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a
Faculty of Mechanical Engineering, CTU in Prague, Karlovo nam. 13, 121 35 Praha 2, Czech Republic

Received 25 September 2008; received in revised form 22 October 2008

Abstract

This paper deals with the procedures for the determination of TCP (tool center position) of machine tool of PKM

(parallel kinematical machines) structure in the case that PKM must be considered as compliant mechanism. Two

different approaches are described and investigated. The first approach is based on the model of compliant mech-

anism of PKM. The second approach is based on the redundant measurement that can replace the stiffness knowl-

edge and force balance computation by pure geometric consideration. These procedures are described on PKM

Sliding Star.

c© 2009 University of West Bohemia. All rights reserved.

Keywords: parallel kinematic machine, compliant mechanism, TCP position, calibration, redundant measurement

1. Introduction

Machine tools, robots and measuring machines must be positioned with high accuracy despite

that they cannot be in principle manufactured with necessary accuracy. Especially for parallel

kinematical machines (structures) (PKM) it holds that despite the very accurate manufacture

it is not possible to use the design dimensions for the nonlinear kinematical transformation in

the control system. This is solved by the calibration process where based on measurement

of some variables during the motion of PKM its real dimensions compared to the nominal

(designed) dimensions are determined. In case of PKM it is not possible to determine the

real dimensions by direct measurements, therefore these dimensions must be computed from

some indirect measurements. This is done using external measuring device (e.g. [1, 2]) or using

redundant measurements of relative motions in kinematical joints of PKM (e.g. [3, 4, 5]). These

calibration procedures suppose PKM as perfect rigid mechanism. Recently it was reported that

the process of calibration is influenced by the stiffness of PKM and PKM was considered as

compliant mechanism [6]. Nevertheless the nonlinear kinematical transformation in the control

system has used subsequently the equations for the rigid mechanism.

However, the fundamental purpose of calibration is to enable the control system to deter-

mine the TCP position accurately during the operation of machine tool. Therefore if the mecha-

nism of PKM must be treated as compliant mechanism, then the determination of TCP position

should be also determined using the concept of compliant mechanism. The possible procedures

for determination of TCP are described in details for the example of PKM Sliding Star.
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2. TCP determination of deformable PKM by two approaches

Two approaches for the determination of TCP position of deformable PKM can be distin-

guished. The first one is based on the model of compliant mechanism of PKM. The second

one replaces this complex model by redundant measurement.

The first approach uses relatively complex model of compliant mechanism and is based on

the belief that simulation can truly predict the reality. The model includes geometrical dimen-

sions, their deformations and stiffnesses and forces both internal and external. It uses usually

minimum input measurements. Its advantage is complete physical description of PKM deforma-

tion. Its disadvantage is the uncertainty of forces, especially friction forces, and the uncertainty

of stiffnesses. It requires accurate model calibration.

The second approach uses just the geometrical model where the flexibility is described by

the variability of mechanism dimensions. The model includes only geometrical quantities. This

approach is based on extensive redundant measurement. Its advantage is the simplicity of the

model, removal of uncertain quantities of stiffnesses and forces. Its disadvantage is large num-

ber of sensors.

3. Models of Sliding Star

The procedures for the determination of TCP are described for PKM Sliding Star. Sliding Star is

a functional model of machine tool with parallel kinematical structure (Fig. 1). It is redundantly

actuated mechanism, i.e. it has more drives than the degrees of freedom. Sliding Star has

3 degrees of freedom and 4 drives (moving screws).

Fig. 1. Sliding Star

The simplified simulation model of Sliding Star as compliant mechanism is in Fig. 2. The

flexibility of important construction elements is considered. It is introduced the stiffness of

arms of the platform of the lengths L1 and L2, the stiffness of machine frame, the stiffness k2

of moving screws and the stiffness k1 of machine mounting to the ground. The basic dimensions

were taken from the machine design a = 1.201 m, b = 0.483 m, c = 1.354 m, d = 0.966 m,

e = 0.07 m, h = 0.4 m, L1 = 0.85 m, L2 = 0.6 m, k1 = 1e15 N/m, k2 = 4e8 N/m, the sections

of machine frame are derived from the module 0.19 m.
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Fig. 2. Flexible model of Sliding Star

Fig. 3. Character of the deformation Fig. 4. Course of stiffness on a circle

The character of deformation of the structure of Sliding Star is in Fig. 3. If the ideal node

connection of arms and the platform is considered then according to the mass and bending

stiffness of the arms their deformation can be supposed only in the axial direction. During the

TCP motion on a circle with the radius R = 150 mm the resulting stiffnesses were analysed and

the influence of platform rotation ε (see Fig. 8) was investigated (Fig. 4).

The detailed analysis of stiffness of arms in axial and bending directions was carried out

(Fig. 5–6). The computed axial stiffness for arm D was kx = 1.389e9 N/m the stiffness in the

bending direction was ky = 1.422e7 N/m. The axial stiffness for arm K was kx = 1.572e9 N/m

the stiffness in the bending direction was ky = 2.537e7 N/m.

Similarly the machine frame deformation due to the loading in x and y directions was in-

vestigated (Fig. 7). The results demonstrate very large values of stiffness in general and specif-

ically hundred times lower bending than axial stiffness. These values demonstrate the potential

of PKM as truss structure if the joints are designed as large planar ones.
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Fig. 5. Arm D, deformation [m] in axial and bending direction

Fig. 6. Arm K , deformation [m] in axial and bending direction

Fig. 7. Machine frame deformation for loading in the x and y directions of global axes

4. Method of compliant model

The computational model of compliant mechanism of Sliding Star consists of force (or deforma-

tion) model in Fig. 8 and of geometrical model in Fig. 9. The usually considered measurement

scheme is in Fig. 10a, i.e. the measurement of x positions of sliders. It consists just from the

sensors of drives of moving screws. As the variables it is necessary to introduce the lengths of

arms L1, L2, L3, L4, the cartesian coordinates of points A, B, C, D xA, xB , xC , xD, yA, yB, yC ,

yD, the arm angles ϕ1, ϕ2, ϕ3, ϕ4 and the platform turning ε, the stiffnesses of all elements, the

acting forces of drives, cutting and the reaction forces.
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Fig. 8. Force model

Fig. 9. Geometrical model

For simplicity the platform described by the dimension h is supposed to be completely rigid.

From the geometrical model the equations of closure of kinematical loops are assembled, for

example for the loop AEFB

xA + (L1 + ∆L1) cos(ϕ1) + h cos
(

ε +
π

4

)

= xB + (L2 + ∆L2) cos(ϕ2),

yA + (L1 + ∆L1) sin(ϕ1) + h sin
(

ε +
π

4

)

= yB + (L2 + ∆L2) sin(ϕ2).
(1)

It is possible to assemble 6 such equations. From the force model the equations for the solution

of truss are assembled, for example for the node A
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x : F1 + k1∆L1 cos(ϕ1) = 0,

y : kyByB + k1∆L1 sin(ϕ1) = 0.
(2)

It is possible to assemble 16 such equations. These 22 equations are solved for the 22 unknowns

∆L1, ∆L2, ∆L3, ∆L4, ε, ϕ1, ϕ2, ϕ3, ϕ4 reactions RyA, RyB , RyC , RyD, in the sliders, the axial

forces S1, S2, S3, S4, S5, in the rigid truss of the platform, the loading forces from the cutting

acting on the platform Fx, Fy, Mz , and possible also the redundant position xD.

(a) (b) (c)

Fig. 10. Different measurement schemes for Sliding Star

4.1. Redundant geometry-stiffness calibration

If the redundant measurements are available (e.g. the schemes Fig. 10b, c) then the equations

(1)–(2) can be used for the simultaneous calibration of geometry and stiffness of the compliant

mechanism of PKM.

The assembled equations consist of system of redundant equations. The assembled equa-

tions are finally collected for n calibration positions into summary system similarly to the pure

geometrical calibration

F(d,S,Fm) = 0, (3)

where for the calibration position i = 1, . . ., n the constraint fi = f(d, si, fmi) = 0 holds and

F = [f1, f2, . . . , fn]T , S = [s1, s2, . . . , sn]T , Fm = [fm1, fm2, . . . , fmn]T . The vector si represents

the geometrical measurements and fmi the force measurements, d is vector of calibration param-

eters. The basic solution of the mixed geometry-stiffness calibration problem can be realized

based on the Newton methods for overconstrained system [1]. The quality of the calibration

can be measured by the calibrability measure C = cond (JT
d Jd) [5, 2], where Jd is the Jacobi

matrix of the system (3) with respect to the calibration parameters d. The calibrability of the

system is the important criterion for the accurate calibration similarly as for the pure geometri-

cal calibration. Besides the influences applicable for the geometrical calibration (optimisation

of mechanism dimensions, sensor placement optimisation, calibration positions optimisation)

also the manner of the simplified flexibility parameterization can affects the final calibrability.

5. Method of redundant measurement

The computational model of TCP determination by redundant measurement consists just of the

geometrical model in Fig. 9. The measurement scheme must be more redundant and it is in

Fig. 10b. It is measured the displacement of all drives (sliders) xA, xB , xC , xD, the rotation of

arms ϕ1, ϕ2, ϕ3, ϕ4 and the vertical deformation of the frame at the position of sliders yA, yB,
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yC , yD. In this case only the equations from the geometrical model are used, however modifies,

for example the equations (1) are

xA + LL1 cos(ϕ1) + h cos
(

ε +
π

4

)

= xB + LL2 cos(ϕ2),

yA + LL1 sin(ϕ1) + h sin
(

ε +
π

4

)

= yB + LL2 sin(ϕ2),
(4)

where LL1 describes the unknown deformed length of the arm L1. It is possible to assemble

6 such equations and these 6 equations are solved for 5 unknowns LL1, LL2, LL3, LL4, ε

where two of the measurements xD, yD, ϕ4 are redundant. The redundancy is however only

helpful for the solution of the equations. The results of application of this approach for the TCP

determination of Sliding Star for the loading force F = 1 000 [N] are in Fig. 11 that describes

the deformation of TCP during the motion on the circular path of R = 150 mm for the Young

modulus E = 2.1e5 MPa of the frame. In Fig. 12 are presented sensitivity TCP on the stiffness

parameters of the frame.

Fig. 11. The compliant deformation of TCP during

circular path
Fig. 12. The sensitivity TCP on the stiffness pa-

rameters of the frame

6. Conclusion

The determination of tool center position for PKM being considered as compliant mechanism

is an important task for control of PKM with improved path tracking. Several approaches

are possible. The method of redundant measurement seems more robust and promising for

industrial usage.
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AV ČR, 2007, vol. 1, p. 307–308.

240


