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ABSTRACT

The concept of a visualization pipeline is central to many applications providing scientific visualization. In practi-
cal usage scenarios, when the pipelines fuse multiple datasets and combine various visualization methods they can
easily evolve into complex visualization networks directing data flow. Creating and managing complex visualiza-
tion networks, especially when data itself is time-dependent and requires time-dependent adjustment of multiple
visualization parameters, is a tedious manual task with potential for improvement. Here we discuss the benefits of
using Berkeley Database (BDB) snapshots to make it easier to create and manage visualization networks for time-
dependent data. The idea is to represent visualization network states as BDB snapshots accessed via the widely
used Hierarchical Data Format (HDFS5), and exploit the snapshot indexing system to flexibly navigate through the
high-dimensional space of visualization parameters. This enables us to support useful visualization system fea-
tures, such as dynamic interpolation of visualization parameters between time points and flexible adjustments of
camera parameters per time point. The former allows fast continuous navigation of the parameter space to increase
animation frame rate and the latter supports multi-viewpoint renderings when generating Virtual Reality panorama
movies. The paper describes how the snapshot approach and the new features can be conveniently integrated into
modern visualization systems, such as the Visualization Shell (Vish), and presents an evaluation study indicating
that the performance penalty of this convenience compared to maintaining visualization networks in HDFS5 files is
negligible.
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1 INTRODUCTION

Creating high-quality scientific visualizations of large
time-dependent datasets can be time-consuming for the
scientists. In data-flow based visualization systems this
process can involve step by step creation of manually
tuned instructions in the form of visualization pipelines
(networks) that describe the flow of data from sources
to sinks and are the basis elements of more complex
visualization networks [[1]].

For large observational or computational data sets,
common in todays systems, the list of visualization
instructions can be long and different data points may
need different structures, e.g. direct different number of
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cameras representing different validation perspectives,
like in Virtual Reality environments.

Current visualization systems do not provide satisfac-
tory support for managing long varying visualization
instruction lists. For example, visualization systems
store lists of instructions in spreadsheets, but the rigid
structure makes it hard to accommodate instructions
with varying number of parts [2]. Instruction lists are
represented by specifying transformations that map
each instruction into its successor instructions [3]],
which provides instruction derivation provenance
but makes it hard to flexibly navigate through the
visualization starting from arbitrary data point of
interest.

To better support the large time-dependent datasets,
visualization systems need to provide features that
make instruction management more flexible and easier
to manage. For example, it would be beneficial if
the visualization systems could support visualization
parameter interpolation between different time steps
(similar to dead reckoning in video games or any
non-linear video editing software such as Adobe
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Premiere [4]) to reduce creation effort by avoiding
storing redundant instructions. Furthermore, dynamic
parameter interpolation would also allow to achieve
higher animation rates or provide coarser views as
needed during the visualization. Many current systems
however do not support interpolation.

This paper discusses the benefits of using database
snapshots to improve visualization system support for
time-dependent data. Specifically, we describe how
we extended the Visualization Shell (Vish) [5]] using
Retro [6]], a snapshot system for the Berkeley Data
Base (BDB) [[7] to provide dynamic interpolation and
flexible navigation for lists of visualization networks
for time-dependent data in HDF5 format [8]. Our
system represents lists of network states as a list of
network versions stored as successive BDB snapshots.
This representation can easily accommodate instruc-
tions with varying structure. We can take advantage of
the snapshot indexing system to navigate the network
versions and can support flexible traversals of the
high-dimensional visualization parameter space stored
in snapshots from arbitrary data points. The snapshot
representation also makes it easy to support dynamic
interpolation of parameters between the time points.

Our visualization system uses the portable HDF5 for-
mat to represent both the time-dependent data and the
visualization networks. The time-dependent data is
stored via HDFS library in a file system well-suited for
the large files. A natural question arises, why not store
visualization networks in HDF5 files as well. To this
effect, we have also experimented with a system that
stores visualization networks directly in HDFS5 files, in-
stead of snapshots, implementing the flexible naviga-
tion manually, instead of relying on snapshot index-
ing. Using the snapshot system however was consid-
erably simpler. Moreover, an important benefit of using
database snapshot system is providing a reliable trans-
actional storage for visualization networks that repre-
sent a substantial scientist time investment. By us-
ing the transactional snapshots we benefit from an au-
tomatic recovery of the visualization network struc-
tures after an early or involuntary program termination,
something that would need to be achieved with com-
plex ad-hoc recovery methods in a system that stores
the networks in HDFS files.

Our system therefore uses two different backend stor-
age systems, HDFS files for time-dependent data, and
BDB snapshot system for the visualization instructions.
Such approach, combining multiple storage systems
each optimal for intended data use is becoming increas-
ingly common in the new generation of big data sys-
tems due to the realization that no single storage sys-
tem is optimal for the rich set of data comprising to-
days big data systems [9]. Our implementation takes
advantage of the recently introduced HDF5 VOL soft-
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ware layer [8] that allows applications to access HDF5
data objects in different storage backends. For our sys-
tem, we have implemented a new VOL that provides
access to BDB snapshots, allowing the Vish system to
seamlessly manipulate data and visualization metadata
through the same HDF5 APIL.

A visualization system must perform well. We have
conducted a study that evaluates the performance of our
snapshot based Vish system and its new interpolation
and navigation features, using micro benchmarks. We
have also compared our system performance to the de-
sign that stores both data and visualization instructions
in the HDFS5 files. The measurement results indicate
that our snapshot based system performs well, and the
performance penalty we pay for the simplicity of imple-
mentation and reliability compared to storing instruc-
tions in HDFS files is acceptable.

Our main contributions in this paper are the following:

e A simple database snapshot-based approach
for managing visualization metadata for time-
dependent HDF5 datasets

e Design and implementation of the BDB VOL plugin
for HDF5

e Design and implementation of the Interpolation
component in Vish visualization system

e Performance evaluation study of our snapshot-based
approach and the interpolation feature

The rest of the paper is organized as follows. Section 2]
describes a concrete scenario that motivated our work.
Section [3| discusses related work, Section explains
the software structure of Vish system, the context of
our work, Section @] describes the interpolation fea-
ture, Section .3 highlights the salient points of our im-
plementation, Section [5|presents the performance study
and Section [0l our conclusions.

2 MOTIVATION

Solving Einstein’s equations on supercomputers [10] is
a grand challenge involving many institutions and gen-
erations of scientists. These efforts have culminated
by the recently announced detection of gravitational
waves. Numerical simulations of black hole collisions
as the strongest sources are essential for the proper anal-
ysis of the detected signals. A milestone in numeri-
cal relativity was the first fully three-dimensional sim-
ulation of a grazing collision of two black holes [11]].
Fig. [T] is showing four time steps from this simula-
tion. Shown is the real part of the complex Newmann-
Penrose pseudoscalar Wy, an indicator of the outgoing
gravitational radiation field, as elaborated in more de-
tail in [[12f]. Visualizations like those are not only es-
thetically pleasing [13[], but also important for scien-
tific development to assess the quality and features of
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(©) T=16
Figure 1: Burst of gravitational waves emerging from
colliding black holes

(d) T=20

big data. The first confirmed detection of gravitational
waves [14]], known as GW1509014, was simulated at
the Max-Planck Institute for Gravitational Physics ac-
cording to the observed collision parameters. This sim-
ulation produced a dataset of 400GB of binary data of
much higher detail and precision than the 1999 dataset,
particularly also covering a significantly longer time
range lasting several orbits. Due to the nature of these
astrophysically violent events the dynamic range of the
data is huge, in space and time. While the 1999 dataset
could be covered with parameters of constant range,
trying the same approach on the 2016 dataset does not
yield pleasing results, as shown in Fig. 2a} Initially the
radiation is so weak that it is hardly visible at all, but
its strength increases rapidly to emerge like a “flash”
during a very small amount of time, leaving only resid-
ual radiation of a “wobbling” rotating black hole. This
residual radiation fades away quickly at low intensity to
ultimately form a non-radiating Kerr black hole.

The situation is similar to high dynamic range render-
ing: The output medium (images with 8 bits of inten-
sity for each color) just cannot cover the entire range
of the input data (orders of magnitude). In this case
of evolving data a more suitable range can be found at
each time step. Determining this range computationally
is difficult though because of the wave-like nature of
this astrophysical process leading to visually disturbing
oscillations. This leaves manual adjustment of the data
mapping range for color-coding as the only option, sim-
ilar to controlling animations according to a movie di-
rector’s intention via any non-linear video editing soft-
ware. With the ability to fine-tune any parameter of a
visualization network over time, we can thus extract the
maximum structural information out of time-dependent
data at the cost of less quantitative assessment abilities.

Another approach to cover high dynamic range is a
global transformation such as computing the logarithm,
as demonstrated in Fig. [2b] This approach worked in
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(a) (b)
Figure 2: (a) Evolution of R4, positive components in

red, negative in cyan. (b) Evolution of log |RWjy|, cov-
ering a wider range at the cost of signature and detail.

this specific situation to provide an overview of the
dataset without manual interaction at the loss of signa-
ture information — we can only see the absolute value of
RWy, but not if its positive or negative, which roughly
corresponds to stretching or compression of spacetime
at the very location.

So while specific workarounds were able to yield visu-
ally pleasing results for the particular application sce-
nario, a more systematic approach for arbitrary fine-
tuning similar to professional video editing systems is
desirable.

3 RELATED WORK

Visualization data management systems support ver-
sions of visualization graphs for different reasons and
correspondingly use different approaches. The use of
a visualization pipeline is pretty much a core stan-
dard among software frameworks for scientific visu-
alization. Paraview||15] and Visit[16|] are based on
the Visualization Toolkit VTK[17]; OpenDX][18]] and
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Amira/Avizo[|19] are other widely used frameworks.
Vish system [5] is an independent visualization system
with a much smaller user community, but comes with
the most systematic approach to deal with visualization
concepts while being academically open-source and a
comparable small codebase; it is therefore the frame-
work of our choice for our work, as described in[f.1]

VisTrails [20] is more of a management system to vi-
sualization systems than a visualizion framework itself.
It uses executable XML specifications to generate se-
quences of visualization network graphs (Vistrail spec-
ifications) that can vary in structure and provides ef-
ficient runtime that allows efficient incremental visual-
izations along the time line. This method supports regu-
lar structure and parameter variations between networks
at different time points but does not support flexible
time and data dependent variations supported by our ap-
proach. VisTrails stores graphs using SpreadSheets so
when the schema of the graph evolves, the history needs
to be reformatted. Our snapshot approach supports ar-
bitrary evolving network schemes without reformatting.
The VisTrails data management system [3]] represents
specifications corresponding to successive data points
by storing operations that transform one network into
another to support derivation provenance. The repre-
sentation requires to apply the full operation history
to visualize a given data point making it inconvenient
to traverse the version graph from arbitrary points. In
contrast, our snapshot approach allows to navigate vi-
sualizations from arbitrary time points and can sup-
port provenance programmatically by storing transfor-
mations as additional attributes in snapshots.

ModelDB [21]] manages a branching version history of
machine learning models and visualizations aimed at
exploration of alternative parameter configurations and
like VisTrails specifies transitions using operations to
support provenance. Our snapshot based approach, spe-
cialized for time-dependent data, currently only sup-
ports linear version histories.

Polystore [9] is a new generation scientific data man-
agement system that uses multiple storage backends to
optimally accommodate data of different types, and im-
plements an integrating layer to provide a unifying ac-
cess to the different data parts. We adopt a similar ap-
proach by storing time-dependent data and visualiza-
tion metadata in different storage backends, and take
advantage of the HDF5 VOL infrastructure to add the
snapshot system backend by implementing a new VOL.

4 SYSTEM DESIGN

This section describes our approach to managing vi-
sualization instructions for time-dependent data, and
highlights the salient points of our implementation. We
start by summarizing our requirements motivated by the
use case of gravitational wave data visualization. To
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support visualization of time-dependent data a system
needs to support:

e incremental creation of time-dependent visualiza-
tion instructions, allowing scientists to conveniently
adjust parameters for different time points, and ex-
ploit parameter interpolation to save effort when pa-
rameter changes can be computed.

e varying visualization instruction structure (e.g. extra
cameras, or light sources) to offer customized views
for different time points.

e adjustable frame rate (higher to lower) during visu-
alizations using dynamic parameter interpolation.

e flexible navigation through the visualization param-
eter space from arbitrary time points.

e reliable persistent storage for instruction lists pro-
tecting scientist time investment in the presence of
system crashes.

We describe below how our system design satisfies
these requirements. We start by briefly explaining the
features of Vish visualization environment, the context
of our work. We then explain how we use a snap-
shot system to create and navigate instruction lists and
present the design of the parameter interpolation fea-
ture. We then describe how we integrated the snapshot
system backend into Vish.

A general view of the software layers in our system can
be seen in Figure [3] where we show the Vish Visual-
ization system (described in [4.I)) and how its several
components use the HDFS5 library. First, we have the
existing visualization module which is responsible for
visualizing datasets aimed by networks. Then, we de-
veloped the parameter interpolation module, described
in Sec.[d.2] and finally the dataset and network access-
ing modules allowing access to HDFS5 data in native
HDFS5 format and BDB VOL format, respectively.

Vish Visualization System

. - parameter
visualization . .
—>| interpolation
module
module
dataset network
accessing accessing

module module
) )

v HDF5 A

BDB VOL
plugin

native HDF5
plugin

Figure 3: The software layering of our system

4.1 Vish

The Vish Visualization Shell [5] is a software environ-
ment specifically designed to “make everything a plu-
gin”. It manages all its plugins functionally through
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(b) Display time-dependent data using the sequence

Figure 4: The process of dynamic parameter interpolation

a small kernel of abstract object interfaces which are
used to implement graphics, user interface, I/O, or ob-
ject relationships itself. This approach allows for mod-
ular well-encapsulated components that can be imple-
mented independently of each other. The concept of a
visualization pipeline and the resulting graphs for prac-
tical applications are built into this minimalistic object
management framework. It can then be managed via
a runtime-loaded graphical user interface, for instance
via visual programming, or to interface any language
that supports scripting.

As a reference implementation, Vish comes with its
own, minimalistic scripting language that allows to
store and load a visualization’s network state, while
remaining human-readable and human-editable. It is
however not optimized for performance since parsing
text inherently comes with a performance overhead.
Using the Vish plugin architecture, it is straightforward
to implement an alternative way of loading and storing
a visualization network state using another format such
as HDFS5, which then avoids a parsing overhead due to
its self-descriptive binary nature. This is the format we
use in our work for storing visualization networks.

Even more, a visualization network’s state can be man-
aged while loaded by some Vish object itself. A graphi-
cal user interface is nothing else than a plugin providing
a Vish object with such management functionality. Via
the Vish kernel API, objects, their parameters and con-
nections are exposed in an abstract way to allow generic
interaction. We can use this very functionality to also
produce new network states from existing ones, for in-
stance via interpolation as explained below.

Time is supported in various Vish modules as a contin-
uous floating-point quantity, leaving the notion of "time
steps" to be implemented locally to each data set. This
way also non-equidistant time steps, such as produced
by the CFL condition in numerical simulations [22],
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are taken care of. Consequently, indexing data given
at discrete time steps by a continuous time value re-
quires data interpolation. When producing an anima-
tion with a given frame rate, the continuous time is sub-
sampled by discrete steps again, however, independent
of the time steps of the original data. We can hereby
smoothly fuse data from different sources with different
time discretizations. The Vish user interface contains
plugins to sample the continuous time parameter space
and produce discrete time steps for animation. We use
this feature to navigate time points for network states
and data.

4.2 Parameter Interpolation

Visualization of time-dependent datasets might require
adjusting parameters other than time as visualization
proceeds along successive time points in the data set.
In this case, we want to keep track of different states
of the network graph corresponding to different time
points. In order to easily manage these states, we de-
cided to use a Database snapshot system that provides
a simple interface for creating and accessing data ver-
sions as database snapshots. We store the visualization
networks in BDB [[7], a key-value database, and man-
age network states using Retro [6]], a snapshot system
for BDB. Retro supports an easy implementation of the
simple network state management workflow where a
scientist visualizes the current data point using the cur-
rent network state, adjusts the network state parame-
ters as needed, stores the new network state by taking
a snapshot of the adjusted state, and proceeds to the
next time point. However, creating a separate network
state manually for each key frame is time consuming
and maybe unnecessary if the parameter changes can
be interpolated automatically. Thus, we decided to add
an option for dynamic parameter interpolation, which
will calculate the missing intermediate parameter val-
ues and remove the burden from the scientists. This
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can be easily implemented with our snapshot approach,
since Retro allows programs to access snapshots and
compute with data stored in snapshots the same way as
with data stored in the database [6]. Thus our system
can create only needed states and during visualization
load the two corresponding consecutive snapshots and
then calculate the desired network parameters dynami-
cally for the individual intermediate time points.

Figure []illustrates the interpolation workflow. In Fig-
ure [fa] we show the process of creating snapshots for a
time-dependent dataset, representing an animation. We
see the states of the visualization network graph at each
time point, representing directions for how to visualize
at that point. Each node in the graph represents a visual-
ization object, which disseminates data from the dataset
(source) to the sink. Within each object we see the ob-
ject’s parameters, with different color representing dif-
ferent parameter value. Arrows point to the direction of
the data flow. Initially, we have the visualization net-
work at time point £ = 1 which points to the dataset at
time point ¢ = 1, and then we take a snapshot so that to
store the network state at that point using the snapshot
system API operation snapshot_now. This opera-
tion takes a snapshot of the current state and returns a
snapshot identifier (S1 in this case). We enhanced the
implementation to store a persistent mapping from time
point to snapshot identifier (get_snap_id (t=x)),
so that to correlate each snapshot with a time step.
Then, moving at time point ¢ = 10, we update some
parameters of the very first node in the graph (differ-
ent color boxes) and when visualization looks good, we
call the snapshot_now again for time ¢ = 10, which
returns snapshot identifier S2.

Simply displaying the network as of + = 1 for time
points + = 2 to t = 9 might cause the visualization
to change rapidly when reaching time point r = 10
which is undesirable for animations. Thus, we will use
interpolation to smooth it. Figure [b|shows the process
of loading the states of the visualization network graph
from snapshots and displaying, resulting in playing
the animation. For each time point, the visualization
system has to check the time-snapshot mapping
whether there is a corresponding snapshot and if not,
interpolate parameters after loading two consecutive
snapshots. At time t = 1, the system calls the Retro op-
eration asof_snapshot (get_snap_id (t=1)),
where get_snap_id(t=1) returns S1 and
asof_snapshot (S1) loads the snapshot with iden-
tifier S1. Thus, we load the snapshot corresponding to
time point ¢ = 1 providing the visualization network as
it was at the time we took the snapshot.

Since time points t = 2 to t = 9 do not have correspond-
ing snapshots, they are remapped to time ¢ = 10 allow-
ing us to load snapshot S2. Once we have parameter
values for t = 1 and ¢t = 10, we can calculate values for
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t =2 — 9 using linear interpolation such that for each
parameter A given at discrete time steps #p and #; we
can compute its value as a smooth function

A(t)=A()(1—1)+A(H)T (1)

where 7 is the relative time, i.e. 7= (t —19)/(t; — o)
with #9p <t <1;. Higher order interpolations such as
used on cubic splines [23]] are possible as well, but re-
quire more snapshots to be accessed and evaluated, and
a more complex time-to-snapshot mapping. We do the
same for all intermediate time steps that we don’t have
a corresponding snapshot.

Of course, interpolation can also be used at creation
time to create one snapshot per time point. This ap-
proach simplifies time to snapshot indexing but poten-
tially stores a much larger number of snapshots and also
does not allow flexible coarser or finer grained interpo-
lations. The only case it could be beneficial is if the in-
terpolation is effortsome, so storing snapshots for later
playback would be faster. Thus, we believe the dynamic
interpolation approach is preferable. Our performance
evaluation considers both approaches in Section [3]

4.3 Berkeley DB VOL plugin

The current version of the Vish visualization system
supports HDF5 format for both computational or ob-
servational data objects and visualization network ob-
jects, storing both data and networks in the HDF?5 file
system, and accessing them via the HDFS library. This
section describes how we extended the HDFS5 library in
the visualization system to support managing versioned
visualization network objects in a snapshot system.

Since the native HDFS5 file system does not support ver-
sioning, we had to provide versioning ourselves. We
had two goals for our design. We wanted to provide
versioning in a light way manner without modifications
in the HDF5 codebase, and we wanted to allow the vi-
sualization system to continue use the HDF5 API for
data and networks. Our design builds on a recent fea-
ture in HDF5 called Virtual Object Layer (VOL) plu-
gins that allows the implementation of custom storage
back-ends. A VOL plugin is a seamlessly connected
component of the HDFS5 library that is responsible for
storing and accessing HDF5 data containers in a partic-
ular storage back-end.

We support versioning of visualization networks using
a VOL plugin that stores network states represented
as HDF5 objects in a backend that supports version-
ing. Our versioning back-end storage is Retro system
that provides snapshots for Berkeley DB [6]. Retro al-
lows easy versioned network state creation, simple ver-
sion indexing and supports easy computation with ver-
sioned states e.g. to support dynamic interpolation fea-
ture explained earlier. Importantly, Retro provides reli-
able crash consistent storage for versions thus satisfying
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Current-state queries are unchanged by Retro
results < { gid = H5Gopen2(fid, node_name, ...);
attr = H5Aopen(gid, attr_name, ...);
H5Aread(attr, mid, buf);
.}

Applications may declare snapshots at any time and
get back a snapshot identifier
S < snapshot_now

As of queries are delimited with the snapshot identifier
results < asof_snapshot S { gid = H5Gopen2(fid, node_name, ...);
attr = H5Aopen(gid, attr_name, ...);
H5Aread(attr, mid, buf);
..}

Figure 5: Example of using the Retro API to retrieve
attributes from a visualization network

our requirement for consistent recovery of complex net-
work graphs stored in memory during a crash. We can
obtain versioning by simply implementing a new VOL
plugin. Moreover, since networks are stored in Retro in
HDFS5 format, the visualization system can continue to
manipulate them using the HDF5 API. This approach
achieves both our design goals.

Figure [5] shows an example of using the Retro API
to retrieve an attribute of a node from a visualization
network stored as HDF5 objects. The query opens
a group with name node_name from the HDFS5 file
with identifier £id. Then, it opens an attribute with
name attr_name and reads the attribute value in
the specified buffer buf. We create snapshots by us-
ing the snapshot_now operation which returns a
snapshots identifier. In order to perform a past state
query in state S, we simply wrap the same query with
asof_snapshot S.

We developed a new HDF5 BDB VOL plugin to inter-
vene between regular HDF5 API calls and Retro. The
VOL plugin developer is responsible for mapping the
HDFS5 data model to the schema of the backing store. In
our case, BDB schema is simple and consists of tables
and key/value pairs within the tables. Thus, we can or-
ganize HDF5 objects as separate BDB tables and store
their attributes as key/value pairs. Connections between
HDFS5 objects are represented as pointers between BDB
tables.

We represent visualization networks as HDF5 objects,
as shown in Figure[6a] In this example network, nodes
source and sink are stored as subgroups under /vs.v5
group. HDFS5 soft links are used for node connections
and HDFS attributes to store node parameters. The
mapping from HDF5 objects to BDB tables in this ex-
ample is illustrated in Figure [6b]

We are using Berkeley DB transactions for all accesses
to networks, so that to support recoverability and
crash consistency. We extended therefore HDFS5 user
API with operations to begin and end transactions,
and with Retro API operations snapshot_now and
asof_snapshot. Since Retro assigns a number as
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(a) Network representation in HDF5

1 BDB tabl )
BDB D fable

Environment

__group_vs.v5/vs.v56

__child_group_vs.v5/vs.v5/source

__child_group_vs.v5/vs.v5/sink

BDB table / BDB table %,

__group_vs.v5/vs.v6/source [~ #| _ group_vs.v5/vs.v5/sink

__group_vs.v

5/vs.v5/obj2 —attr_group_p2 | V2

__link_p1=>p1 |

BDB representation

(b) Network representation in BDB

Figure 6: Visualization network representations

an identifier for snapshots, we preserve the mapping
from time steps to snapshot identifiers using a separate
mapping table stored in BDB. BDB and by extension
Retro is optimized for relatively small data accesses
and would not be efficient backend for large scientific
time-dependent data. Our design therefore exploits the
flexibility of VOL and continues to store data objects
in the native HDF5 file system.

S PERFORMANCE EVALUATION

We have implemented the versioned metadata module
in Vish and conducted an evaluation study. The goal of
the study is to evaluate the cost of managing versioned
visualization networks using BDB snapshots, and com-
pare it to a simple alternative design where network ver-
sions are stored in HDFS5 files. In all cases the time-
dependent datasets are stored in HDFS5 files. Our ex-
periments use Vish to visualize the time-dependent data
set, measuring the performance of creating and loading
network versions to visualize successive data points.

Our experimental setup consists of a machine with a 6-
core i7 at 4.6GHz, equipped with 32GB memory, 6GB
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Figure 7: Displaying a time-dependent dataset on Vish, by loading snapshots and performing dynamic interpolation

GPU Nvidia GTX 1060 and an SSD drive. It is running
Ubuntu Linux 16.10 with the Retro Berkeley DB C API
5.3, HDF5 1.9.3 with the VOL support, and the devel-
oper’s edition of the Vish Visualization Shell. We used
several datasets for our experimental setup ranging to
several GB in size and used up to 81 time steps.

Our versioned metadata module using Retro/BDB im-
plements the design we described in earlier sections.
When the user performs modifications to the network
through the GUI, the modifications are forwarded to the
Retro/BDB VOL that performs them with a transaction
that writes them into the BDB log. Later, when user
creates a version (a snapshot) or terminates visualiza-
tion, the transaction commits, flushing the log contain-
ing these modifications at commit time, and eventually
writing the modifications lazily at low cost to the Retro
store. Thus, all committed modifications are preserved
after a system crash.

For the versioned metadata module using native HDF5
files we used a simple-minded design (called Native
HDF5) that stores consecutive versions of the network
as different HDF5 groups. HDF5 groups are analogous
to directories in a typical file system. They may con-
tain other groups (subgroups), attributes, datasets, etc.
When creating a version, the Native system creates a
new HDF5 group, writes it in its entirety to the new
group, and associates that group with a unique identifier
that allows to access the version later using a simple in-
dex to support interpolation. Since both the new group
and the index are written to the file system at version
creation time this approach does not provide crash con-
sistency. Obviously, the simple-minded approach stores
redundant data if only few parameters change between
versions. A diff-based encoding and additional index-
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ing would provide a more compact solution but would
require more substantial development effort, including
a more complex recovery procedure after crash to avoid
version and index corruption.

Our experiment emulates a user workflow similar to
Figure[d] where a user creates a versioned visualization
for a time-dependent data set, starting with an initial
network specification for the first data point. When vi-
sualizing at a certain time step the user adjusts the visu-
alization parameters, stores them by creating a version
(a snapshot, or a new group) and repeats these steps for
all data points. At any point, the user can visualize the
data for any time step, or play all time steps as an ani-
mation. We used a 2.8GB time-dependent data set from
an astrophysical simulation using 81 time steps.
Figure [7] shows a single visualization time step of that
simulation obtained in our experiment by loading snap-
shots and performing dynamic interpolation.

Our experiment measures the basic cost of writing
the consecutively created versions (not including
think time) and of subsequently loading the versions
and visualizing consecutive data points, using either
the simple versioning module with HDF5 (native
HDFS5), or the Retro/BDB VOL snapshot system. Our
experiments also evaluate the dynamic interpolation
feature that allows to only create network versions
for selected data points omitting intermittent points
and interpolating them dynamically at display time as
seen in Section Additionally, we also evaluate
an alternative approach with one-to-one snapshot to
time step mapping, which interpolates missing values
between manually adjusted versions at creation time,
rather than at display. This creates a network version
for each data time point avoiding the need to interpolate
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at run time. As we explained, the dynamic interpolation
is preferred, but the one-to-one mapping approach can
use simpler indexing.

In Figure [§] we see the cost of creating a snapshot by
using the native HDFS approach and the Retro/BDB
VOL, when doing one-to-one mapping and dynamic.
Initially we observe that the native HDF5 approach is
costlier in snapshot creation, as expected. This is be-
cause it writes the entire network in HDFS, regardless
of which parameters are updated. It takes 35 ms to cre-
ate a snapshot when doing one-to-one mapping, and
44ms when doing dynamic interpolation. The one-to-
one mapping is slightly faster than the dynamic, since
the creations are performed in a loop, without involving
a user interface. We see better performance for Retro
because this design only stores the updated parameters,
rather than the entire network and keeps track of dif-
ferent versions natively. Note Retro costs reflect the
writing of the transactional log, which includes writing
to disk all updates to the committed version at commit.
As we can see from Figure [§] Retro only takes about
0.5ms to create a snapshot in one-to-one mapping and
less than 4 ms in dynamic, including both the creation of
a new snapshot and the transaction commit. It is slower
in dynamic, per version, since we perform more mod-
ifications between two snapshots. In general, even the
44 ms to create a version with native HDF5 are not per-
ceptible for a user in an interactive setting. However,
the one-to-one mapping that creates many versions, can
cause noticeable latencies of up to a second with our
data set.

Figure [9] shows the overhead of loading from a ver-
sion when using the native HDF5 or Retro with one-
to-one mapping and dynamic. Loading from a snap-
shot involves opening the snapshot for a specified time
step and reading only the interpolated parameters. This
avoids accessing the entire network but also incurs the
overhead of snapshot indexing in order to find the spec-
ified snapshot. In this case, the native HDFS5 is faster
because while it writes the entire version it only has
to open the specified version (from the corresponding
HDF5 group within the same HDFS file) and get the
required parameters.

When loading a snapshot created with one-to-one map-
ping, we saw a response time of 565us on average,
compared to Retro which took 663 us. Next, when load-
ing snapshots in dynamic, both methods are faster be-
cause there are less snapshots to manage. Native HDF5
takes 271 ps and Retro 364 us. Obviously, version load-
ing time is typically more important than creation since
in the common case we expect versions to be created
manually but displayed automatically. Nevertheless,
we do not expect automatic visualization to be limited
by the metadata accessing time, since the typical ex-
pected bottleneck is reading the large time-dependent
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Figure 8: Time to create a snapshot of the current visu-
alization network under different configurations.
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Figure 9: Time to load from snapshot and update the
visualization network under different configurations.

datasets. In both cases of native HDF5 and Retro, we
have around 0.5 ms response time to bring metadata for
displaying a frame. This is negligible compared to the
time to load the big data, and does not limit the frame
rate.

6 CONCLUSION

We have presented a new, database snapshot system
based method for managing visualization instructions
for large time-dependent scientific datasets that are not
well supported in current visualization systems. We ex-
plained how a simple programming model provided by
the snapshot system makes it easy to manage versioned
visualization metadata and to provide new labor-saving
visualization system features such as version interpola-
tion that reduce the manual effort needed to develop vi-
sualizations. We have described how we implemented
our approach in the Vish visualization system and pre-
sented experimental results using a small data set from
an astrophysical simulation indicating satisfactory per-
formance while providing better reliability guarantees.
Future work is using our approach for developing visu-
alization for the large gravitational waves dataset.
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