
Interactive Solid Texturing using Point-based Multiresolution

Representations

Patrick Reuter

LaBRI - CNRS - INRIA

University Bordeaux 1

France

preuter@labri.fr

Benjamin Schmitt

LaBRI - CNRS - INRIA

University Bordeaux 1

France

schmitt@labri.fr

Christophe Schlick

LaBRI - CNRS - INRIA

University Bordeaux 1

France

schlick@labri.fr

Alexander Pasko

Dept. Digital Media

Hosei University

Japan

pasko@mail.com

ABSTRACT

This paper presents an interactive environment for texturing surfaces of arbitrary 3D objects. By uniquely using solid

textures and applying them to the surface, we do not require an explicit parameterisation in texture space. Various

solid textures can be combined by building a constructive texturing tree of space partitions to define the photometric

attributes at each location of the object. Though solid texturing using constructive textures is very powerful, mainly

because of its generality, it is quite difficult to use in practice as it is not well suited to interactive tools. To overcome

this limitation, we use a multiresolution point-based representation ensuring that texture evaluation and rendering

maintains a given frame rate. Our tool is realized as a plugin for the Pointshop3D system. The main advantage of our

texturing approach compared to Pointshop3D is that point-based rendering is only used during the interactive texturing

step. We always keep a feedback to the initial geometric representation of the object (polygonal mesh, parametric or

implicit surface, voxel arrays, or whatever) which means that the final textured object can be easily exported to standard

graphics software that cannot directly handle discrete surface points (e.g. CAD systems, photorealistic rendering

engines).

Keywords: solid texturing, point-based representations, constructive texturing

1 INTRODUCTION

The typical process used in the computer graphics industry

to create a realistic 3D object has not much changed dur-

ing the last twenty years. There are three principal steps

involved in this process: first, define the shape of the ob-

ject by creating a geometric representation, second define its

visual appearance by creating a set of surface or volume tex-

tures, and third, apply the textures all over the geometry to

get a nice-looking final object. A huge number of techniques

have been proposed to achieve the first step, a large number

of techniques have also been proposed to achieve the second

one, but only few methods have been proposed to easily and

robustly link the texture and the geometry.

Permission to make digital or hard copies of all or part of this
work for personal or classroom use is granted without fee pro-
vided that copies are not made or distributed for profit or com-
mercial advantage and that copies bear this notice and the full
citation on the first page. To copy otherwise, or republish, to
post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
Journal of WSCG, Vol.12, No.1-3., ISSN 1213-6972

WSCG’2004, February 2-6, 2004, Plzen, Czech Republic
Copyright UNION Agency – Science Press

Except for some simple shapes and/or simple textures, this

third step is still a painful trial-and-error task to do for the

graphics designer, especially when the texture has to be-

have accordingly to the geometry changes in an animated

sequence.

In this paper, we propose a new idea that links the tex-

ture and the geometry of arbitrary objects during an inter-

active and intuitive process. This process combines two ap-

proaches previously developed in computer graphics: con-

structive texturing and point-based rendering. The first ap-

proach offers a general framework for texturing objects of

arbitrary nature (i.e. polygonal meshes, voxel arrays, para-

metric or implicit surfaces, and others), while the second one

offers a flexible way for rendering the surfaces of such ob-

jects. The combination of both approaches allows the de-

velopment of an intuitive tool for applying textures to geo-

metric shapes with interactive feedback. This interactivity is

guaranteed, whatever the complexity of the geometry and the

texture, by using a multiresolution representation of discrete

surface points extracted from the object, both for rendering

and for texture evaluation.

The remainder of the paper is organised as follows: Section

2 recalls some previous work on which we have built our

1

new approach, Section 3 presents our technique in detail,

Section 4 discusses some of our experimental results, and

finally, Section 5 concludes and proposes some directions to

future work.

2 PREVIOUS WORK

2.1 Constructive texturing

In [Schmi01], a general approach for texturing objects of ar-

bitrary nature, called constructive texturing, is introduced.

This technique consists in defining for a given object a

partition !

 , where in each subset of the parti-

tion, a different set of photometric attributes is defined (am-

bient, diffuse and specular colours, reflectance and transmit-

tance coefficients, etc.). For each point of the object, one has

to be able to answer the following question: “Is this point

inside or outside a given subset ?” In the affirmative case,

the photometric attributes corresponding to are applied.

One powerful solution for point membership classification

is to use the function representation (FRep, for short) model

[Pasko95]. With this model, each space partition is de-

fined by a function ! , corresponding to an attribute" . The

only requirement of the FRep model is to define ! as a #

real-valued function, with negative values outside the parti-

tion, positive values inside the partition, and zero values on

its boundary. The defining functions ! are usually built us-

ing a constructive approach, resulting in a tree structure, with

primitives at the leaves and operations at the nodes. This tree

can be seen as an extension of the classical CSG tree where

the user can easily provide his own set of primitives and op-

erations.

(a) textured cube (b) twisted geometry

and texture

Figure 1: The texture follows after applying a twist

operator.

The main advantage of constructive texturing is its general-

ity: it can be applied to polygonal meshes, BRep represen-

tation, parametric and implicit surfaces, voxel arrays, and

others. Moreover, the texture behaves accordingly to geom-

etry changes in animated sequences without creating distor-

tions as illustrated in Figure 1. On the other hand, the major

drawback of this approach is that the creation of the space

partitions is usually complex and rather painful. This is due

both to the constructive approach inherent to method, and to

the lack of interactive tools. Consequently, it is difficult for

a non-expert user to generate the nodes of the partition at the

desired location of the object surface.

2.2 Point-based rendering

Although the first use of points as rendering primitive can

be attributed to Levoy and Whitted in 1985 [Levoy85] and

to Szeliski and Tonnesen in 1992 [Szeli92], point-based ren-

dering has attracted growing interest since 1998 starting by

the works of Grossman and Dally [Gross98]. Further devel-

opments by Rusinkiewicz and Levoy [Rusin00] and Pfister et

al. [Pfist00] have generated dozens of papers recently. This

is due to the fact that modern graphics hardware has made

it possible to treat and render an order of magnitude higher

amount of points. A similar trend in the modelling field, that

could be called point-based modelling, can be detected in

a couple of recent papers [Pauly03, Reute03, Turk02]. The

main idea that links all these papers together is the use of

discrete surface points without explicit connectivity instead

of polygonal meshes. As the connectivity has no longer to

be managed, some common operations, such as multiresolu-

tion (level-of-detail) generation, geometrical deformations,

or topology modifications, are much easier to implement

with objects described by discrete surface points compared

to polygonal meshes.

2.3 Interactive surface painting and texturing

In the literature, several environments can be found, which

can be used to interactively paint or texture the surface of an

object. Surface painting environments are usually based on

a metaphor of the real painting approach, where one uses a

symbolic pencil or a brush to paint the object, the colour be-

ing applied is then evaluated according to a brush function

resulting in a realistic effect [Hanra90, Agraw95]. Surface

texturing environments require first to specify a location and

a direction on the surface, and second, to apply an existing

2D image. The latter step requires a local parameterisation

of the surface which is often a non-trivial task. Furthermore,

one has to think how to stitch the 2D images together with-

out distortion. Several solutions exist, Praun et al. [Praun00]

show how to repeatedly map a small texture on a polygonal

mesh using local overlapping parameterisations, and Turk

[Turk99] and Wei and Levoy [Wei01] show how to synthe-

sise textures on polygonal meshes.

In almost every existing surface painting and texturing envi-

ronment, a polygonal mesh or a parametric patch is required.

When the object is defined by polygons, no additional step

is needed. But if it is defined using another representation

scheme, a special preprocessing is required. For instance,

Pedersen [Peder95] proposes a general solution when the ob-

ject is defined as an implicit surface, where a local parame-

terisation is defined by estimating geodesics on the surface.

Witkin and Heckbert’s particle system [Witki94] can also be

used to establish a parameterization for texture mapping on

implicit surfaces [Zonen98].

One solution to avoid parameterisation when texturing sur-

faces of arbitrary objects is the use of octree textures de-

veloped recently [Benso02, DeBry02], where only the sub-

sets of volume textures actually intersecting the surface are

stored efficiently in an octree. However, the resulting tex-

ture is discrete and has a fixed resolution limit determined

by the depth of the octree. Moreover, an octree has to be

stored for every attribute, resulting in a significant storage

overhead. Nevertheless, octree textures can be easily inte-

grated in our software environment thanks to the construc-

tive texturing approach.

Another solution that does not require explicit parameteri-

sation is used in the Pointshop3D environment [Zwick02].

This innovating approach proposes to paint the surface of an

object which is defined as a cloud of points. By applying

a texture (2D texture, uniform colour, or other), the corre-

sponding surface points are coloured. The interactive pro-

cess of painting is intuitive, and good results are achieved.

However, as it is totally based on discrete surface points, this

approach suffers from a severe drawback: once the surface is

textured, the resulting object can hardly be exported to stan-

dard graphics software that cannot handle discrete surface

points (e.g. CAD systems, photorealistic rendering engines).

3 OUR APPROACH

3.1 Overview

The main advantage of solid texturing is that it can be ap-

plied on surfaces of arbitrary 3D objects without requiring

a parameterisation. On the other hand, creating complex

solid textures using constructive texturing and applying them

at the desired location of the surface is difficult for a non-

expert user. The lack of interactive and intuitive tools makes

this approach painful because it is hard to generate the nodes

of the texture partition according to the shape of the object.

This paper proposes a solution that solves this problem: its

basic idea is to let the user define the space partition by in-

teractively selecting points on the surface.

Interactivity is guaranteed thanks to the dual nature of the

multiresolution scheme being applied. First, as usual, the

multiresolution representation is used for rendering to main-

tain a constant frame rate. Thanks to the adaptive and flex-

ible multiresolution representation, areas of interest can be

rendered in a higher resolution than the other areas of an ob-

ject surface without causing connectivity problems. Second,

in addition to rendering, we also use the multiresolution ap-

proach in the texturing step: at low resolution, the user can

paint large parts of the object, and when the resolution is

increased, finer details can be painted. Moreover, the photo-

metric attributes can also be determined in a multiresolution

manner, thus, when texturing an object surface, visual results

are obtained rapidly in a coarser resolution before refining

them in a background process.

The procedure we have defined can be divided into 10 steps,

as illustrated in Figure 2. In a preprocessing step, discrete

surface points are extracted from a given object of arbitrary

type (step 1), and a multiresolution representation of the

cloud of discrete surface points is set up (step 2). After this,

the object is visualised in the adapted level-of-detail (step 3).

Then, the object surface can be textured by the user (steps

4-7), the photometric attributes of the surface points are up-

dated (step 8), and visualised (back to step 3). Finally, when

the user has finished texturing, the texture can be exported

(step 9) and used during postprocessing (step 10). Details of

these steps are given in the following subsections.

p
re

p
ro

ce
ss

in
g

p
o
st

p
ro

ce
ss

in
g

Visualization

u
se

r
in

te
ra

ct
iv

e
p

ai
n
ti

n
g

re
al

−
ti

m
e

p
ro

ce
ss

in
g

2

1

3

(a)

crete surface points &

multiresolution set−up

of arbitrary type

Geometric model

Extraction of dis−

Update of

photometric

attributes

HyperFun Export

Add new node to the

tree

constructive texturing

(CAD, ray−tracing, ...)

graphics software

Use in standard

Point Selection

Selection of

material index

Primitive selection

(sphere, RBF, con−

volution surface, ...)

8

4

5

6

7

9

10

Figure 2: The different steps involved in our interac-

tive texturing process.

3.2 Preprocessing

Before texturing an object using a point-based rendering

technique, one needs to define a cloud of discrete points

on the object surface (step 1). The complexity of this pre-

processing stage heavily depends on the object nature. In

the case of polygonal or parametric objects, the extraction

is done in a direct manner as these representations explicitly

define the boundary of the object. In the case of other repre-

sentations, such as FRep, voxel arrays, or scanned data, one

needs to extract the corresponding isosurfaces. A large num-

ber of techniques exist for this task, such as polygonisation,

particle systems [Witki94], or ray-tracing applied to an ob-

ject. Moreover, some efficient resampling techniques have

been proposed in order to augment or lessen the number of

extracted surface points [Alexa01].

Once the cloud of discrete surface points is extracted, the

multiresolution representation is set up (step 2). This is done

not only for level-of-detail rendering, but also for progres-

sive evaluation of the constructive texturing tree. We use a

hierarchy of bounding spheres stored in a binary tree in spirit

of QSplat [Rusin00] which is built up in a top-down recur-

sive manner during preprocessing. This is done by splitting

the set of surface points along the longest axis of its bound-

ing box, recursively computing two subtrees, and finding the

bounding sphere enclosing two children spheres. In each

node, we store the radius of the bounding sphere and the sur-

face point lying closest to the barycenter of all surface points

in the bounding sphere. Note that the radius of the bound-

ing spheres at the leaf nodes is determined directly from the

sampling grid used for extracting the surface points.

Defining solid texture coordinates by discrete surface point

locations is prone to aliasing artifacts when high-frequency

textures are used, even at the highest resolution of the hierar-

chy. This is also true for the surface textures natively defined

in the Pointshop3D environment [Zwick02], but in contrast

to Pointshop3D, discrete surface points are only used in an

intermediate step to previsualise the textured surface. These

aliasing artifacts will not occur during postprocessing as il-

lustrated in Figure 3, where a high-frequency perlin noise is

applied to an FRep tiger object.

(a) Previsualisation (b) Final ray-traced image

Figure 3: Aliasing artifacts do not occur in postpro-

cessing.

Figure 4: A set of established space partitions shown

on the dinosaur statue.

3.3 Real-time processing

In order to ensure real-time processing, the evaluation of the

photometric attributes of the surface points as well as the

rendering itself has to be done in a given time. To meet this

requirement, the adapted level in the multiresolution hier-

archy, where the photometric attributes of all nodes can be

evaluated in the given time, is determined. This might not

be the highest level of the hierarchy, as the cost of determin-

ing the attributes for a surface point increases with the com-

plexity of the solid texture represented by the constructive

texturing tree. Then, the photometric attributes of all further

nodes and surface points of the multiresolution hierarchy are

determined (step 8) in a background process as indicated by

(a) in the algorithm.

In addition to choosing the adapted multiresolution level

with respect to the evaluation cost of the attribute tree, the

number of surface points which can be rendered by the

graphics hardware has also to be taken into account for effi-

cient visualisation (step 3). This cost might be rather small

when the projection of the bounding sphere of the surface

point falls on a single screen pixel. Even when the projection

of the bounding sphere falls on several screen pixels, the cost

might stay small using some hardware-accelerated splatting

technique [Rusin00], but increases when a high-quality splat

is drawn [Zwick01]. However, even high-quality splats can

now be drawn with hardware acceleration [Ren02] using

modern graphics hardware [Lindh01].

3.4 Texturing: user interaction

At this stage of the algorithm, the user textures the object

surface. This is done by choosing a material index for the

texture to be used (step 4), defining a space partition (steps

5 and 6), and adding the space partition as a new node in

the constructive texturing tree (step 7). We will detail these

steps in the following.

Selection of material index (step 4) First, the user selects

a material index for a solid texture that will be applied

in the space partition. Any kind of solid texture can

be used, varying from procedural textures, volumetric

textures, simple materials, and others.

Primitive Selection (step 5) Depending on the shape of the

space partition the user wishes to obtain, different

tools are available. By tool, we mean any primitive

that can be defined in the FRep model. The simplest

tools to define a space partition are the sphere and the

block. By using convolution surfaces for the space

partition, the user can texture the object with a brush

tool of a any size. With more complex primitives, the

user has even more control over the space partition to

define. For instance, by using variational implicit sur-

faces [Savch95, Turk99] defined by radial basis func-

tions (RBF), the user can define a volume including

all selected points. As an example, a textured object

and its corresponding space partitions of a dinosaur

sculpture can be seen in Figure 4.

Point Selection (step 6) In this step, the user selects the

surface points. These surface points are the param-

eters of the FRep primitive defining the space par-

tition. For example, by using the RBF primitive, a

space partition interpolating all the surface points is

determined. When the chosen tool is a brush, the se-

lected surface points define the skeleton of the convo-

lution surface for the space partition. When a sphere

is chosen, the selected surface point defines the cen-

ter, and the radius can be specified interactively.

New node in the constructive texturing tree (step 7)

Once the new space partition has been created (i.e. a

new primitive), it is added to the current constructive

texturing tree. This is done automatically while

using the set-theorethic union operation, but any

other operation available in the FRep model can be

used (including other set-theoretic operations such

as intersection, or blending union). In the case of

overlapping partitions, set-theoretic operations need

to be defined by the user. Indeed, if one considers

a union operation of, for instance, two overlapping

blocks, the resulting geometry is well defined. But

if one considers the union of attributes, the result

needs to be specified. In the case of a red and a green

block, the color of the intersection of the blocks can

be either red, or green, or yellow, or any other color;

it corresponds to different operations on attributes,

namely priority given to an attribute, a min/max

function, or a user defined operation. By default, we

give priority to the last added primitive.

When the user has painted on the surface by choosing the

desired texture and points to define the space partition, the

photometric attributes of the surface points are updated (step

8) and visualised (back to step 3). Then, the user can con-

tinue to add further space partitions and to associate photo-

metric attributes with them. Although the space partitions

can be very complex, interactivity is achieved because the

evaluation of the solid texture represented by the construc-

tive texturing tree is processed only for the discrete surface

points used for visualisation, at the adapted level-of-detail.

3.5 Postprocessing

Once the solid texture defined by the constructive texture is

created, it can be saved, and exported using the extended

version of HyperFun [Adzhi99] (step 9), which is a spe-

cial high-level language that supports all the main notions

of FRep modelling and has been recently extended to sup-

port the constructive texturing concept. A set of plug-ins has

been developed such that several existing software tools sup-

port objects described by HyperFun, such as Maya [Maya],

PovRay [PovRa], and other (step 10). Export to polygonal

representations, such as VRML, are also supported.

4 RESULTS

4.1 Overview

We implemented our tool as a plugin for Pointshop3D

[Zwick02]. A screenshot of our plugin can be seen in Figure

5, where the user is selecting the tool to define a space parti-

tion. Besides the rendering modes provided by Pointshop3D,

we implemented our own rendering modes to manage the

multiresolution representation. All timings given in this sec-

tion were measured on a 1.7 Ghz Pentium PC with 512 MB

RAM.

Figure 5: A screenshot of our plugin.

4.2 Preprocessing

The preprocessing step is divided into two parts, the extrac-

tion of the surface points and the creation of the multireso-

lution representation. The time for the extraction of the sur-

face points is strongly related to the type and complexity of

the object’s geometry. Setting up the multiresolution repre-

sentation is fast, it only depends on the number of extracted

surface points and is in !"#$!!.

As our texturing technique can be applied to surfaces of ob-

jects from arbitrary type, the example objects in this pa-

per have different underlying object representations. For

the polygonal mesh of the Stanford Dragon, extracting the

437,645 surface points (Figure 6(b)) is done instantaneously

like for the 38,619 surface points of the dinosaur statue (Fig-

ure 4) by directly using the vertices of the mesh. For the

implicit surface of the 3D ant defined by an FRep model, it

took 46 seconds to extract the 140,616 surface points (Fig-

ure 8(g)) due to the complexity of the implicit formulation

of the object. Extracting the 78,499 surface points (Fig-

ure 7(a)) from the well known Siemens head sampled on a

150x200x192 voxel grid took 13 seconds.

Setting up the multiresolution representation took less than

a second for every example shown in this paper.

4.3 Real-time process

There are two major bottlenecks which determine the inter-

activity of our texturing approach. First, the evaluation of the

constructive texturing tree to determine the photometric at-

tributes of the surface points when nodes to the attribute tree

were added, and second, the rendering of the surface points.

Thanks to the multiresolution approach we use, maintaining

interactivity for both bottlenecks is achieved by choosing the

right balance between the number of surface points which

can be evaluated by traversing the constructive texturing tree

and the number of surface points which can be rendered.

(a) high resolution (b) very low resolution (c) corresponding space partitions

Figure 6: A more complex example using multiple space-partitions.

The time to determine the photometric attributes of the sur-

face points heavily depends on the complexity of the solid

texture described by the constructive texturing tree. The

evaluation of the photometric attributes at the surface points

becomes critical only when very complex primitives are

used. In all the examples shown in this paper, the photo-

metric attributes of all surface points as well as of the inte-

rior nodes of the hierarchy used for multiresolution could be

evaluated in less than a second.

If the photometric attributes of a huge number of surface

points are determined, simple hardware splatting of the sur-

face points suffices [Rusin00], resulting in high-quality im-

ages when the projection of the bounding sphere associated

to each surface point falls only on a few screen pixels. Us-

ing our rendering implementation, we can render up to 5M

points per second using a Geforce 3 graphics board.

If only a small number of surface points could be evalu-

ated, a high-quality software splatting technique is used for

point-based rendering. The adapted level-of-detail of the

multiresolution representation is chosen to insure interac-

tive framerates. Using our rendering implementation of the

output-sensitive surface splatting technique, we can render

up to 300k surface splats per second in a 512x512 win-

dow. Note that the authors of the surface splatting tech-

nique claim to render up to 500k surface splats per second

using a better optimised implementation on a similar hard-

ware configuration [Zwick01]. However, we envisage to use

the hardware-accelerated approach of [Ren02], which is less

output-sensitive and where up to 3M surface points per sec-

ond can be rendered. Moreover, we recently became aware

of the hardware-accelerated point-based multiresolution ren-

dering approach [Dachs03] which is perfectly suited for our

approach. By shifting the computational cost to traverse the

multiresolution hierarchy from the CPU to the graphics hard-

ware, CPU load is liberated for evaluating the photometric

attributes while rendering over 50M points per second.

The desired quality/speed trade-off can be chosen, Figure 8

shows different levels-of-detail of our 3D ant rendered using

surface splats (Figures 8(a)-8(c)) and hardware splats (Fig-

ures 8(d)-8(f)), as well as the obtained framerates.

(a) 78,499 extracted discrete

surface points

(b) ray-traced image

Figure 7: Texturing a surface from the Siemens voxel

array head sampled on a 150x200x192 grid.

4.4 User interaction

A more complex textured object, the Stanford Dragon de-

scribed by 437,645 points, can be seen in Figure 6(a). We

also show another resolution that was used during the tex-

turing step (Figure 6(b)) as well as the corresponding space

partitions that have been established (Figure 6(c)).

4.5 Postprocessing

In our environment, we used PovRay [PovRa] to obtain pho-

torealistic rendering. Some of our results are shown in Fig-

ure 7(b) and Figure 8(h).

5 CONCLUSIONS

In this paper, we presented a new idea that links the tex-

ture and the geometry of an object by combining two ap-

proaches previously developed in computer graphics: con-

structive texturing and point-based rendering. This combi-

nation allowed us to develop a software environment where

3D objects of arbitrary nature (i.e. polygonal meshes, iso-

surfaces of voxel arrays, parametric or implicit surfaces, and

others) can be textured by using an interactive and intu-

itive process. An interactive framerate is always guaran-

teed, whatever the complexity of the geometry and/or the

texture, because the environment uses a multiresolution rep-

resentation of discrete surface points extracted from the ob-

ject, that is tuned according to the performance of the graph-

ics hardware and according to the texture complexity. This

multiresolution representation offers also high-quality an-

tialiased point-based rendering. One major advantage of our

approach is that point-based rendering is only used during

the interactive texturing step. We always keep a feedback

to the initial geometric representation of the object (polygo-

nal mesh, parametric or implicit surface, or whatever) which

means that the final textured object can be easily exported to

standard graphics software that cannot directly handle dis-

crete surface points (e.g. CAD systems, photorealistic ren-

dering engines).

Our implementation is still under development: currently

four kinds of FRep primitives (i.e. spheres, blocks, con-

volution surfaces, and radial basis functions applied to a

set of discrete surface points) can be used to create a par-

tition of the constructive texturing tree. An immediate ex-

tension will be to widen the set of available FRep primi-

tives. Two more straightforward extensions will be to in-

tegrate the hardware-accelerated high-quality splatting tech-

nique [Ren02] that renders more than 3M points per second

on current graphics hardware, and the sequential point trees

technique [Dachs03], that shifts the CPU load for the mul-

tiresolution rendering to the graphics hardware.

We are also investigating two promising directions. The first

one is to allow the texturing of geometric attributes in addi-

tion to photometric ones, such as bump mapping or displace-

ment mapping. Such a feature is offered in the Pointshop3D

environment as it works easily exclusively on a cloud of

points. In our case, as we want to keep a feedback to the

original geometric representation, the process is not that ob-

vious. One solution that we are currently implementing is

to use the implicit deformation technique proposed by Cani

[Cani93]. The second direction that we are investigating is

to use this interactive kernel to manipulate something else

than photometric or geometric attributes. By covering the

object with a set of parameterised primitives, one can build

a set of local parameterisations of the surface that can be

smoothly blended together and used as a support for con-

ventional hardware texture mapping.

ACKNOWLEDGEMENTS

We are grateful to Tamy Boubekeur, Clment Bichel, Blanca

Borro Escribano, and Elisabeth Brunet for the design and

implementation of the Pointshop3D plugin.

REFERENCES

[Adzhi99] Valery Adzhiev, Richard Cartwright, Eric Fausett, Ana-

toli Ossipov, Alexander Pasko, and Vladimir V. Savchenko.

Hyperfun project: A framework for collaborative multidimen-

sional F-rep modeling. In Proceedings of the Implicit Surfaces

’99, pages 59–69, 1999.

[Agraw95] Maneesh Agrawala, Andrew C. Beers, and Marc Levoy.

3D painting on scanned surfaces. In 1995 Symposium on In-

teractive 3D Graphics, pages 145–150, April 1995.

[Alexa01] Marc Alexa, Johannes Behr, Daniel Cohen-Or, David

Levin, Shachar Fleishman, and Claudio T. Silva. Point set

surfaces. In IEEE Visualization 2001, pages 21–28, October

2001.

[Benso02] David Benson and Joel Davis. Octree textures. ACM

Transactions on Graphics, 21(3):785–790, July 2002.

[Cani93] Marie-Paule Cani. An implicit formulation for precise

contact modeling between flexible solids. In Proceedings of

ACM SIGGRAPH 93, pages 313–320, August 1993.

[Dachs03] Carsten Dachsbacher, Christian Vogelgsang, and Marc

Stamminger. Sequential point trees. ACM Transactions on

Graphics, 22(3), 2003.

[DeBry02] David (grue) DeBry, Jonathan Gibbs, Devorah DeLeon

Petty, and Nate Robins. Painting and rendering textures on

unparameterized models. ACM Transactions on Graphics,

21(3):763–768, July 2002.

[Gross98] J. P. Grossman and William J. Dally. Point sample

rendering. In Rendering Techniques ’98, pages 181–192.

Springer Verlag, 1998.

[Hanra90] Pat Hanrahan and Paul E. Haeberli. Direct WYSIWYG

painting and texturing on 3D shapes. Computer Graphics

(Proceedings of ACM SIGGRAPH 90), 24(4):215–223, Au-

gust 1990.

[Levoy85] Marc Levoy and Turner Whitted. The use of points as

display primitive. Technical Report TR 85–022, University of

North Carolina at Chapel Hill, 1985.

[Lindh01] Erik Lindholm, Mark J. Kilgard, and Henry Moreton.

A user-programmable vertex engine. In Proceedings of ACM

SIGGRAPH 2001, pages 149–158. ACM Press / ACM SIG-

GRAPH, August 2001.

[Maya] Maya. Alias-WaveFont. www.aliaswavefront.com.

[Pasko95] Alexander Pasko, Valery Adzhiev, Alexei Sourin, and

Vladimir V. Savchenko. Function representation in geometric

modelling: concept, implementation and applications. The

Visual Computer, 11(8):429–446, 1995.

[Pauly03] Mark Pauly, Richard Keiser, Leif Kobbelt, and Markus

Gross. Shape modeling with point-sampled geometry. ACM

Transactions on Graphics, 22(3), 2003.

[Peder95] Hans Køhling Pedersen. Decorating implicit surfaces. In

Proceedings of ACM SIGGRAPH 95, pages 291–300, August

1995.

[Pfist00] Hanspeter Pfister, Matthias Zwicker, Jeroen van Baar, and

Markus Gross. Surfels: Surface elements as rendering primi-

tives. In Proceedings of ACM SIGGRAPH 2000, pages 335–

342, July 2000.

[PovRa] PovRay. The Persistance of Vision. www.povray.org.

[Praun00] Emil Praun, Adam Finkelstein, and Hugues Hoppe.

Lapped textures. In Proceedings of ACM SIGGRAPH 2000,

pages 465–470, July 2000.

[Ren02] Liu Ren, Hanspeter Pfister, and Matthias Zwicker. Ob-

ject space EWA surface splatting: A hardware accelerated ap-

proach to high quality point rendering. Computer Graphics

Forum (Eurographics 2002), 21(3):461–470, 2002.

[Reute03] Patrick Reuter, Ireneusz Tobor, Christophe Schlick, and

Sebastien Dedieu. Point-based modelling and rendering using

radial basis functions. Proceedings of ACM Graphite 2003,

February 2003.

[Rusin00] Szymon Rusinkiewicz and Marc Levoy. Qsplat: A

multiresolution point rendering system for large meshes. In

Proceedings of ACM SIGGRAPH 2000, pages 343–352, July

2000.

[Savch95] Vladimir V. Savchenko, Alexander Pasko, Oleg G.

Okunev, and Tosiyasu L. Kunii. Function representation of

solids reconstructed from scattered surface points and con-

tours. Computer Graphics Forum, 14(4):181–188, October

1995.

(a) 140,616 high-quality surface splats ren-

dered at !! fps (frames per second)

(b) 34,980 high-quality surface splats ren-

dered at " fps

(c) 11,043 high-quality surface splats ren-

dered at ! fps

(d) 140,616 hardware splats rendered at

"# fps

(e) 34,980 hardware splats rendered at $!

fps

(f) 11,043 hardware splats rendered at

%## fps

(g) 140,616 extracted discrete surface points from FRep model (h) ray-traced image

Figure 8: Multiresolution rendering using hardware splats and high-quality surface splats and obtained framerates, start-

ing from 140,616 discrete surface points extracted from an FRep model, and the final ray-traced image.

[Schmi01] Benjamin Schmitt, Alexander Pasko, Valery Adzhiev,

and Christophe Schlick. Constructive texturing based on hy-

pervolume modeling. The Journal of Visualization and Com-

puter Animation, 12:297–310, 2001.

[Szeli92] Richard Szeliski and David Tonnesen. Surface modeling

with oriented particle systems. Computer Graphics (Proceed-

ings of ACM SIGGRAPH 92), 26(2):185–194, July 1992.

[Turk99] Greg Turk and James O’Brien. Shape transformation us-

ing variational implicit functions. In Proceedings of ACM

SIGGRAPH 99, pages 335–342, August 1999.

[Turk02] Greg Turk and James F. O’Brien. Modelling with im-

plicit surfaces that interpolate. ACM Transactions on Graph-

ics, 21(4):855–873, 2002.

[Wei01] Li-Yi Wei and Marc Levoy. Texture synthesis over arbi-

trary manifold surfaces. In Proceedings of ACM SIGGRAPH

2001, pages 355–360, August 2001.

[Witki94] Andrew P. Witkin and Paul S. Heckbert. Using particles

to sample and control implicit surfaces. In Proceedings of

ACM SIGGRAPH 94, pages 269–278, July 1994.

[Zonen98] Ruben Zonenschein, Jonas Gomes, Luiz Velho, and

Luiz Henrique de Figueiredo. Controlling texture mapping

onto implicit surfaces with particle systems. In Proceedings

of Implicit Surfaces ’98, pages 131–138, June 1998.

[Zwick01] Matthias Zwicker, Hanspeter Pfister, Jeroen van Baar,

and Markus Gross. Surface splatting. In Proceedings of ACM

SIGGRAPH 2001, pages 371–378, August 2001.

[Zwick02] Matthias Zwicker, Mark Pauly, Oliver Knoll, and

Markus Gross. Pointshop 3D: An interactive system for

point-based surface editing. ACM Transactions on Graphics,

21(3):322–329, July 2002.

