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Abstract  

The first phase of the thermoelastic instability, which is characterized by a full contact regime, can be 
modelled using Fourier decomposition and application of an analytical description. However, in case of further 
increase of instability, a separation of the contact occurs which is more difficult to cover by mathematical means. 
The contribution deals with numerical simulations of the separation. The problems are topical in connection with 
the disk brakes design, should we give an example.     
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1. Introduction  

The frictionally excited heating of brake components and multidisk clutches causes 
thermoelastic deformations of the contact bodies. As a rule, this effect leads to redistribution 
of the initial contact pressure. Are the velocities of the contact slip rather high, the equipments 
can display unwanted behaviour. In particular, let us mention the origin of hot spots, 
vibrations, enhanced wear, up to damaging the material. A fatal loss of the equipments 
functionality can happen. 

Barber has called the thermoelastic instability (subsequently denoted as TEI) a cause of 
such effects in his work [1]. At some later time, Dow and Burton [4] and Burton et.al. [2] 
designed a mathematical model that enabled understanding the core of the effect in more 
detail and that made it possible to assess the influence of both material parameters and the 
sliding velocity on a rise and development of the instability. They considered however only 
half-planes (or half-spaces) to be contact bodies thus losing a chance to evaluate the influence 
of geometrical dimensions such as thicknesses of disks and friction pads. An analytical 
solution of the problem in question, described by partial differential equations, either gets 
rightly complicated or is impossible to be expressed. On that account, Lee and Barber [6] 
produced an analytical periodical solution that involves behaviour of a disk (infinite layer) 
clamped between half-spaces as late as after 20 years. The demand on further development of 
analytical approach to make the models of brakes and clutches more precise is therefore plain 
enough (see e.g. [3], [10]). 

The suggested range of analytical problems has some essential limitations. The first one 
lies in the fact that the intermittent contact (the friction pads occupy only a part of the disk 
circumference) cannot be appreciated exactly, thus making necessary to choose a convenient 
averaging method (see [10]). Besides it, it is impossible to consider the material parameters 
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and the friction coefficient as time-dependent functions. Finally, a major limitation is the 
assumption of the full contact regime between the pads and the disk imposed on the analytical 
solutions. Since the time-dependent rise in perturbation during the TEI is exponential, then – 
supposing that the parameters of the model (sliding velocity above all) remain constant – it is 
only a matter of time before the contact separation occurs. Hence, the initial contact between 
the friction pads and the disk reduces. Zagrodski et al. [11] were the first to devise a 
numerical approach that would cover both the above-stated limitations and the transients 
connected with the TEI. They made use of the Petrov-Galerkin method as a modification of 
the finite elements implemented in the system ABAQUS. Their work brought substantial 
benefits and it suggests the complexity of the actual state of things associated with fully non-
linear behaviour. Another work worthy of note is [12]. 

It is mainly the transport engineering that urges the effort to investigate and explain the 
TEI effects by numerical simulations. Wide-ranging measurements were performed when 
developing the brakes for the high-speed train TGV (cf. [8]); even in the automobile industry 
the growth of hot spots and manifestation of the TEI are investigated (see e.g. [5] or an 
experimental methodology development project at the research centre NTC of the University 
of West Bohemia [7]). A number of experimental findings associated with behaviour of disk 
brakes appear not to be theoretically or computationally clarified yet. 

The goal of this contribution is drawing the attention to some issues about numerical 
simulations of the TEI. Its author makes here use of a program code of his own authorship, 
written and debugged in the programming language FORTRAN. An attention is also given 
both to the influence of the initial perturbation and to the temperature dependence of the 
friction coefficient on the instability development. 

2. Mathematical model 

Sliding contact between the disk and the friction pads is, in a simplified fashion, modelled 
as a planar problem by their unfolding. It is assumed for the third direction (actually the radial 
direction of the disk brake or the clutch) that the temperature and deformation are not 
functions of the corresponding coordinate. It is sufficient for the purposes of simulation to 
consider the contact length as corresponding to the wave length L of the periodic solution. A 
coordinate system (x,y), firmly connected with the disk, has been introduced in so far that the 
sliding friction pads with the sliding velocity V (see Fig. 1) have been incorporated into the 
mathematical model. Some numerical circumstances (see [11]) were the reason for such a 
choice. For the simplicity we suppose for the rest of this paper that the velocity V is time-
independent.  

 

Fig. 1. Geometry of the model of a pair of sliding contacts.  

Sliding contacts 
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2.1. Heat transfer  

The heat transfer balance in the central layer is given by the equation 
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where T2(x,y,t) is a temperature field in the layer 2 (region Ω2), k2 is the temperature 
diffusivity of this layer, t is the time, and ∆ denotes the Laplace operator. For moving layers 1 
and 3, heat conduction equations involve yet a convective term. Using analogous notation and 
considering the sliding velocity to be V, we have 
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The heat flow qij generated by a contact between the layers i and j will be 
qij = f V pij , 

where pij denotes a corresponding contact pressure and f is friction coefficient whereas 
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It is further necessary to ensure the temperatures of contact surfaces to be equal. If we denote 
the distance between opposite points on the surfaces of the layers i and j by wij(x,t), then 

Ti = Tj ,   if  wij = 0 . 
The conditions of periodicity of the solution Ti(0,y,t) = Ti(L,y,t)  , will then be satisfied on the 
vertical boundaries while the adiabatic condition of zero heat flow is assumed for the 
horizontal boundaries.  

2.2. Elastic deformations  

We assume that the contribution of incidental vibrations of the layers inertia mass to the 
elastic deformations is negligible. The magnitudes of elastic waves of the materials in 
question are also large as compared with the assumed sliding velocity V. Accordingly we 
obtain elastic deformations as a solution of quasi-static contact plane strain problem which 
matches best the situation. The loading applied is partly a pressure pm acting on the outside 
horizontal boundaries of the friction layers and partly temperature fields T1, T2 and T3 at the 
time point t. The size of the gap wij(x,t) and the pressure pij(x,t) between the layers i and j 
satisfy the conditions 

pij ≥0 ,  wij = 0  for pij >0 ,  wij ≥0  for pij =0 ,   wij = uy,j(x,yij,t) - uy,i(x,yij,t)  , ij = 12 or 23, 
where y12 = h , y23 = h+s  and where  uy,j(x,y,t) denotes a displacement of the point (x,y) of the 
layer j in the direction of the y axis. The displacements satisfy the periodicity conditions 

ux,i(0,y,t) = ux,i(L,y,t) + const , uy,i(0,y,t) = uy,i(L,y,t)  ,  i = 1,2,3 , 
on vertical boundaries whereas the constant const is implied by the thermal deformations and 
is not known before the problem solution gets started. It yields   

uy,i(x,0,t) = 0 ,  uy,i(x,2h+s,t) = const ,   i = 1,2,3 , 
for the outside horizontal boundary where the other constant const is again a result of the 
overall compression.  

3. Thermoelastic instability 

We assume in this paper that both the outside pressure po acting on the friction layers and 
the sliding velocity V are time-independent. Let us further consider an initial perturbation with 
an amplitude pa that can be caused by an initial disk corrugation or from some other reason. 
As a result, this perturbation violates the constant contact pressure and the temperature field 
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in the direction of the x axis. Sufficiently high velocity V brings on thermoelastic instability 
that finds expression in growth in the perturbations of the contact pressure amplitudes and of 
the temperature. Conversely, the perturbations are damped down at low velocities V. The 
contact pressure can be expressed in the form 
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for the initial phase of the full contact regime where b is a growth rate that characterizes the 
instability, and c is so called migration speed. If b<0, the system is stable, for b>0 instable. 
The expression for temperature field is similar and it includes the term exp(bt) too. The 
function Ψ describes elementary perturbation mode (at least in the initial phase of the full 
contact regime), general perturbation can be decomposed into a Fourier series with these 
elementary terms. Each term of course has its own magnitude of parameters b and c). The 
function Ψ can be approximated sufficiently closely by the goniometric function sinus in 
extreme, fictive case of negligible shearing force. 

If a numerical approach is the case, we know the values of p(x,t) and po. If pmax(t) denotes 
the maximum pressure on the contact surface, the parameter b can be found using the formula 

b = ln[ pmax(t+∆t)/pmax(t) ]/∆t . 

4. Numerical simulation 

The Petrov-Galerkin method for solving the heat problems was implemented in the way 
described in [9]. Elastic displacements and deformations have been calculated in a usual 
manner using the finite element method. The above mentioned contact conditions and 
boundary conditions of solution periodicity have been implemented in terms of the penalty 
method. A solver of the library CXML has been used for solving the system of linear 
algebraic equations with sparse matrix.  

Let us consider an example with very large parameter b as an extreme case. Let the 
dimensions of the model be therefore chosen as h = 4 mm, s = 6 mm, L = 40 mm. In order to 
keep up the elementary mode close to the function sinus, we have suppressed tangential 
contact forces which can be analytically formulated by setting the Poisson number to 0.5 
(actually, it was chosen 0.495 for the computation). Furthermore,  po = 2 MPa was considered 
in the calculation, the material parameters are presented in the Tab. 1, friction coefficient 
f = 0.4, and the sliding velocity V = 5.5 m/s. 

 

Modulus of 
elasticity 

Thermal expansion 
coefficient 

Thermal 
conductivity 

Spedific 
heat 

Density  

E [MPa] α [1/oC] K [W/moC] c [J/kgK] ρ [kg/m3] 

Friction layers 1000 1.0E-05 5.0 35.0 4000 

Disk 125000 1.2E-05 54.0 53.3 7800 

Tab. 1. Material parameters of the model. 

The initial perturbation was applied in the form of contact pressure perturbation, it acted 
for the duration of  0.025 s, it had a shape of the sinus function with amplitude 0.1 MPa and it 
was stationary with respect to the disk. Analytical solution found in the way following the 
methodology [10] gives the value of the parameter b ≈ 21 s-1 in the investigated case while the 
numerical solution using the finite element method yields b ≈ 24 s-1. Consequently, the error 
does not exceed 15 %. Such a result can be judged satisfactory since the example is extreme 
one being featured by large temperature gradients, particularly in the contact surface layer of 
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the friction pad. In addition, the discretization through rectangular finite elements was 
efficient.  Their size was 1 mm resp. 0.083 mm (pad) or 0.166 mm (disk) in the direction of 
the x-axis resp. in the y-direction at the contact. The development of both contact pressures 
and temperatures are shown in the Fig. 2. The value of the critical velocity Vcr is 1.2 m/s for 
the given geometry and the material parameters. This sliding velocity implies b = 0. 

 

 

 

Fig. 2. The developments of contact pressure and surface temperatures for the time points 0.10 s, 0.13 s., 0.15 s 
and 0.20 s in the course of thermoelastic instability in the described task (full line plots the disk surface 
temperature while dashed is that of friction pad). 
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5. Discussion on current problems 

The numerical approach, as against the analytic one, enables to model the course of the 
thermoelastic instability more realistically with respect to the conditions that can be found in 
the technical systems. Particularly the question is second phase of the instability development 
when the contact gets separated. The possibility to consider material parameters to be 
temperature-dependent is also essential. If, for example, the friction coefficient decreases to 
the value of 0.2 from 0.4 at the temperature of 400°C, the separation of the contact occurs at 
the time-point 0.172 s vs. 0.13 s. This means that its arrival is approximately 30 % slow. It is 
also apparent that we can solve even some considerably extreme situations using Petrov-
Galerkin method.  

The character of the initial perturbation implementation affects the development of the 
instability too. With the actual devices, the initial non-planeness of the disk is usually crucial. 
This can be taken into account in the numerical simulations by introducing an additional 
fictive temperature field that would produce a corresponding additional deformation. 
A similar effect can be invoked if we bring in the perturbation into the model with the help of 
the pressure as we have already explained in the above, but we will not cut it off in the time.      
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