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ABSTRACT 

This paper presents a robust and reconfigurable object tracker that integrates multiple visual features from 

multiple views. The tandem modular architecture stepwise refines the estimate of trajectories of the objects in 

the world coordinates using many plug-ins that observe various features such as texture, color, region and 

motion in 2D images acquired by the cameras. One of the most important features of our proposed method is 

that each plug-in innovates the trajectories not only by back-projecting 2D observations of the features, but also 

by weighting them adaptively to their self-evaluated reliability. In the paper, the architecture of the system and 

that of the plug-ins are formulated. The behavior and robustness against occlusion are also shown through 

experiments with football-game sequences. 
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1. INTRODUCTION 
Automated tracking of moving objects have been a 

key technology in various fields including video 

surveillance, scene analysis, metadata production, etc. 

In any cases above, the robust strategies, which are 

intended to overcome problems of occlusion, 

deformation, noise and/or illumination changes, are 

intensely studied [Jan00a][Mey94a][Isa98a]. 

    Based on decomposed Kalman filtering, we 

developed a tandem tracker that gradually refines the 

estimated trajectories on an image plane by a series 

of tracking plug-ins with various measurement 

strategies [Mis02a]. The algorithm has following two 

major advantages that are required to multi-purpose 

object trackers: (1) heterogeneous measurements are 

integrated adaptively to their self-evaluated 

reliability to reinforce the robustness, and (2) the 

observation strategies can easily be 

assembled/reordered by plugging-in/-out the modules. 

The algorithm, however, was designed to track 

objects on the image plane using monocular sensory 

system, and was not capable of detecting 3D world 

coordinates. 

    To integrate spatially diverse observations, we 

extended the algorithm to estimate the trajectories in 

a world coordinate system. The Observations from 

the cameras are gathered together through the 

parameters of position, attitude, and focal length. A 

variety of silhouette extraction, matching, and 

position prediction are provided as plug-ins, which 

expand the multimodality of the platform. In this 

paper, the system architecture and constituent plug-

ins are illustrated and formulated. Experimental 

results with football sequences show the robustness 

of the algorithm.1 

2. ARCHITECTURE OF TRACKER 
The tandem architecture of our proposed tracker, as 

illustrated in Fig. 1, stepwise updates the estimates 

of positions. Each the step detects objects by one 

specific strategy, and is in charge of one specific 

viewpoint. It also automatically updates the tracking 

templates if necessary. The boxes in Fig. 1 are 

implemented as software plug-ins (dynamic link 

libraries), which can be classified into three major 

categories: silhouette extraction (EXTR), template 
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matching (MTCH), and position prediction (PRED). 

An EXTR plug-in assigns 1/0 flags to each pixel to 

get a silhouette image by judging whether the pixel 

belongs to an object region or not. An MTCH plug-

in, which matches observed visual features with 

templates, searches the input image for the target 

objects to update their estimated positions. A PRED 

plug-in predicts the positions of the target objects 

based on a dynamics model from those of the 

previous time frame. 

Parameterization of Track (State Vector) 
The state of each target object i  is parameterized by 

its position 
i

p , velocity 
i

p& , and acceleration 
i

p&&  in 

a view-independent world coordinate system 
)(w

Σ as 

shown in Fig. 2. We define the following 9-

dimensional state vector 
i

x  for each object  i : 
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ii
ppp &&&=x  

where superscript T  denotes the transpose of the 

matrix. 

Camera Model (Observation) 
Our proposed system has one or more camera(s) to 

observe projected image coordinates of the target 

position 
i

p . Each camera coordinate system 
)(c

Σ  is 

modeled with the position vector [ ]T
ZYX
ttt=t  

and the attitude angles (pan α , tilt δ , and roll φ ) 

in  
)(w

Σ . In this paper, the position vector, the 

attitude angles, plus the focal length f are referred 
to as “camera parameters” (see Fig. 2 for the 

definitions of  and its original attitude). We assume 

that the camera parameters are calibrated/measured 

by an image-based algorithm [Tsa87a] or by a tripod 

with rotary encoders. 

    The pinhole model with the above-mentioned 

camera parameters yields the following perspective 

mapping function )(
i

xh  that gives the ideal image 

coordinates 
i
ŷ  of the object i : 
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where 

θsin  and θcos  are abbreviated to θs  and θc , 

respectively. 

    We modeled the error of each MTCH as a zero-

mean white Gaussian noise w  with a covariance of 

R , which leads to: 
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where 
i

y  is the observation of image coordinates of 

object i . 

Model of Dynamics 
We employed the following simple transition as a 

dynamics model of each state vector 
i

x : 

)6(,vxx +=′
ii

F  

where 
i

x , 
i

x′ , F  and v  are the current state 

vector, that of the next time frame, transition matrix, 

and the process noise, respectively. We assume that 

v  is a zero-mean white Gaussian noise with 

covariance Q : 

)7(.][,][ QEE T
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Figure 2. Coordinate System 

 

Figure 1. Architecture of Tracker



The matrix F  will be defined in Section 4. 

Feature Diversity and Space Diversity 
The most important feature of our proposed 

architecture is that the cascade of plug-ins (with 

different extraction/matching/prediction strategies) 

serially refines the estimates of target positions 

integrating heterogeneous visual features (feature 

diversity) and/or those from different viewpoints 

(space diversity). 

    In case different MTCH plug-ins are connected 

(feature diversity configuration), as shown in Fig. 3a, 

the plug-ins update the state vectors (also with 

templates) to incorporate features/strategies. 

The series of MTCH plug-ins that receives 

images from different cameras, as shown in Fig. 3b, 

unifies the observation from the multiple viewpoints 

into the state vectors in a single world coordinate 

system through the camera parameters. Not only 

does the space-diversity configuration resolve the 

occlusion problem, but the moderate interaction of 

the plug-ins with the state vectors implicitly 

performs triangulation to compensate the inherent 

ambiguity along the line-of-sight of each view. 

3. MATCHING PLUG-INS 
All matching plug-ins (MTCHs) have the same basic 

structure as shown in Fig. 4. The variety of 

implementation of constituent blocks enables their 

polymorphism. 

    The plural layers in the figure update their own 

targets taking others’ positions (i.e., occlusion status) 

into account. Firstly, the input state vector 
i

x  is 

projected onto the image plane using Equation (2) to 

obtain estimated image coordinates 
i

ŷ  of the target 

i . The state covariance matrix 
i
P  — a measure of 

the error on 
i

x  (see Equations (15) and (25)) — is 

also mapped onto the image plane to get 
i
R̂ : 
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As 
i

ŷ  and 
i
R̂  can be interpreted as an estimated 

center and radii of the error ellipsoid around the 

target’s image, we can reduce the search area 
i

A  to 

be a disk of radius ρ  in Mahalanobis metric 

[Mcl97a]: 

)11(,)()(),(

)10(})ˆ,(dist|{

1
µxµxµx

yyyA

−Σ−=

≤=

−T

R

iRi

dist

i

ρ

  

where ),(dist µx
Σ

 denotes the Mahalanobis distance 

of input vector x  from the distribution of mean µ  

and covariance Σ . 

    Secondly, the “matching” step searches the input 

image I  within a search area 
i

A  for a similar 

region to the template(s) in 
i

T . The matching step 

outputs the image coordinates 
i

y  and their 

reliability 
i
r . In case of MSE-based block matching, 

for example, the minimum MSE can be a criterion 

for the reliability 
i
r . 

    In order to determine the observation covariance 

matrix 
i
R  (supposed to be diagonal in this paper), 

we introduce empirically designed look-up functions 

),(
iix

orτ  and ),(
iiy

orτ  that map the reliability 

i
r  and the occlusion status 

i
o  to the diagonal 

components of 
i
R  (see subsequent subsections for 

the individual definitions): 

)12()}.,(),,(diag{
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R oror ττ=  

The functions return large values when the reliability 

i
r  lowers or the occlusion status 

i
o  represents 

overlap with other similar objects. 

    As examples of the occlusion status 
i

o , we define 

the following two criteria 
)(d

i
o  and 

)(a

i
o  which are 

calculated from the arrangement of the projected 

objects’ bounding regions 
i

B s (see Figs. 5 and 6): 

 

(a) Feature Diversity 

 

(b) Space Diversity 

Figure 3. Feature and Space Diversity 

 

Figure 4. Structure of Matching Plug-in 
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where 
i
S  and 

ij
C  are the areas of 

i
B  and 

ii
BB ∩ , respectively. Note that the Mahalanobis 

distance ),(dist
in

i

µµ
Σ

 measures the color-

distance between objects n  and i . The values of 

distance-based criterion 
)(d

i
o  can be categorized 

into: (1) totally occluded ( 0
)(
≤

d

i
o ), (2) partially 

occluded ( 10
)(
≤<

d

i
o ), and (3) isolated 

( 1
)(
>

d

i
o ).  On the other hand, area-based criterion 

)(a

i
o  becomes smaller than 1 when the object i  is 

occluded by other similarly colored object(s). 

    Lastly, the “filtering” step refines the state vector 

i
x  and its covariance 

i
P  based on the observed 

image coordinates 
i

y  and the covariance 
i
R , which 

is determined by Equation (12), using the following 

formulae: 
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where 
i

K  is noted as “Kalman gain” [Kal60a]. 

Color Matching Plug-in 
The color matching plug-in has statistic parameters 

of each object’s color as a member of template set 

i
T . Let 

i
µ  and 

i
Σ  be the mean and the covariance 

matrix of the color vector of the target object, and 

i
µ  and 

i
Σ  be those of region near (but outside) the 

object. The plug-in observes the spatial center of 

gravity of similarity )(ys  as follows: 
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where 
fgρ  and 

bgρ  are empirically predefined 

constants. The similarity )(ys  increases when the 

pixel’s color is similar to 
i

µ  but dissimilar to 
i

µ . 

As shown by hatching in Fig. 6b, the search area 

i
A  is determined basically by a dilated area 

+

i
B  of 

the bounding-region 
i

B , but the region interfered by 

other similarly colored object(s) is eliminated from 

the search area 
i

A . 

    To determine the observation covariance matrix 

i
R , the following 

x
τ  and 

y
τ  are used: 
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which mean that the state vector 
i

x  is updated if 

and only if no similarly colored objects are 

overlapping. 

Texture Matching Plug-in 
As a template, the plug-in utilizes an arbitrary-

shaped colored image )()(
iii

BηTηE ∈∈  of the 

object observed from each viewpoint. Updating the 

template automatically, the plug-in detects the target 

based on the following block-matching algorithm: 
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where )(y
i

ε  is the RMS error between the template 

i
E  centered at y  and the input image I . The 

observation covariance 
i
R  is controlled based on 

the following equations: 
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Local Feature Matching Plug-in 
Using a plural number of 55× -pixel templates 

around visually distinct points (with local maxima of 

variance of the texture inside 
i

B ), block matching 

(same as the texture matching plug-in) is performed. 

All the templates are updated every frame. Both 

),(
iix

orτ  and ),(
iiy

orτ  constantly return 
7

10
−

’s. 

 

 

 

 

 

 

Figure 5. Bounding Regions 
i

B  and 
+

i
B  

 

(a) Distance-based 
)(d

i
o     (b) Area-based 

)(a

i
o  

Figure 6. Criteria of Occlusion Status 
i

o  



Silhouette Matching Plug-in 
First, the plug-in labels the silhouette image )(yS  

(Fig. 7a) based on the objects’ bounding regions 

i
B s and on their depths to get a labeled image (Fig. 

7b). The undetermined pixels without any labels 

(white pixels in Fig. 7b) are region-grown from 

neighboring determined pixels resulting in Fig. 7c. 

Then, an area-filter eliminates small blotches to get a 

refined labeled image as shown in Fig. 7d. 

    Based on the center 
i

y  of re-calculated bounding 

region of each label in Fig. 7d, the state vector 
i

x  is 

updated using Equation (14). The following are used 

to determine observation covariance 
i
R : 
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where W  and H  are the width and the height of 

the region labeled with i . 

4. PREDICTION PLUG-INS 
A prediction plug-in (PRED) estimates a state vector 

i
x′  and its covariance 

i
P′  at the next frame from he 

current state 
i

x  and the covariance 
i
P  assuming a 

model of dynamics such as constant acceleration 

model. 

    Based on Kalman filtering technique, the 

following prediction equations are obtained: 

)25(., QFFPPF
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The process covariance matrix Q , which has been 
modeled in Equations (6) and (7), should be given in 

order to reflect modeling ambiguities and/or 

disturbance. 

    As an example of PRED plug-ins, we 

implemented the Singer model, in which the models 

of constant acceleration and of constant velocity are 

smoothly unified through a parameter of smoothness 

λ : 
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where u  and t∆  are the 3D white Gaussian noise 

on acceleration and the time interval between two 

successive frames, respectively. 

5. EXTRACTION PLUG-INS 
An extraction plug-in (EXTR), examples of whose 

internal structure are illustrated in Fig. 8, extracts 

silhouettes of objects as shown in Fig. 9. We 

developed two EXTRs: background subtraction and 

chroma-key. The EXTRs are not mandatory, but will 

give a powerful constraint on object positions or a 

mask against outliers. 

    As shown Fig. 8a, the background subtraction 

plug-in refers a pre-calculated background image as 

a template to judge whether each pixel in the input 

image I  belongs to the athletes’ region or not. This 

strategy is applicable to the images acquired by fixed 

cameras. 

 

 

 

(a) Silhouette Image and 
i

B s    (b) After Filling 
i

B s 

 

 

 

(c) After Region Gowing  (d) After Noise Reduction 

Figure 7. Silhouette Matching 

  
(a) Original Image )(yI   (b) Silhouette Image )(yS  
   (Extracted by Chroma-key Plug-in) 

Figure !!!!. Structure of Extraction Plug-ins 

  

(a) Background      (b) Chroma-key Plug-in 

Subtraction Plug-in 

Figure 8. Structure of Extraction Plug-ins 

  

(a) Silhouette Image and 
i

B s    (b) After Filling 
i

B s 

  

(c) After Region Gowing  (d) After Noise Reduction 

Figure 7. Silhouette Matching 



    For the scenes with uniformly colored background 

(e.g., turf of football field), color-based algorithms 

such as [Nae00a] would be suitable for finding 

objects. Fig. 8b is the block-diagram of our designed 

chroma-key plug-in based on the Mahalanobis 

distance from the background color statistics: the 

mean color and the covariance (which is assumed to 

be a measure of granularity). 

6. EXPERIMENTS 

Fig. 10 shows a tracking result (projected onto the 

image plane) of simply crossing athletes (Scene 1) 

observed by a single camera using a tracker with the 

plug-ins listed in Table 1. The initial world 

coordinates of athletes are manually designated. 

Although both the athletes are wearing similar blue 

shirts, they are successfully tracked. 

    In Fig. 11, the state covariance matrices 
1
P  and 

2
P  are visualized1. The state variances become 

                                                        
1 The square root of sum of the first three diagonal 
components of 

i
P  is plotted as a measure of the 

positional error. 

larger during their overlapping period, because more 

of the MTCHs are automatically invalidated to avoid 

unreliable observation. Athlete #2 is running on the 

camera side of #1, which is why the covariance 
2
P  

has somewhat smaller values (i.e., more reliable 

estimates) compared to those of 
1
P . 

    As more complicated case, we tried tracking 

athletes in a real professional football sequence 

(Scene 2). We specified the tracking order as listed 

in Table 2 using three fixed cameras on the stand as 

illustrated in Fig. 12. The image processing of three 

views required 5.5 seconds per frame using a PC 

with a 1 GHz Pentium III processor. The camera 

parameters were visually calibrated using the white 

lines of the football field. 

    As shown in Fig. 13 and 14, almost all of the 

athletes (except #7) were correctly tracked 

Step Type Strategy 

1 EXTR Chroma-key 

2 MTCH Color Matching 

3 MTCH Texture Matching 

4 MTCH Local Feature Matching 

5 MTCH Silhouette Matching 

6 PRED Prediction by Singer Model 

Table 1. Processing Order (Scene 1) 

 

 

 

 

 

 

Figure 11. State Covariance of Scene 1 

   

(a) Frame 0   (b) Frame 17   (c) Frame 29 

Figure 10. Tracked Athletes Superimposed on Camera Images (Scene 1) 

Step Type Strategy 

1-3 EXTR Background Subtraction (Cams. 1-3) 

4-6 MTCH Color Matching (Cams. 1-3) 

7-9 MTCH Texture Matching (Cams. 1-3) 

10-12 MTCH Local Feature Matching (Cams. 1-3) 

13-15 MTCH Silhouette Matching (Cams. 1-3) 

16 PRED Prediction by Singer Model 

Table 2. Processing Order (Scene 2) 

 

Figure 12. Camera Positions (Scene 2) 



throughout the 7-second sequence. The trajectory of 

athlete #7 became slightly unstable at around the 90
th
 

frame. This was because there were two other 

athletes #5 and #18 overlapping with him, and 

because he was going to be visible from no more 

than one camera. The tracking failure, however, 

would easily be detected by thresholding the state 

covariance 
7
P , since it had larger values around the 

90
th
 frame compared to other periods (see dotted line 

in Fig. 15). In contrast, athlete #5, who passed in 

front of #7, was sufficiently observed to be tracked 

confidently while passing #7. 

    The color matching plug-in in Table 2 can find its 

target by color, even if he/she has been lost in the 

past, as long as the other similarly colored athletes 

are accurately tracked. Consequently, #7 could be 

recaptured successfully at the 105
th
 frame. 

7. SUMMARY AND CONCLUSIONS 

We proposed a reconfigurable architecture for 

tracking moving objects based on observation of 

multiple features acquired by multiple cameras. The 

matching plug-ins stepwise integrate the 

observations to refine the estimates of the target 

trajectories in world coordinates. The experiments 

with football sequences showed the robustness of the 

architecture against occlusion. 

    One of the most important and novel features of 

our proposed architecture is that the tracking 

algorithm can easily be modified just by plugging-

in/-out some modules (EXTRs, MTCHs, and 

PREDs) upon demand. In the experiments, the 

chroma-key plug-in was employed in Scene 1, 

whereas the background subtraction plug-ins were 

used in Scene 2. The reconfigurable architecture will 

be a key technology to develop a multi-purpose 

automated athlete tracker for general sport scenes. 

    We are planning to apply this tracker to visualize 

invisible information in sports scenes (e.g., offside-

lines of football, etc.). As a by-product of the 

silhouette matching plug-in, the system creats a 

labeled image as shown in Fig. 16. We are also 

developing a semantic scene analyzer that detects 

athletes’ actions from track and shape information 

[Mal03a]. 

 

(a) Camera 1, Frame 0 (b) Camera 2, Frame 0 (c) Camera 3, Frame 0 

 

(d) Camera 1, Frame 90 (e) Camera 2, Frame 90 (f) Camera 3, Frame 90 

 

(g) Camera 1, Frame 210 (h) Camera 2, Frame 210 (i) Camera 3, Frame 210 

Figure 13. Tracked Athletes Superimposed on Camera Images (Scene 2) 
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Figure 15. State Covariance of Scene 2 

 

Figure 16. Labeled Image 

(Scene 2, Camera 1, Frame 210) 

  

  

Figure 14. Top View of Athletes’ Positions (Scene 2)  

(a) Frame 0 (b) Frame 90 

(c) Frame 150 (d) Frame 210 


