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Abstract

The first phase of the thermoelastic instabilityhieh is characterized by a full contact regime, t&n
modelled using Fourier decomposition and applicatié an analytical description. However, in casdusther
increase of instability, a separation of the contacurs which is more difficult to cover by mathestinal means.
The contribution deals with numerical simulatiorigtee separation. The problems are topical in cotioe with
the disk brakes design, should we give an example.
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1. Introduction

The frictionally excited heating of brake comporser@nd multidisk clutches causes
thermoelastic deformations of the contact bodiesaAule, this effect leads to redistribution
of the initial contact pressure. Are the velocitiéshe contact slip rather high, the equipments
can display unwanted behaviour. In particular, st mention the origin of hot spots,
vibrations, enhanced wear, up to damaging the mhtex fatal loss of the equipments
functionality can happen.

Barber has called the thermoelastic instabilityoéaguently denoted as TEI) a cause of
such effects in his work [1]. At some later timepvid and Burton [4] and Burton et.al. [2]
designed a mathematical model that enabled undelisth the core of the effect in more
detail and that made it possible to assess thaeeinfle of both material parameters and the
sliding velocity on a rise and development of thstability. They considered however only
half-planes (or half-spaces) to be contact bodias tosing a chance to evaluate the influence
of geometrical dimensions such as thicknesses sKsdand friction pads. An analytical
solution of the problem in question, described laytipl differential equations, either gets
rightly complicated or is impossible to be exprelss®n that account, Lee and Barber [6]
produced an analytical periodical solution thatoirres behaviour of a disk (infinite layer)
clamped between half-spaces as late as after 26.yda& demand on further development of
analytical approach to make the models of brakesciuiches more precise is therefore plain
enough (see e.g. [3], [10]).

The suggested range of analytical problems has sm®ential limitations. The first one
lies in the fact that the intermittent contact (thietion pads occupy only a part of the disk
circumference) cannot be appreciated exactly, thaking necessary to choose a convenient
averaging method (see [10]). Besides it, it is isgdole to consider the material parameters
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and the friction coefficient as time-dependent fiorss. Finally, a major limitation is the
assumption of the full contact regime between thadspand the disk imposed on the analytical
solutions. Since the time-dependent rise in pedtish during the TEI is exponential, then —
supposing that the parameters of the model (slideigcity above all) remain constant — it is
only a matter of time before the contact separaticcurs. Hence, the initial contact between
the friction pads and the disk reduces. Zagrodskale [11] were the first to devise a
numerical approach that would cover both the alstated limitations and the transients
connected with the TEI. They made use of the PeBalerkin method as a modification of
the finite elements implemented in the system ABA)Uheir work brought substantial
benefits and it suggests the complexity of the @citate of things associated with fully non-
linear behaviour. Another work worthy of note i2]1

It is mainly the transport engineering that urges ¢ffort to investigate and explain the
TEI effects by numerical simulations. Wide-ranginggasurements were performed when
developing the brakes for the high-speed train T&V[8]); even in the automobile industry
the growth of hot spots and manifestation of thd &k investigated (see e.g. [5] or an
experimental methodology development project atréisearch centre NTC of the University
of West Bohemia [7]). A number of experimental fimgs associated with behaviour of disk
brakes appear not to be theoretically or computatip clarified yet.

The goal of this contribution is drawing the attentto some issues about numerical
simulations of the TEI. Its author makes here usa program code of his own authorship,
written and debugged in the programming languag& HRAN. An attention is also given
both to the influence of the initial perturbationdato the temperature dependence of the
friction coefficient on the instability development

2. Mathematical model

Sliding contact between the disk and the frictiaapis, in a simplified fashion, modelled
as a planar problem by their unfolding. It is asedrfor the third direction (actually the radial
direction of the disk brake or the clutch) that #eenperature and deformation are not
functions of the corresponding coordinate. It iffisient for the purposes of simulation to
consider the contact length as corresponding taviinee lengthL of the periodic solution. A
coordinate systenxfy), firmly connected with the disk, has been introglliin so far that the
sliding friction pads with the sliding velocity (see Fig. 1) have been incorporated into the
mathematical model. Some numerical circumstances [$1]) were the reason for such a
choice. For the simplicity we suppose for the m&sthis paper that the velocity is time-
independent.
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Fig. 1. Geometry of the model of a pair of slidowntacts.
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2.1. Heat transfer

The heat transfer balance in the central layeivisngby the equation
% =k, AT, ,
where T,(x,y,t) iIs a temperature field in the layer 2 (regi), k. is the temperature
diffusivity of this layer.t is the time, and denotes the Laplace operator. For moving layers 1
and 3, heat conduction equations involve yet a eotive term. Using analogous notation and
considering the sliding velocity to h& we have

ai+Vﬂ=kiATi , 1=1,3.
ot 0 X
The heat flowg; generated by a contact between the layers i anidilpev
=fVn,
wherep; denotes a corresponding con?;ct pregguref emliction coefficient whereas
g, =-K ﬂ+ K 9T, for yio=h and q,, =-K ﬂ+K % for y,3 =hts
12 1 a y 2 a y 23 2 a y 3 )

It is further necessary to ensure the temperanfresntact surfaces to be equal. If we denote
the distance between opposite points on the swgfaicihe layers i and j b(x,t), then

Ti:Tj, if Wij:().
The conditions of periodicity of the solutidi(0,y,t) = Ti(L,y,t) , will then be satisfied on the
vertical boundaries while the adiabatic conditioh zero heat flow is assumed for the
horizontal boundaries.

2.2. Elastic deformations

We assume that the contribution of incidental vibrss of the layers inertia mass to the
elastic deformations is negligible. The magnituadselastic waves of the materials in
question are also large as compared with the asbwiiding velocityV. Accordingly we
obtain elastic deformations as a solution of gs#aiic contact plane strain problem which
matches best the situation. The loading appliggaisly a pressuren, acting on the outside
horizontal boundaries of the friction layers andtlyaemperature field9,, T, andT; at the
time pointt. The size of the gam;(x,t) and the pressumg;j(xt) between the layers i and j
satisfy the conditions

Pij >0, Wij = 0 fOI’pij >0, Wij >0 for Pij =0, Wij = Uy,j(X,yij,t) - Uy’i(X,yij,t) ,ij =12 or 23,
wherey2=h, y»3= h+s and whereuy;(x,y,t) denotes a displacement of the poiqgy)(of the
layer j in the direction of thg axis. The displacements satisfy the periodicitydittons

Ux,i(0y,t) = uy(L,y,t) + const, uy;(0y,t) =uy(Lyt) , =123,
on vertical boundaries whereas the constanstis implied by the thermal deformations and
is not known before the problem solution gets sthrit yields
Uyi(x,0t) =0, uyi(x,2h+st) =const, i=1,2,3,
for the outside horizontal boundary where the ottmustantconstis again a result of the
overall compression.

3. Thermoelastic instability

We assume in this paper that both the outside prepsacting on the friction layers and
the sliding velocityV are time-independent. Let us further considenéral perturbation with
an amplitudep, that can be caused by an initial disk corrugatiofrom some other reason.
As a result, this perturbation violates the corstamtact pressure and the temperature field
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in the direction of thex axis. Sufficiently high velocity brings on thermoelastic instability
that finds expression in growth in the perturbatioh the contact pressure amplitudes and of
the temperature. Conversely, the perturbationsdareped down at low velocitieg. The
contact pressure can be expressed in the form

p(X1) = P, + P, expbt) wﬁ” (x+ ct)}

for the initial phase of the full contact regimeewhb is a growth rate that characterizes the
instability, andc is so called migration speed.ld&0, the system is stable, fbr0 instable.
The expression for temperature field is similar anéhcludes the term expf) too. The
function ¥ describes elementary perturbation mode (at leaghe initial phase of the full
contact regime), general perturbation can be deosst into a Fourier series with these
elementary terms. Each term of course has its oagnitude of parametetsandc). The
function ¥ can be approximated sufficiently closely by thenigmetric function sinus in
extreme, fictive case of negligible shearing force.

If a numerical approach is the case, we know theegaofp(x,t) andp,. If pmadt) denotes
the maximum pressure on the contact surface, tfmmerb can be found using the formula

b = In[ Pmax(t+At)/pmaxt) J/At .

4. Numerical ssimulation

The Petrov-Galerkin method for solving the heatbfgms was implemented in the way
described in [9]. Elastic displacements and deftiona have been calculated in a usual
manner using the finite element method. The abowmtioned contact conditions and
boundary conditions of solution periodicity haveebemplemented in terms of the penalty
method. A solver of the library CXML has been uded solving the system of linear
algebraic equations with sparse matrix.

Let us consider an example with very large paramietas an extreme case. Let the
dimensions of the model be therefore chosehag mm,s=6 mm,L = 40 mm. In order to
keep up the elementary mode close to the functionss we have suppressed tangential
contact forces which can be analytically formulat®dsetting the Poisson number to 0.5
(actually, it was chosen 0.495 for the computatiéythermore,p, = 2 MPa was considered
in the calculation, the material parameters arsegred in the Tab. 1, friction coefficient
f=0.4, and the sliding velocity = 5.5 m/s.

Modulus of | Thermal expansior Thermal Spedific Density
elasticity coefficient conductivity heat
E [MPa] o [1/°C] K [W/m°C] c [IkgK] | p[kg/m?
Friction layers 1000 1.0E-05 5.0 35.0 4000
Disk 125000 1.2E-05 54.0 53.3 7800

Tab. 1. Material parameters of the model.

The initial perturbation was applied in the formamintact pressure perturbation, it acted
for the duration of 0.025 s, it had a shape ofsines function with amplitude 0.1 MPa and it
was stationary with respect to the disk. Analytisalution found in the way following the
methodology [10] gives the value of the parambter21 s' in the investigated case while the
numerical solution using the finite element metly@ds b ~ 24 s*. Consequently, the error
does not exceed 15 %. Such a result can be judgiesfiastory since the example is extreme
one being featured by large temperature gradigatsicularly in the contact surface layer of
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the friction pad. In addition, the discretizatiohrdugh rectangular finite elements was
efficient. Their size was 1 mm resp. 0.083 mm Jp&d0.166 mm (disk) in the direction of
the x-axis resp. in thg-direction at the contact. The development of bmihtact pressures
and temperatures are shown in the Fig. 2. The waidlee critical velocity,, is 1.2 m/s for
the given geometry and the material parameters ditding velocity implied = 0.
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Fig. 2. The developments of contact pressure arfdcgitemperatures for the time points 0.10 s, 8.18.15 s
and 0.20 s in the course of thermoelastic instgbili the described taskull line plots the disk surface
temperature whilelasheds that of friction pad).
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5. Discussion on current problems

The numerical approach, as against the analytic em&bles to model the course of the
thermoelastic instability more realistically witbspect to the conditions that can be found in
the technical systems. Particularly the questisemond phase of the instability development
when the contact gets separated. The possibilitgdiesider material parameters to be
temperature-dependent is also essential. If, famgte, the friction coefficient decreases to
the value of 0.2 from 0.4 at the temperature of°"@)@he separation of the contact occurs at
the time-point 0.172 s vs. 0.13 s. This meansitbatrrival is approximately 30 % slow. It is
also apparent that we can solve even some conBlgegatreme situations using Petrov-
Galerkin method.

The character of the initial perturbation implenagiain affects the development of the
instability too. With the actual devices, the iaithon-planeness of the disk is usually crucial.
This can be taken into account in the numericalufations by introducing an additional
fictive temperature field that would produce a esponding additional deformation.
A similar effect can be invoked if we bring in therturbation into the model with the help of
the pressure as we have already explained in thveabut we will not cut it off in the time.
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