mechanical coupling
between myosin molecules causes di�erences between ensemble and single-molecule
measurements. Biophysical Journal, 103:501�510, August 2012.

[125] Hongyun Wang. Several issues in modeling molecular motors. Journal of Computa-

tion and Theoretical Nanoscience, 5:1�35, 2008.



BIBLIOGRAPHY 219

[126] C. David Williams, Michael Regnier, and Thomas L. Daniel. Elastic energy storage
and radial forces in the myo�lament lattice depend on sarcomere length. PLOS

Computational Biology, 8(11), November 2012.

[127] T. Yanagida, S. Esaki, A. H. Iwane, Y. Inoue, A. Ishijima, K. Kitamura, H. Tanaka,
and M. Tokunaga. Single-motor mechanics and models of the myosin motor. Philo-
sophical Transactions of the Royal Society B: Biological Sciences, 355(1396):441�447,
2000.

[128] George Ireneus Zahalak. A distribution-moment approximation for kinetic theories
of muscular contraction. Mathematical Biosciences, 55:89 � 114, 1981.

[129] George Ireneus Zahalak. A comparison of the mechanical behavior of the cat soleus
muscle with a distribution-moment model. Journal of Biomechanical Engineering,
108:131�140, May 1986.

[130] George Ireneus Zahalak. Muscle activation and contraction: Constitutive rela-
tions based directly on cross-bridge kinetics. Journal of Biomechanical Engineering,
112:52�62, 1990.

[131] George Ireneus Zahalak. The two-state cross-bridge model as a link between molec-
ular and macroscopic muscle mechanics. In Walter Herzog, editor, Skeletal Muscle

Mechanics; From Mechanisms to Function. Wiley, 2000.

[132] George Ireneus Zahalak and I. Motabarzadeh. A re-examination of calcium activation
in the huxley cross-bridge model. Journal of Biomechanical Engineering, 119:20�29,
February 1997.



Publikace autora

Publikace indexované ve scopus

1. Čibera, V., Matas, R., Sedláček, J. Parametric model of ventilators simulated in Open-
FOAM and Elmer. Volume 114, EPJ Web of Conferences, 2016

2. Matas, R., Sedláček, J., Čibera, V. Preliminary study to the temperatures of the ther-
mocouple probes affected by the environment of heated walls. Volume 114, EPJ Web of
Conferences, 2016

3. Matas, R., Čibera, V., Syka, T. Modelling of flow in pipes and ultrasonic flowmeter bodies.
Volume 67, EPJ Web of Conferences, 2014

4. Čibera, V., Lávička, D., Kňourek, J. 1D models of the thermohydraulic systems supported
by CFD results and measured data. Volume 67, EPJ Web of Conferences, 2014

5. Čibera, V., Lávička, D. Investigation of the thermohydraulic systems in MATLAB &
Simulink using developed library. Volume 45, EPJ Web of Conferences, 2013

Konferen£ní p°ísp¥vky

1. ČIBERA, V. Ecentrická kontrakce modelovaná cross-bridge modelem skládajícím se ze třech
filament. In 21st Congress of the European Society of Biomechanics. Praha: ČVUT, 2015,
ISBN: 978-80-01-05777-3

2. ČIBERA, V., HERZOG,W. Force enhancement modeled by three filament model. Salzburg,
Rakousko, 2015.

3. LÁVIČKA, D., ČIBERA, V., KŇOUREK, J. Termohydraulické systémy řešené pomocí 1D
modelů s využitím získaných výsledků z CFD simulací a z naměřených dat. In Power
System Engineering, Thermodynamics and Fluid Flow, ES 2014. Plzeň: Západočeská uni-
verzita v Plzni, 2014. s. 1-6. ISBN: 978-80-261-0360-8

4. ČIBERA, V. Three filament model of sarcomere. In Computational Mechanic 2014, Book
of extended abstracts. Plzeň: Západočeská univerzita v Plzni, 2014. s. 17-18. ISBN:
978-80-261-0429-2

5. ČIBERA, V. Work of Molecular Motors. In Energetické stroje a zařízení, Termomechanika
& Mechanika tekutin, ES 2014. Plzeň: Západočeská univerzita v Plzni, 2014. s. 1-6. ISBN:
978-80-261-0348-6

6. ČIBERA, V., LÁVIČKA, D., KŇOUREK, J., KŮS, M. 1D models of the thermohydraulic
systems supported by CFD results. In Power System Engineering, Thermodynamics &
Fluid Flow 2013. Plzeň: Západočeská univerzita, 2013. s. 1-4. ISBN: 978-80-261-0230-4

7. ČIBERA, V. Design and numerical simulations of the thermohydraulic systems in Simulink.
In Energetické stroje a zařízení, termomechanika & mechanika tekutin. Plzeň: Západočeská
univerzita v Plzni, 2012. s. 1-4. ISBN: 978-80-261-0113-0

8. ČIBERA, V. Rough estimation of the coefficients in mathematical models describing ion
flux through cellular membrane. In SVK 2012, studentská vědecká konference 2012. Plzeň:
Západočeská univerzita v Plzni, 2012. s. 13-14. ISBN: 978-80-261-0127-7

9. ČIBERA, V. Mathematical model of the molecular motor myosin in the smooth muscle
cell. In Computational Mechanics 2011. Plzeň: Západočeská univerzita v Plzni, 2011. s.
1-2. ISBN: 978-80-261-0027-0



Výzkumné zprávy

1. SEDLÁČEK, J., MATAS, R., ŠTUDENT, J., ČIBERA, V. Analýza dynamického namáhání
ventilátoru a spalinovodu. 2015

2. SEDLÁČEK, J., MATAS, R., ŠTUDENT, J., ČIBERA, V. Software pro CFD výpočet a
následnou analýzu dynamického namáhání ventilátoru a spalinovodu. 2015

3. ČIBERA, V., SEDLÁČEK, J., MATAS, R., LÁVIČKA, D., NOVÁK, M. Analýza 1D mod-
elu vícestupňového kompresoru.. 2014.

4. ČIBERA, V., MATAS, R., LÁVIČKA, D. Matematické 1-D modely potrubí pro použití v
rámci softwaru navrženého pro simulace termohydraulických systémů. 2013.

5. KŇOUREK, J., ČIBERA, V., LÁVIČKA, D., SEDLÁČEK, J. Cooling circuit 1D model
analysis and preparation. Volkswagen Aktiengesellschaft, 2012.

6. KŇOUREK, J., ČIBERA, V. Measured data analysis and model creation of the heat ex-
changer. Volkswagen Aktiengesellschaft, 2012.

7. KŇOUREK, J., ČIBERA, V. 1-D model of water-air radiator. 2011.

8. KŇOUREK, J., LÁVIČKA, D., ČIBERA, V. Heating and thermal response solved by CFD.
2011.

Kvali�ka£ní práce

1. Čibera Václav Využití nerovnovážné termodynamiky při popisu růstu a přetvoření hladkého
svalstva. Diplomová práce, ZČU, 2011

2. Čibera Václav Entropie a II. termodynamický zákon v netradičních situacích. Bakalářská
práce, ZČU, 2009


	Introduction and Motivation
	Sarcomere - An Amazing Nanomachine
	General Description of Sarcomere
	Structure of Sarcomere
	A-band
	I-band

	Contraction properties
	Three main types of contraction
	Force-velocity relationship
	Isometric contraction, Gordon's graph: force-length relationship
	Concentric contraction
	Eccentric contraction


	Myosin II - Muscle Molecular Motor
	Molecular Motors in General
	Mechanochemical cycle - conformation states and power stroke
	Movement on molecular motor tracks
	Processive vs. non-processive motors
	Thermodynamics of molecular motors
	Myosin family

	Myosin II - Muscle Propelling Engine
	Single myosin II molecule
	Power-stroke and myosin II conformation cycle
	Single myosin II molecule mechanics
	Myosin filament, thick filament
	Actin - A Linear Track for Molecular Motor Myosin, thin filament
	Spatial arrangement of myosin and actin filaments

	Contraction - Interaction between Myosin and Actin Filaments
	Contraction velocity
	Regulation of contraction - regulation of cross-bridge cycling activity


	Titin - An Entropic Molecular Spring
	Repetitive building blocks of titin
	Titin in Sarcomere
	Titin in I-band
	Titin in A-band of sarcomere

	Titin Mechanics
	Single titin molecule mechanics
	Unfolding and refolding of single protein
	Changing of mechanical properties of titin molecule

	Binding of titin to actin filament - a clue to modification of classical Huxley's cross-bridge model and hint to explanation of eccentric contraction

	Mathematical Models - A Brief Overview
	Single myosin molecule mechanics
	Force production of single cross-bridges
	Strongly bound duration

	State models of molecular motors
	Hill's model of the force-velocity relationship
	Huxley's cross-bridge model and Huxley type of models
	Common modifications of Huxley's model
	Results of Huxley's model
	Conclusion on Huxley's type of models

	Zahalak's Distribution Moment Model
	Mathematical Models of Titin
	Worm-like-chain model
	Unfolding and refolding of proteins 
	Three filament model - stochastic model of IG domain unfolding


	Proposed Three Filament Cross-Bridge Model
	Derivation of the Three Filament Cross-bridge Model
	Active force: force FCB generated by cross-bridges in actin-myosin overlap
	Another quantities describing properties of cross-bridge mechanism
	Preservation of cross-bridges error in classical Huxley's cross-bridge model
	Passive force: force FT generated by the bunch of titin filaments

	Three Filament Cross-Bridge Model of Sarcomere
	Dynamic form of Three Filament Cross-Bridge Model
	Steady-state model
	Initial and boundary conditions:


	Simulation and results 
	Model parameters and half-sarcomere properties
	Isometric Contraction
	Concentric Isotonic Contraction
	Sudden shortening

	Eccentric Contraction (stretch of half-sarcomere)
	Properties of steady-state force enhancement
	Sudden stretch


	Conclusion and summary on  the achieved results

