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Received 5 September 2008; received in revised form 6 November 2008

Abstract

Friction contact appears to be an intricate nonlinear coupling in modelling engineering structures. With vibration

systems, it can serve as a dampening element for reducing the stress range. The contribution deals with the

modelling of the 3D dry friction elastic contact. The influence of surface roughness on its normal and tangential

stiffness, both of nonlinear nature, is being considered. The model also allows a change of the normal contact force

and of the applied moment of force in the course of a vibration cycle. The equations of the proposed mathematical

model have been solved using direct integration.
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1. Introduction

The friction in the mechanical systems is often a welcome effect or, even, it determines the

functionality of a device. By way of example, we can mention vehicle disk and shoe brakes

or friction clutches. An important part of some vibrating systems are friction dampers. The

largest of them form part of many buildings in seismic active areas. From the point of view of

the mathematical modelling, an extraordinary attention has been given to the friction dampers

in bladed disk assemblies of the gas and steam turbines. A nonhomogenous stream of the

medium within these mechines causes the high-frequency vibrations. Excessive amplitudes can

be responsible for high cycle fatigue failures. The role of the friction dampers and shroud con-

tacts is to cut down the level of the vibrations or to re-tune the resonance frequencies [1, 4,

5, 11, 12]. The dry friction damping concept in gas turbines lies in principle in a metal piece

loaded by centrifugal force against the underside of the platforms of two adjacent blades [5,

13]. Still is of course very difficult to estimate precisely the influence of this kind of damp-

ing.

The highest attention was paid to the 1D friction oscillators in connection with the fric-

tion dampers. A lot of works has been recently published which deal with their several as-

pects. Some of them are above all focused at the modelling of stationary vibrations caused

by the external harmonic excitation. The problem has been solved particularly in the fre-

quency area. A sufficiently exact representation of the hysteresis dissipation loop (i.e. the

dependence of the applied friction force on the relative displacement of the adjacent contact

surfaces), tangential stiffness of the contact, influence of the magnitude of the normal force

or excitation amplitude on vibrations has been particularly stressed [6]. Other works treating

∗Corresponding author. Tel.: +420 377 634 734, e-mail: voldrich@ntc.zcu.cz.

241
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1D friction oscillators are concentrated on precise covering of the stick, slip, and, as the case

may be, separation, and investigate also bifurcation phenomena that lead for example to dif-

ferent number of transients stick-slip during one cycle [7, 8]. In most cases, the solution of

the mathematical model with respect to the time using direct integration is replaced by a so-

lution with respect to the frequency by applying a quasi-linearization technique. The mostly

often used is Harmonic Balance Method (HBM) [5, 11] or multi-HBM if the case is a little

more sophisticated excitation or the necessity to pay regard to number of eigenvectors of the

mechanical system. In such a case or in case with a number of degrees of freedom, the men-

tioned methodology lies in a transformation of nonlinear differential equations into a set of

nonlinear algebraic equations. The methodology of the solution with respect to the frequency

is preferred as it is computationally less demanding. Even the suggestions of the frequency-

time methods for the vibration dry-friction-damped systems can be encountered in isolated

instances [2, 9, 10].

It is the actual gas turbine friction dampers range of problems that illustrates that the 1D

friction coupling is too limiting and that the relative motion of the contact selected point against

the opposite surface is adequate to describe at any rate by an ellipse-like curve [1, 11, 13].

Equally the macroslip model of the contact consisting in putting the point contact in place of

the complex contact must not be sufficient. In other words one part of the real contact can

be in the stick phase while the other in the slip phase and this two-facedness can change the

general characteristics of the hysteresis dissipation loop [6]. This is the reason why the so

called microslip models are developed [5]. The range of issues of frictionally constrained 3-

DOF oscillators was solved rather exceptionally in [3, 14, 15, 16], where even a variation of the

applied overall normal force in the course of the vibration cycle has been assumed. It should be

however noted that even the very coverage of the normal force change must not be sufficient in

case of the shroud contacts in turbines blades. What is more, the snag is that even the moment

of force acting between the contact surfaces can vary thus making the normal contact pressure

different at different contact points and can undergo changes in the course of a cycle if the

torsional vibrations of the blades are rather intense. The authors have a feeling that practically

no attention has been given to this problem in the relevant literature. From the point of view

of the mathematical modelling, one more inconvenience occurs when the contact coupling is

preloaded insufficiently or when at least a part of the contact is nearing to the transition to the

phase of separation under influence of the normal pressure change. In such a case, it is advisable

to include the influence of the surface roughness which manifests itself by the nonlinear both of

normal and tangential contact stiffnesses [14].

The presented work deals with computer aided modelling of the friction contact seen as a

nonlinear coupling in the mechanical systems with small vibrations. Its goal is describing the

procedure that includes both the influence of the surface roughness on the contact stiffness (in

analogy to [14]) and its 3D kinematics, and the change of the normal force and momentum

during a vibration cycle. The associated differential equations are solved with respect to the

time variable as the transients between the stick, slip, and separation phases respectively are

watched closely. Following paragraph is devoted to the actual description of the stiffness and

of the general model of the friction contact. The third paragraph introduces this nonlinear

coupling as a part of the description of the general vibration dynamical system. Finally, the

paragraphs 4 presents some examples of the numerical results partly to illustrate the proposed

methodology. In order to familiarize better with problems in question, the attention is paid at

first to the 1D friction oscillator while a variation of the applied normal force is the subject in

what follows.
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2. Friction contact model

2.1. Contact stiffnesses of rough surfaces

Let us consider a plane elastic foundation, the contact surface of which will be divided into

rectangular area elements with dimensions h and b. Thus we obtain a nominal contact surface

S = hb. Further, the length d describes the length of the undeformed elastic foundation in

the normal direction. If the surface is ideally planar, the nominal normal stiffness of the corre-

sponding element is kN = ÊS/d, while the tangential stiffness is kT = ĜS/d. Here Ê denotes

a generalized modulus of elasticity while Ĝ is a generalized shear modulus of elasticity. Let us

further consider a rough surface to which an ideal planar stiff plate has been applied. Let us

introduce a coordinate system the origin of which lies on the surface of the plate and the axes

y a z are parallel to the rectangular element sides. Let us put a parallel plane at a distance of x
from this stiff plate that however intersects the rough surface (see fig. 1) at an area of not hb but

only ϑ(x)b size. Let us denote R the quantity characterizing the surface roughness. Let us next

introduce dimensionless quantities h∗ = ϑ/h and x∗ = x/R. An approximation

h∗(x∗) =











0 for x∗ < 0 ,

3x∗2 − 2x∗3 for 0 ≤ x∗ ≤ 1 ,

1 for x∗ > 1 .

(1)

is proposed in [14]. This situation can be covered rather faithfully by means of the Gauss

distribution that corresponds most exactly to the measurements of the roughness but it is more

demanding from the computational point of view. Let u denotes displacement (deformation) of

an element in the normal direction x, FN applied normal contact force acting on the element

area S, and FTy, FTz components of applied tangential force. The corresponding dimensionless

quantities will then be

u∗ =
u

R
, F ∗

N =
FN

kNR
, F ∗

Ty =
FTy

kT R
, F ∗

Tz =
FTz

kT R
.

Fig. 1. Rough surface with a parallel section at a distance of x. The length of the section is ϑ(x)
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Fig. 2. Normal force-displacement relationship and tangential contact stiffnesses versus normal force

Now it is possible to derive (see e.g. [14])

F ∗
N(u∗) =











0 for u∗ ≤ 0 ,

u∗3 − 1
2
u∗4 for 0 ≤ u∗ ≤ 1 ,

u∗ − 1
2

for u∗ > 1 ,

(2)

for F ∗
N as a function of u∗ from the variation of the function h∗ defined by the formula (1).

For the tangential component of the force (in the direction z) we can write FTz = kT

S
bϑw =

kTh∗w = kT w, where w denotes the corresponding tangential displacement. The dimensionless

tangential stiffness k∗
T = kT /kT = h∗ = h∗(u∗) is therefore a function of the acting normal

force (see fig. 2).

The mutual contact of two rough surfaces can be modelled as a contact of one rough surface

with a smooth rigid wall. In such a case it is necessary to take into consideration the nominal

quantities R, kN a kT according to the relations

R =
√

R2
1 + R2

2,
1

kN

=
1

kN1
+

1

kN2
,

1

kT

=
1

kT1
+

1

kT2
,

where Ri, kNi, kT i, i = 1, 2, are nominal quantities of individual surfaces.

2.2. Point contact element

Let us consider a contact between small surfaces with a size of S = hb. The constrained force

consists of two components. The first one is the induced friction force on the contact plane

while the other is the variable normal force. Since the friction force is fully characterized by a

relative motion of the contact surfaces, it will not lose generality to assume one of the contacting

surfaces is the ground for this moment. Let us assume that the contact is preloaded by a normal

force FN0. A normal force acting at the time point t will then have a magnitude of FN (t). For

the following, let us denote tangential contact force by FT = [0, FTy, FTz]
T , the input tangential

relative motion v = [0, v, w]T , the slip motion of the contact point vs = [0, vs, ws]
T . Let us

further denote the deformation corresponding to the magnitude of the preloading normal force

FN0 as u0, the deformation corresponding to the magnitude of the force FN by u.

Depending on the amplitude and phase of the vibration motion components, the friction

contact will either be stick, slip or separate during a cycle of oscillation. Taking into account
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the Coulomb friction law, the conditions for the above mentioned states can be expressed as

follows.

Stick condition: |FT| = |kT (FN)(v − v0)| < µFN , v̇s = 0 ; (3)

Slip condition: FT = µFN

v̇s

|v̇s|
, v̇s 6= 0 ; (4)

Separation condition: FN = 0 . (5)

Here v0 is an initial value of v at the beginning of the stick state, and µ means a friction

coefficient. If the real contact is the case, the coefficient alone is generally dependent on the

slippage rate. Most commonly, this dependence is declared by the relationships

µ = (µ0 − µ∞) e−λ|v̇s| + µ∞ or µ =
µ0

1 + p|v̇s|
,

where µ0 is a static friction coefficient and µ∞, λ, p are some additional material parameters of

the contact.

In case of very small vibration amplitudes, when the contact does not slip, only elastic

deformations occur and, consequently, no energy is dissipated due to the contact. This however

is not true when the slip occurs. The amount of the dissipated energy is defined by the nature of

the hysteresis loop (see fig. 3).

Fig. 3. Friction force versus relative motion. (a) Only the stick state occurs, (b) Hysteresis loop if the

quantities µ and FN remain constant

2.3. Contact area model

It is often questionable to model the contact coupling of real mechanical systems in terms of

a point element. Let us give further consideration to a planar rectangular contact with centres

O(1) and O(2) of both surfaces. These points are identical in the equilibrium state and O ≡
O(1) ≡ O(2). So as to be able to describe the vibrations of the mechanical system with this

contact coupling as a whole we will investigate the local displacements and rotations

u(k) = [u(k), v(k), w(k), ϕx(k), ϕy(k), ϕz(k)]
T ∈ R

6 , k = 1, 2, (6)

of the points O(k), and also an overall force F = [FN , FTy, FTz]
T and a moment of force M =

[Mx, My, Mz]
T due to the contact. The quantities describing the static preloading will be

u0(k) = [u0(k), 0, 0, 0, ϕy0(k), ϕz0(k)]
T , F0 = [FN0, 0, 0]T , M0 = [0, My0, Mz0]

T .

Here (x, y, z) denotes a local coordinate system centred at the point O. The axis x is perpen-

dicular to either surface, the orientation of the axes y and z is visualized in the fig. 4. Let
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Fig. 4. Contact area with subregions

us subdivide the considered contact surface into n · m pairs of rectangular subregions. We

model the contact condition between each pair with the aid of a point contact element which

we have described in the previous paragraph. For the i-th pair of the subregions, let us denote

the corresponding quantities defining the contact conditions by adding the subscript i, i.e. u0i,

ui = [ui, vi, wi]
T , FN0i, Fi = [FNi, FTyi, FTzi]

T . We denote the position vector of the centre Pi

of the i-th pair expressed using the local coordinates of the system with ri = [0, yi, zi]
T . The

relationships among the quantities of the contact total balance at its centre O and the quantities

of the point elements in Pi then will be

ui = Gi (u(2) − u(1))
T with Gi =





1 0 0 0 zi −yi

0 1 0 −zi 0 0
0 0 1 yi 0 0



 , (7)

F =

n.m
∑

i=1

Fi , M =

n.m
∑

i=1

ri × Fi . (8)

3. Equations of motion

We will model the vibrations of the mechanical system as a whole in terms of the equations of

motion in the form

Mẍ(t) + Bẋ(t) + Kx(t) + fN(x(t), F0, M0) = f(t) , (9)

where M, B = αI + βK, K ∈ R
r,r are matrices of mass, damping and stiffness, respectively,

and fN, f ∈ R
r are vector of nonlinear contacts generalized forces and vector of external excita-

tion, respectively. Vector x ∈ R
r of vibration physical displacements and rotations also includes

the displacements and rotations at the nodes O(1), O(2) of the nonlinear contact couplings, that

is

x = [. . . , u(1) − u0(1), u(2) − u0(2), . . .]
T . (10)

Similarly, for the vector of generalized forces, we have

fN = [. . . ,−F + F0,−M + M0, F − F0, M − M0, . . .]
T . (11)

The number of degrees of freedom (DOF) r can be rather appreciable in case of real mechanical

systems. It is therefore purposeful to reduce it using the modal transformation

x(t) = Φq(t) , (12)
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where Φ = [φ1, . . . , φs] ∈ R
r,s is a matrix composed of the eigenvectors φi, i = 1, . . . , s of the

eigenvalue problem (K−λM)φ = 0 with ΦTMΦ = I, ΦTKΦ = Λ, ΦTBΦ = αI+βΛ with

Λ = diag(ω2
1, . . . , ω

2
s). Here ωi denotes i-th natural frequency of a mechanical system free of

any coupling. The new vector of modal coordinates q(t) is an element of the new configuration

space of dimension s ≪ r. The problem (9) becomes thus transformed into the form

q̈(t) + (αI + βΛ)q̇(t) + Λq(t) + ΦT fN(Φq(t), F0, M0) = ΦT f(t) (13)

The solution (13) will be found by means of the direct integration in such a way that after some

standard operations we convert (13) into a system of differential equations of the first order

and apply the Runge-Kutta method of the fourth order. The calculation of the vector fN of the

contact forces and moments is being performed in the following steps:

• given q(t) at the time point t,

• establishing u(1), u(2) according to (12) and (10),

• calculation ui, i = 1, . . . , nm, according to (7),

• calculation Fi, i = 1, . . . , nm, using the relationships (2), (3), (4),

• calculation F, M according to the relationships (8),

• establishing fN according to (11),

• calculation q(t + ∆t) by solving (13) with time step ∆t.

4. Numerical examples of friction contacts

4.1. 1-DOF friction oscillators

A friction oscillator with one degree of freedom and outer harmonic excitation A sin(Ωt) is

displayed in the fig. 5. The natural frequency of an oscillator without friction coupling is ω0 =
√

c/m, where m is mass, c spring constant, the damping ratio is b. Let us furthermore consider

a constant normal force FN0 and a constant friction coefficient µ0. Using the normalized time

τ = ω0t, (.)
′

=
d

dτ
=

1

ω0

d

dt
, and the damping ratio D = b/2

√
mc as well as the frequency ratio

η = Ω/ω0 the problem of oscillations can be described by the equation

Fig. 5. Scheme of a 1-DOF friction oscillator.
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v
′′

(τ) + 2Dv
′

(τ) + v(τ) +



















kT

c
k∗

T (v − v0) (stick)

µ0 FN0

A
sign(v) (slip)

= sin(ητ) , (14)

where v =
c

A
y is a normalized displacement. As a rule, c ≪ kT , k∗

T = 1 holds often in real

technical systems and the dimensionless parameters µ0FN0/A as well as the frequency ratio

η make the decision as to the character of the vibrations. The fig. 6 shows the solutions of

the equation (14) with η = 0.75, 0.5, 0.25 and 0.15 respectively for the values D = 0.05,

kT/c = 100, k∗
T = 1 a µ0FN0/A = 0.5. It is easily seen that a slip occurs in the whole course

of the vibration cycle for the value η = 0.75. If η = 0.5 and 0.25 the stick stage occurs during

the cycle, with η = 0.15 the phases stick and slip take turns four times.

Fig. 6. Solution of normalized equation (14) illustrated by the graphs τ − v(τ), τ − dv(τ)/dτ ,

v(τ) − dv(τ)/dτ and v(τ) − sin(ητ) for the parameters values µ0FN0/A = 0.5 and kT /c = 100.

(a) η = 0.75, (b) η = 0.50, (c) η = 0.25, (d) η = 0.15

248
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4.2. Example 2

In the first place, let us investigate the response of 2-DOF system depicted in the fig. 7 with dis-

placements of the mass m1 and m2 in the direction y. The values of the masses are m1 = 1 kg,

m2 = 1 kg and of stiffnesses c1 = 41 339 N/m, c2 = 41 328 N/m. Then we have eigenfre-

quencies 20 Hz and 52.4 Hz if we omit the friction contact. The corresponding eigenvectors

are

(0.525 7, 0.850 7)T , (−0.850 7, 0.525 7)T . (15)

Further kT = 40 000 N/m, µ = 0.5, the value of the specific ratio of damping coefficient is 0.02.

A harmonic excitation in the direction y with an amplitude of A = 10 N acts on the mass point

m2. The excitation frequency varies between 18 Hz and 28 Hz. The frequency dependencies of

the responses for different values of the preloading force of FN0 = 0, 10 N, 20 N, 30 N, 50 N,

100 N, 200 N and 600 N are shown in the fig. 8. It is obvious, that we can reach a markedly

lower responce than for the system without the friction contact or for the situation when no slip

accurs in the contact. The preloading value FN0 = 30 N seems the best one. It is useful to

notice that the maximum of the graphs for the free and stuck states is greater than responces of

any other state.

Fig. 7. Scheme of a 2-DOF system with friction contact

Fig. 8. Frequency responce of 2-DOF system with friction contact for different values of the preloading

force FN0
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Fig. 9. Frequency responce of coupling system with friction contact for different values of the preloading

force FN0

Fig. 10. Frequency responce of 2-DOF system with friction contact for the preloading moment of force

My0 = 1 Nm
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The spatial behaviour of a vibrating system will manifest itself if we add the displacement

of the mass m1 in the direction x (i.e. in the normal direction to the contact plane) as the new

DOF. Overall, we carry out only one modification of input values for the equation (13) and

substitute the first eigenvector from (15) by a new eigenvector

(0.46531, 0.46531, 0.752975)T , (0.,−0.8507, 0.5257)T .

(Of course, the scheme from the fig. 7 and values m1, m2, c1, c2 need not be preserved.) The

corresponding results are presented in the fig. 9. It can be seen that a little more substantial

differences occur especially for preloading values FN0 from 10 N to 100 N. We can also see

that the maximum of the graphs of free and stuck states is not any more a sufficient estimate

for responces with another preloading values FN0. The jumps within graphs with FN0 = 25 N,

30 N and 50 N relate to bifurcation phenomena.

Similarly the effect of the preloading moment of force M0 can be studied. Let us return to

the first example from the fig. 7 with two DOFs. The results for the first eigenvector of (15) and

for the value My0 = 1 Nm (see the subsection 2.3) are presented in the fig. 10. Dimensions of

the contact area are h = b = 0.1 m with 16 subregions (n = m = 4). We can see the higher

responce for the preloading force FN0 = 50 N as against the situation from fig. 8.

5. Conclusion

The work deals with modelling of the friction contact in the mechanical systems with small

vibrations. The influence of the surface roughness on the contact stiffness is described and the

change of the normal contact force and moment during a vibration cycle is considered. Two

examples of simple mechanical systems are presented at least partly to illustrate the proposed

methodology. The effect of the change of the normal force and of the preloading moment of

force are given in the fig. 8, 9 and 10, where the frequency responces of the second system (see

fig. 7) are depicted. The results show that phenomena with normal contact forces could not be

omitted if accurate conclusions are required.
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