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Fatigue crack shape prediction based on vertex singularity
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Abstract

Due to the existence of vertex singularity at the point where the crack intersects the free surface, stress distribution

around the crack tip and the type of the singularity is changed. In the interior of the specimen the classical singular

behaviour of the crack is dominant and can be described using analytic equations. Contrary to this, at the free

surface or in the boundary layer close to free surface the vertex singularity is significant. The influence of vertex

singularity on crack behaviour and a crack shape for a three-dimensional structure is described in this paper. The

results presented make it possible to estimate fatigue crack growth rate and crack shape using the concept of the

generalized stress intensity factor. The estimated fatigue crack shape can help to provide a more reliable estimation

of the fatigue life of the structures considered.
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1. Introduction

Due to the existence of vertex singularity fatigue crack in the point, where crack front intersects

the free surface, singular stress distribution is changed and can influence crack behaviour. The

change of the singular stress field leads to the change of the crack shape and fatigue crack

growth rate close to the vertex point. The vertex singularity was investigated extensively last 30

years for e.g. [1, 2, 3, 4]. It was found that the singularity exponent induced by the free surface

differs from 0.5 and depends on Poisson’s ratio. Due to the change of the stress singular field

close to the free surface crack front is uniquely shaped; see experimental works [3, 5]. The

main objective of the article is to simulate real crack shapes using singularity exponent analysis

and using generalized methodology for estimation of the fatigue crack growth rate. Assuming

that plastic zone size is a value controlling FCGR and based on correlation of the plastic zones

parameters for the standard fatigue crack and the V-notch fatigue crack growth rate (FCGR)

was estimated.

2. Singular stress field close to the free surface

The usual modeling of the 3D cracks is related to the straight crack front, intersecting the free

surface at 90◦. Under these conditions the stress singularity exponent is not constant along the

crack front and differs from the value 1/2. Generally it is possible to consider two different sin-

gular fields along the crack font of the 3D crack, see fig. 1. In the center of the specimen where
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plain strain conditions are prevailing the classical square-root singular field can be explained by

the relation [7]:

σij = KIr
−

1

2 · fij(ϕ) (1)

where KI is a stress intensity factor and fij(ϕ) is a generally known shape function. In the area

close to the free surface, more important is so called vertex singularity which can be expressed

by the following relation [2]:

σij ≈ r−pfij(p, θ, ϕ) (2)

In this case the stress singular field is spherical with the center in the vertex point (O) and

shape functions depend in this case on local spherical coordinates r, ϕ, θ and vertex singularity

exponent, see fig. 1.

Fig. 1. Singular stress field close to the free surface [8]

Thus, for a description of the 3D crack front, semi-analytical solutions of two special cases

exist. The order of the vertex singularity for semi-infinite space with vertex point can be found,

for example, using the variation principle; see [1] for details. According to these results, the

power of the vertex singularity is weaker than 0.5 and for particular Poisson’s ratios varies

between 0.5 (corresponding to ν = 0) and 0.33 (corresponding to ν = 0.5). This solution

is valid only for thick structures and in addition is not consistent with classical fatigue crack

description.

To avoid these problems, 2D stress distribution around the crack tip in each single plane

perpendicular to crack front can be generally expressed as:

σij =
HI

rp
· fij(p, θ) (3)

where HI is a generalized stress intensity factor, p is a singularity exponent and fij(r, θ) are

corresponding shape functions. r, θ are local polar coordinates with the origin at the point on

the crack front. In this case the stress and displacement distribution depends on the distance r
from the crack tip as σij ≈ r−p and ui ≈ r1−p.

Based on these assumptions, stress singularity exponent p along the crack front can be es-

timated numerically by direct method using log-log regression analysis [9, 10]. Estimation of

the singularity exponent based on direct methods is highly sensitive to element size around

the crack tip and distance for extrapolation. For this reason, the level of mesh refinement was

referred to a convergence analysis carried out in 2D plane strain solutions of a crack in homoge-

nous material and bi-material where the analytical solution for the stress singularity exponent

is known (stress singularity exponent vary in these cases from 0 to 1). In these cases the value

of the singularity exponent was estimated by direct method with deviation smaller than 2 %,

see [11] for details. Final element size for 3D analysis corresponded to that with the highest

refinement level in 2D.
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3. Numerical model

The effect of the vertex singularity on the stress field around the crack front under small scale

yielding conditions in the sense of linear elastic fracture mechanics was assessed using a middle

tension (MT) specimen, see fig. 2.

Fig. 2. Model of the MT specimen used for finite element calculations

The dimensions of the MT specimen were: crack length 2a = 25 mm, a/W = 0.5 and

thickness b = 10 mm. Material properties were considered homogenous and isotropic, defined

by Young modulus E = 210 GPa and Poisson’s ratio ν ranges from 0 to 0.5. Uniform applied

tensile stress was applied, so only loading mode I was considered. Exploiting the symmetry in

the specimen geometry and loading, only one-eighth of the MT-specimen was modeled by finite

element analysis (using FEM software ANSYS) and the stress and displacement distribution

were calculated. The mesh of finite elements was refined mainly close to the crack tip. A

typical model of 3D structure contains approximately 250 000 isoparametric elements.

Fig. 3. Variation of ratio between real fatigue crack propagation rate v and crack propagation rate in the

middle of the specimen vmiddle along the crack front for three Poisson’s ratios [12]

Displacements from a finite element analysis were used to estimate the power of the singu-

larity using log-log regression. Based on previous extensive numerical simulations for different
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P. Hutař et al. / Applied and Computational Mechanics 2 (2008) 45–52

thicknesses of the specimen and also in comparison with the literature data, it was found that

the stress singularity exponent along the crack front for relatively thick specimens (b > 10 mm)

continuously decreases from 0.5 in the middle of the specimen to the particular vertex singular-

ity.

Fig. 4. Example of the finite element mesh close to curved crack front and schematic description of the

MT specimen cross section area

Using methodology based on the generalized stress intensity factor, the distribution of the

fatigue crack growth rate along the straight crack front was estimated [6, 12], see fig. 3. For

a specimen with Poisson’s ratio 0.365 the decrease of FCPR in region close to free surface is

approximately 12 % in comparison with the centre of the specimen (z = 0 mm). The FCPR is

not constant along the crack front and therefore a hypothetical originally straight crack starts to

change its shape during its propagation. The FCPR in regions closer to the free surface is slower

than in the centre of the specimen and typical curved crack front observed experimentally for

through cracks is created. Therefore the aim of this article is to simulate the curvature of the

crack front based on the methodology proposed for estimation of the fatigue crack growth and

to compare the results with experimental data published in the literature.

Table 1. Thickness of the boundary region as a function of the Poisson’s ratio

Poissn’s ratio ν boundary region δ
[–] [mm]

0 0

0.2 0.4

0.3 0.9

0.36 1.3

0.4 1.8

0.5 3.7

To simulate this problem numerically a model of the MT specimen with curved crack front

was developed. The dimensions of the MT specimen were similar to those in the previous

model with straight crack (see fig. 2). Uniform applied tensile stress was applied. Exploiting

the symmetry in the specimen geometry and loading, only one-eighth of the MT-specimen was

modeled by finite element analysis (see Fig. 4).
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The thickness of the boundary layer where the stress field is influenced by the vertex singu-

larity was estimated in work [6]. According to previous numerical simulations [6, 11], it was

found that the boundary layer thickness δ for thick specimens are dependent only on Poisson’s

ratio and the influence of the specimen geometry is insignificant. Therefore value δ correspond-

ing to different Poison’s ratio can be estimated, see tab. 1.

4. Estimation of the fatigue crack growth rate

Fatigue crack growth rate (FCGR) can be estimated following the concept published in [13].

Assuming that plastic zone size is a value controlling FCGR and based on correlation of the

plastic zones parameters for the standard fatigue crack and the V-notch (see [6, 11] for a details),

the relation between the generalized stress intensity factor HI and the effective value of the

stress intensity factor Keff can be expressed in the form [6, 14]:

Keff =

(

HI · s
1

2 (2π)(p−1)

(1 + 4ν2 − 4ν)pσ
(1−2p)
0

)
1

2p

, (4)

where HI is a generalized stress intensity factor corresponding to mode I loading, p is a singular-

ity exponent and σ0 is cyclic yield stress of the material. Function s depends on the singularity

exponent and Poisson’s ratio:

s = (1 − p)2(3p2 + 3p2q2 + 6p2q − 12q2p − 12qp + 12q2 + 4 + 16ν2 − 16ν), (5)

where q is function of the singularity exponent and V-notch angle (β) corresponding to particu-

lar singularity exponent [14]:

q = −
cos(p(π − β))

cos((2 − p)(π − β))
. (6)

The equation (6) makes it possible to recalculate a generalized stress intensity factor HI with

unit MPa mp to an effective stress intensity factor Keff with standard unit MPa m1/2. Then the

effective stress intensity factor can be used as a parameter controlling fatigue crack propagation

rate according the standard Paris-Erdogan law in the usual form:

da

dN
= C (Keff)

m
(7)

where C and m are material parameters characterizing the standard fatigue crack propagation

rate in studied material, see [13] for more details.

5. Numerical results and discussion

According to experimental and numerical data from the literature [3, 4, 5], it seems reasonable

to assume that real mode I fatigue cracks might choose to preserve the square-root singularity

whole along the crack front. Based on this assumption, the different fatigue crack shapes, de-

fined by different intersection angle between crack front and free surface α see fig. 4), were

analyzed. A typical distribution of the singularity exponent along the crack front for two dif-

ferent Poisson’s ratios 0.2 and 0.365 is shown in figs. 5, 6. The singularity exponent in the

vertex point increases with an increase in the angle between crack front and free surface (inter-

section angle). Therefore, depending on Poisson’s ratio there exists a unique intersection angle,
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where along the crack front a square-root singularity is present. Our results are also in the good

comparison with the experimental data from the literature. Hayder et al. [3] on PMMA with

ν = 0.365 found intersection angle for fatigue crack 14.049◦.

Fig. 5. Variation of the stress singularity exponent along crack front for different crack front angles α,

poisson’s ratio is 0.365

Fig. 6. Variation of the stress singularity exponent along crack front for different crack front angles α,

poisson’s ratio is 0.2

For the same material properties according to Pook [5] equation the intersection angle is es-

timated as 12.58◦. Based on numerical results presented on fig. 5, the stress singularity exponent

is constant along crack front (with accuracy 1 %) for intersection angle 14◦.
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Based on the methodology proposed in the previous chapter it is possible to estimate the

fatigue crack growth rate in each single plane perpendicular to crack front. The ratio between

real fatigue crack propagation rate v and FCPR in the center of the specimen vmiddle along the

crack front are presented in Fig. 7. For a specimen with intersection angle 0◦ (the crack front

is perpendicular to the free surface) the decrease of FCPR in regions close to free surface is

approximately 12 % in comparison with the centre of the specimen (z = 0 mm). Decrease of

FCPR along the crack front leads to an increase in the intersection angle. The change of FCPR

along the crack front decreases with an increase in the intersection angle. Thus, finally, the crack

front is stabilized in a shape with constant FCPR along the crack front. This shape corresponds

to the square root singularity along the crack front. Consequently, the proposed methodology

for estimation of the fatigue crack growth rate is consistent with the numerical and experimental

data and can be used for prediction of the residual fatigue life time of the considered structures.

Fig. 7. Variation of ratio between real fatigue crack propagation rate v and crack propagation rate in the

middle of the specimen vmiddle along the crack front for four intersection angles. Poisson’s ratio is 0.365

6. Conclusions

The influence of vertex singularity in the case of surface breaking cracks has been numerically

investigated. For this reason, different middle tension specimens loaded under constant ten-

sion are considered. The vicinity of the intersection of the crack front and the free surface is

analyzed due to three-dimensional singular behaviour. In this area the practically constant in-

tersection angle (the angle between crack front and free surface) for a particular Poisson’s ratio

could be observed. The value of the intersection angle α was verified by singularity exponent

analysis and using the methodology proposed for estimation of the fatigue crack growth rate.

The numerically simulated intersection angle corresponds to classical square-root stress singu-

larity. Hence, at least for mode I, the crack front is shaped to holds this type of the singularity

along whole crack front. Thus it can be concluded, that vertex singularity is important for crack

front formation and can sufficiently explain that phenomenon. Due to the final form of the crack
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which prioritizes square-root singularity, the classical stress intensity factor concept can be used

for suitable fatigue crack propagation criteria even close to the free surface. The methodology

proposed makes it possible to estimate fatigue crack behaviour in cases where the singular stress

field around the crack tip has a singularity exponent different from 1/2. The estimated fatigue

crack growth rates can help to provide a more reliable estimation of the residual fatigue life

time of the structures considered.
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[1] Z. Bažant, F. Estenssoro, Surface singularity and crack propagation, International J. Solids Struc-

tures (15) (1979) 405–426.

[2] J. P. Benthem, State of stress at the vertex of a quarter-infinite crack in a half space, International

J. Solids Structures (13) (1977) 479–492.

[3] M. Heyder, K. Kolk, G. Kuhn, Numerical and experimental investigations of in the influence of

corner singularities on 3D fatigue crack propagation, Engineering Fracture Mechanics (72) (2005)

2 095–2 105.

[4] P. F. P. Matos, D. Nowell, The influence of the Poisson’s ratio and corner point singularities

in three-dimensional plasticity-induced fatigue crack closure: A numerical study, International

Journal of Fatigue, (30) (2008) 1 930–1 943.

[5] L. P. Pook, Some implications of corner point singularities, Engineering Fracture Mechanics (48)

(1994) 367–378.
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