
Hybrid ROI-Based Visualization of Medical Models

Lazaro Campoalegre
Trinity College Dublin

College Green
Dublin 2, Ireland
campoall@tcd.ie

Isabel Navazo
Universitat Politècnica de

Catalunya
C. Jordi Girona 31

08034 Barcelona, Spain
isabel@cs.upc.edu

Pere Brunet
Universitat Politècnica de

Catalunya
C. Jordi Girona 31

08034 Barcelona, Spain
pere@cs.upc.edu

ABSTRACT
There is an increasing interest on tele-medicine and tele-diagnostic solutions based on the remote inspection of
volume data coming from multimodal imaging. Client-server architectures meet these functionalities. The use of
mobile devices is sometimes required due to the portability and easy maintenance. However, transmission time for
the volumetric information and low performance hardware properties, make quite complex the design of efficient
visualization systems on these devices. In this paper, we present a hybrid approach which is based on regions
of interest (ROIs) and on a transfer-function aware compression scheme. It has a good performance in terms of
bandwidth requirements and storage needs in the client device, being flexible enough to represent several materials
and volume structures in the ROI. Clients store a low-resolution version of the volume data and ROI-dependent
high resolution segmented information. Data must be only sent whenever a new ROI is requested, but interaction
in the client is autonomous - without any data transmission - while a certain ROI is inspected. A benchmark
is presented to compare the the proposed scheme with three existing approaches, on two different volume data
models. The results show that our hybrid approach is compact, efficient and scalable, with compression rates that
decrease when the size of the volume model increases.

Keywords
Volume rendering, client-server, mobile devices, medical data, region of interest, ray-casting, volume data com-
pression

1 INTRODUCTION

Recently, several important research areas in three-
dimensional techniques for multimodal imaging
have appeared. Applications include neurological
imaging for brain surgery, tissue characterization,
medical school teaching, plastic surgery and others.
At the same time, scientists are more familiarized
with three-dimensional structures reconstruction from
Two-dimensional images.

The reconstruction of a volumetric model is generally
achieved by using a voxel representation of datasets.
According to the structure to be highlighted during the
visualization, a transfer function is applied to assign
color and opacity to the density value which represents
the structure properties.

The handling of three-dimensional information requires
efficient systems to achieve fast data transmission and
interactive visualization of high quality images. Client-
server applications allow these functionalities. Some-
times the use of mobile devices is necessary due to the
portability and easy maintenance. However, transmis-
sion time for the volumetric information and low per-
formance hardware properties, complicate the design of
efficient visualization systems on these devices.

The main contribution of our work is a Hybrid vi-
sualization approach that inherits the advantages of
some previous algorithms like the ones presented in [1]
and [2], while keeping a good performance in terms
of bandwidth requirements and storage needs in client
devices. The scheme is flexible enough to represent
several materials and volume structures in the Region
of Interest (ROI) at high resolution and very limited
information transmission cost.

2 PREVIOUS WORK
Client-server architectures have grown in popularity.
Mobile devices as well as desktop computers can both
function as clients requesting and receiving informa-
tion over the network. Many authors have published re-
search results in the remote volume visualization area.
However there is still scarce specific bibliography for
volume visualization in mobile devices. The major-
ity of the proposals use known algorithms like Ray-
Casting, 2D Textures, and isosurface modeling to ren-
der volume data. In order to compensate limitations in
low performance devices or to reduce costs, the number
of client-server schemes have been proposed.

In some client-server approaches the dataset is com-
pressed on the server side and sent to the client where

Journal of WSCG

Volume 23, 2015 19 ISSN 1213-6972

No.1



the transfer function is applied after decompression and
before the rendering of the recovered data. Moser
and Weiskopf [3] proposed a 2D texture-based method
which uses compressed texture atlas to reduce interpo-
lation costs. Nogera et al. [4] proposed a webGL ap-
plication to visualize very large 3D volumes by using
multi-texturing to encode volumetric models on a set
of RGBA 2D textures. A recent application developed
by Balsa et al. [5] allows to interact with volume mod-
els using mobile devices hardware. Their scheme is not
compressing the volume data.

In other schemes, the transmitted data is a compressed
image, the transfer function is applied at the beginning
of the pipeline, followed by a 2D rendering on a tex-
ture, all done on the server side. A compressed image is
sent to the client where decompression and image ren-
dering takes place. This scheme is frequently named
"Thin Clients" [6]. The idea in multiresolution model
schemes [7] is to render only a region of interest at high
resolution and to use progressively low resolution when
moving away from that region. Both bricking and mul-
tiresolution approaches [8] need a high memory capac-
ity on the CPU for storing the original volume dataset.
Moreover, bricking requires a high amount of texture
transfers as each brick is sent once per frame; multires-
olution techniques have been built for CPU purposes
and its translation to GPUs is not straightforward due
to the required number of texture accesses.

Preprocessing of data is also a useful technique, as
it ensures the reduction of the information, combined
with different techniques for quantization, encoding
and multiresolution representation [8].

Efficient schemes require optimized algorithms to
reduce and send data through the network. The
algorithms must achieve the maximum compression
possible while allowing an easy decompression in the
client side, where sometimes hardware and memory
constraints decrease performance [8].

Wavelet transforms offer considerable compression
ratios in homogeneous regions of an image while
conserving the detail in non-uniform ones. The
idea of using 3D wavelets for volume compression
was introduced by Muraki [9]. Ihm and Park [10]
proposed an effective 3D 163-block-based compres-
sion/decompression wavelet scheme for improving the
access to random data values without decompressing
the whole dataset. Guthe et al. [11] proposed a
novel algorithm that handles a hierarchical wavelet
representation where decompression takes place in
GPU.

Some techniques advocate the use of hybrid region-
based volume rendering, by applying different shading
algorithms inside the volume model [12], or by imple-
menting multiresolution region-based schemes [1]. Luo
et al. [13] developed a technique for focusing on a user-

driven ROI while preserving context information. The
approach uses a distance function to define the region of
interest. This function controls voxel opacity, exploits
silhouette enhancement and non-photorealistic shading.

In this paper, we propose a hybrid framework that ex-
ploits the use of standard transfer functions as an al-
ternative to compress volume dataset. Our scheme is
a transfer function-aware scheme for client/server tech-
niques. It combines Wavelet-preprocessed volume data
to reduce information outside the ROI, and highlighted
segmented data in regions of interest (ROI), (Gradient
Octree shceme). From the best of our knowledge this
possibility has not been considered by any of the de-
scribed approaches in this previous work.

3 OVERVIEW OF THE APPROACH
Let us assume that we are interested in inspecting a
volume data model V which is too large in terms of
network transmission and/or client storage facilities.
Wavelet compression algorithms like the ones pre-
sented in [1, 10, 11] are able to support block-based
regions of interest (ROIs). Other approaches like
Gradient Octrees [2] can be rendered with advanced
illumination models and at a higher visual quality
level. Gradient Octrees are specific data structures
for multiresolution volume datasets. Gradient Octrees
G(V ) include an specific data structure S and a compact
data array D. The octree structure S can be sent to the
client devices in a lossless way with only one bit per
node, whereas data is compacted to 3 Bytes per octree
node, including material information and volume
gradients. Both approaches, however, have advantages
and drawbacks:

(I) TF-aware wavelet compression schemes succeed in
sending to the clients a very limited amount of infor-
mation in the areas outside the region of interest (ROI).
High quality volume information in the ROI is also
compact [1], because the 3D texture is smaller and re-
stricted to the blocks in the ROI area. Ray-casting vi-
sualization in the client can use compact 3D textures
which are suitable for many client devices. The main
drawback of this approach, however, is twofold. First,
changing the transfer function requires sending a new
version of the compress volume model to the client, and
second, it is not well suited for illumination computa-
tions that would require too many texture accesses.

(II) Approaches like Gradient Octrees overcome these
limitations by supporting multiple transfer functions
and materials and by precomputing gradients on the
server. They support advanced illumination models,
thus achieving a higher visual quality level. However,
they are not direct candidates for ROI-based visualiza-
tion paradigms, as their low level volume representa-
tions present a flat-face appearance with poor gradi-
ents. These representations at coarse tree levels are

Journal of WSCG

Volume 23, 2015 20 ISSN 1213-6972

No.1



well suited for progressive transmission but they per-
form worse than similar-quality low-level wavelet re-
constructions.

Our hybrid scheme inherits the best of both approaches.
In this case, apart from the volume model V , the user
must supply a set of transfer functions {T Fk} and se-
lects one of them as a canonical transfer function. The
server starts by computing a Gradient Octree G(V )
from V and for the set {T Fk}, also computing the quan-
tified representation W (V ) of the wavelet transform of
V with the canonical transfer function, as described in
Section 4. G(V ) encodes materials and gradients only
in the subset of voxels of V which are relevant to same
of the transfer functions in {T Fk}.

Figure 1: Overview of the proposed scheme, showing
the preprocess on the server, the data transfer through
the network and the data structures in the client device

Users at the client side can interactively define regions
of interest, ROIs. Information over the network can be
classified into static information (being send only once
per volume model) and dynamic information. Dynamic
information must be re-sent whenever the ROI is rede-
fined by the user. Static information is compact, includ-
ing W (V ) and a set of arrays defining the tree structure
of G(V ). In cases where the size of the volume model
V is too large and the volume data at the deepest level
of G(V ) does not fit into the client’s CPU memory, the
portion of this data belonging to the ROI is generated
from the octree data on demand, as dynamic informa-
tion, whenever the user asks for a different ROI.

In the client side, a low-resolution volume model VW
is reconstructed by de-quantizing and computing a few
inverse wavelet steps in each block. Let us note as VR
the subvolume corresponding to the ROI. A two-level
ray-casting rendering algorithm in the client GPU (Sec-
tion 5) succeeds at showing a high-quality Gradient Oc-
tree rendering in VR together with a visualization of VW
in the parts of the volume outside the ROI, also support-
ing a number of interaction facilities.

The corresponding compression and decompression al-
gorithms are detailed in Section 4.

4 COMPRESSION AND DECOMPRES-
SION ALGORITHMS

We start by computing the wavelet transform W (V ) of
the volume model V and its gradient octree G(V ) on
the server, Figure 1. We use a localized, block-based
transform with a previous smoothing step to achieve lo-
cal behaviour and a better compression rate. We as-
sume standard piecewise linear transfer functions [?].
By considering these transfer functions, we virtually
segment the volume V in as many regions as linear seg-
ments defined by the {T Fk} functions. Voxels with a
density d such that the opacity of {T Fk} is zero for all
k, belong to null regions and are simply represented by
a null code. Our implementation uses a block size of
16 together with a 4-steps Haar transform, being rather
efficient in compression while supporting block-aware
interaction paradigms in the client. As already men-
tioned, the wavelet information that is sent over the net-
work to the client is a low resolution volume model
VW , obtained by computing a few wl inverse wavelet
steps in each block. Observe that in the usual case of
wl = 2, the size of the information in VW will always be
lower than 1/64 of the size of the initial model V . The
low-resolution model for wl = 2 is compressed more
than a 98.5%. In what follows, we will use the term
compression rate to name the relative size of the com-
pressed model, which in this case is 1.5%.

The gradient octree G(V ) information includes the oc-
tree structure and the octree data. Creating G(V ) in-
volves three compression steps. The first is transfer-
function aware and uses V and the set of {T Fk} to com-
pute an Edge Volume model V E(T F) which only en-
codes voxels that are relevant to the transfer functions
{T Fk}. Non-relevant voxels in V E(T F) are assigned
a Nil value. On a second step, we compress gradient
information to a total of three bytes per Grey tree node
(including material information) in a set of data arrays,
one per octree level, [2]. We use a GPU-oriented en-
coding of the proposed hierarchical data structure with
explicit volume gradient information in octree nodes, to
avoid gradient computations during GPU ray-casting.
The final Gradient Octrees representation, shown in
Figure 2, consists on a small volume model V32 with
pointers and two sets of per-level arrays, Ol and Dl .
For the sake of clarity, octree levels in Figure 2 and
in what follows will be identified by their resolution.
The example shown in Figure 2 corresponds to the com-
plete octree representation of a volume V of resolution
r = 512, with gradient and materials stored in the data
array D512. Data arrays of coarser octree levels (D256,
D128, D64 and D32) store gradient and materials data of
Grey octree nodes at these levels. In short, the octree
structure S of G(V ) consists of the pointers volume V32
and the set of per-level arrays Ol . The octree data D of
G(V ) includes the set of per-level arrays Dl .

Journal of WSCG

Volume 23, 2015 21 ISSN 1213-6972

No.1



Figure 2: Encoding Gradient Octrees

For transmission purposes, it is possible to compact
the Gradient Octree structure (not the volume data) in
a lossless way. Instead of sending the arrays Ol , we
send a set of arrays Bl with one byte per parent node as
shown in red in Figure 2. Note that this is equivalent
to store and transmit only one bit per node: the com-
ponents in Bl simply represent the type of each child
in one bit (0 if Nil, 1 if Grey). Compressed arrays Bl
are computed on the server and sent to the client. For
every received level, the client is able to generate a Bl-
driven, increasing sequence of indexes to create a local
copy of the array of indexes to child nodes Ol (for a de-
tailed discussion, see [2]). Note that Ol indexes point
simultaneously to D2l and to O2l . The volume V32 is
sent to the GPU as a 3D texture, whereas arrays Ol and
Dl are encoded as 2D and 1D textures. In short, we
succeed in sending the tree structure S in a lossless way
and with only one bit per node, through a sequence of
compact arrays Bl . Moreover, compressing gradients
and materials in three bytes is efficient, supports GPU
decompression and suffers from a very limited loss in
visual quality.

Although ROI-dependent localizations of the octree
structure S could be defined [14], we have observed
that the corresponding compression improvements
(mainly in the information over the network) are
negligible. In our present implementation we have
therefore considered a hybrid model consisting of the
low-resolution volume VW , the gradient octree structure
S and ROI-dependent octree data D. This hybrid
model information is sent from the server to the client
(or clients) in two parts: (I) The static information
is sent only once, at the beginning of the interaction
session. It consists on the low-resolution volume VW ,
the 32× 32× 32 pointers volume V32 of the computed
Gradient Octree, the set of arrays Bl which encode
the S octree structure and the materials look-up table
of the Gradient Octree, Figure 1. The size of this
last table is very small and we will not consider it
in our compression computations. (II) The dynamic
information is sent on demand whenever the client
changes the ROI. The client sends a query with the new
ROI limits (bounding box) and the server generates and

sends a subset DR of the data arrays D of the Gradient
Octree, as we know in advance that only voxels in the
ROI will be retrieved and rendered, Figure 1.
In our present implementation we assume that users are
only interested in gradient octree data at the deepest oc-
tree level r, as lower resolutions are already shown out-
side the ROI. This makes the whole process easier, as
we can just send a compact Dr array containing only
those voxels with a non-Nil gradient value in the deep-
est octree level. This results in a very compact data
transmission. We compute and keep a temporal, ROI-
dependent version of the pointers volume V32 which we
name V R32. V R32 has Nil pointers outside the ROI and
sequential pointers for the Grey nodes inside the ROI.
The textures V R32 and Ok are now ROI-dependent, and
must be recomputed in the client from the G(V ) Struc-
ture (see Figure1) whenever the ROI is changed during
the interaction, with a very efficient algorithm which
only involves array traversal and counting.

5 RENDERING AND INTERACTION
IN THE CLIENT DEVICES

Reconstruction of any of the blocks within the non-ROI
partion of the volume can be performed at one, two,
three or four wavelet levels. The four-level reconstruc-
tion of a block generates a full piece of 16× 16× 16
voxels that represent the corresponding part of the vol-
ume. Reconstructions of the same block at three, two
or one levels generate pieces of 8× 8× 8, 4× 4× 4 or
2×2×2 voxels, representing the same part of the vol-
ume at lower resolutions.
A usual interactive session starts by inspecting the
whole volume model at a low resolution. In this case,
all blocks are usually reconstructed at one or two levels,
the corresponding 3D Texture is sent to the client GPU
and ray-casting rendered. Observe that the size of this
3D texture, in the case of two reconstruction levels, is
1/64 of the size of the original volume model V.
Alternatively, the user can decide to inspect the whole
volume model at a low resolution (two levels of re-
construction, for instance) with the ROI showing pre-
defined structures at maximum level of detail by ray-
casting the Gradient Octree. To achieve this last in-
teractive visualization, two structures, one for the non-
ROI volume (3D texture) and the other for the ROI vol-
ume (Gradient Octree), are sent to the client GPU where
an adaptive ray-casting algorithm is performed, as de-
tailed below. Since the whole model is available at the
client side, rotation and zooming operations can be au-
tonomously performed in the client without any further
transmission from the server. If a region of the model
needs to be detailed, the Gradient Octree can be dis-
played on demand.
We use a standard ray casting algorithm in the client
GPU, the main difference with the classical algorithms

Journal of WSCG

Volume 23, 2015 22 ISSN 1213-6972

No.1



being that rays traverse a low resolution 3D texture rep-
resenting the whole volume. In the point samples along
the ray that do not belong to the ROI, the ray-casting
uses density values from the low-resolution model VW .
Samples in the ROI retrieve densities from a virtual
volume with the same resolution R as VR, instead of
traversing VR itself. In Figure 3, an example with reso-
lution R = 512 is shown. Ray-casting proceeds as usual
by advancing along rays r from the observer with a uni-
form sampling of the volume along r. Then, for each
sample s of r addressing a virtual voxel (i, j,k) in the
ROI, its volume information is found in DR.

Figure 3: The block structure of the model, a region of
interest (in white) and the octree-based ray-casting.

Ray casting within the ROI is based on the octree ad-
dressing properties. The octree search of any virtual
voxel (i, j,k) is directly driven by the base-2 representa-
tion of i, j and k, as shown in Figure 3. In this case, their
first 5 binary digits point to the corresponding voxel in
the low-res texture V32. The index i32 found in this V32
voxel element points to the low resolution data in D32
(which we don’t use if a higher resolution is required)
and also to the array of its eight child indexes in O32. A
well-known property of binary octree subdivision en-
sures that next "three bit columns" in the binary repre-
sentation of i, j,k are in fact child indexes sl . Son in-
dexes point to deeper octree levels and are able to drive
the octree traversal to the right element in DR contain-
ing data in the virtual volume voxel. Subtree traversal
from the low-res voxel in V32 to the virtual voxel data is
based on the recursion equation,

i2l = Ol [il ][sl ] (1)

for l=32, 64, 128, .. R/2

The final index iR points to the high-res data in DR, but
tree traversal can stop earlier if the virtual voxel is void
and any index il in the chain is found to be zero.

Observe that only virtual voxels in VR in the ROI will
be addressed. This means that the client must only store

a restriction of G(V ) in VR. In our present implementa-
tion we initially send the whole octree structure of G(V )
to the client, but high-resolution data DR (restricted to
VR) is only sent on demand when the user changes the
ROI

Let’s assume that ray r is crossing voxel i = 171, j =
312, k = 237 in the virtual volume of the ROI, Fig-
ure 2. In this case, the octree search starts in the voxel
(10,19,14) of V32 and is then driven by four child in-
dexes: s32 = 7, s64 = 1, s128 = 4 and s256 = 5 which
recursively generate the indexes i64, i128, i256 and i512.
Reaching the deepest level information in a Gradient
Octree of resolution R = 512 involves a maximum of
six texture queries, to V32, O32, O64, O128, O256 and fi-
nally to D512.

After retrieving high-res data in D512, materials and the
gradient vector are decompressed on the fly in the GPU.
Obviously, everything also works when lower resolu-
tion virtual volumes are considered.

6 RESULTS AND DISCUSSION
To perform a complete comparative study , we selected
the following accessible frameworks:

VrMed Viewer, an integration of libraries and func-
tionalities, designed to achieve interactive visualization
in PCs and Virtual Reality Systems, using a GPU-based
Ray-casting algorithm [15].

Volume Viewer, an Android based application [5], im-
plemented to run on mobile devices. Allows interac-
tive visualization of models with a transfer function ed-
itor with easy handling. In this case, the whole volume
model is sent to the client device.

VrMed-Thin Client The approach is based on [16]. It
achieves remote visualization of volume models with
basic user interaction tools in mobile devices. A server
running VRMed Viewer on Linux operative system,
renders images which are sent to the client through
the wireless. Clients generate control commands as
OpenGL parameters which are sent to the server using
a TPC/IP socket.

Tables 1 and 2 show a comparison of [2], [1], our
technique (Hybrid Approach), and the previously de-
scribed schemes, using two models: The skull model
with a 256×256×112 resolution and the thorax model
with a 5123 resolution. Density values are in the rang
[0...255], hence each voxel is codified using only 1
byte. Table rows show for each scheme whether multi-
resolution and progressive transmission is allowed and
the compression rate achieved for each case. Both ta-
bles also show the size of the transmitted data trough
the network and the client requirements to perform vol-
ume rendering followed by an estimation of the average
frame rates in two cases: rendering in the PC server and
rendering in the client (mobile device).

Journal of WSCG

Volume 23, 2015 23 ISSN 1213-6972

No.1



Figure 4 shows some snapshots of the interaction with
the hybrid skull model. In all cases, two wavelet recon-
struction steps (wl = 2) have been used without lighting
computation in the low resolution area: In (a), (b) and
(d) the Wavelet have been computed by using a skin
tranfer function, whereas the image in (c) represents a
bone transfer function both in the low resolution area
and in the Region of Interest.

Some snapshots of the interaction with the hybrid tho-
rax model are shown in Figure 5. In all cases two
wavelet reconstruction steps (wl = 2) have also been
applied without lighting computation, in the low reso-
lution area: ROI showing ribs and lungs (a), internal
gases and lungs (b) and skin, ribs and lungs (d). The
snapshot in (e) shows the alveoli in the ROI, magnified
in (f) by interacting with zoom and a section plane. In
these cases wavelets are precomputed after applying to
the model a TF covering all structures in the low reso-
lution area. The snapshot in (c), shows a TF for bones
visualization in both, the low resolution area, and the
ROI. Image in (d) shows a zoom-in of (c) for showing
up the quality of the hybrid model. The server appli-
cation runs on PC with 6 GB of RAM, Intel Core 2
Duo at 3.16 GHz and a client with 4 GB of RAM, Intel
Core 2 Duo at 3.06 GHz and Nvidia GeForce GTX z80.
Client tests were performed on the HTC One smart-
phone whith a screen resolution of 1080 x 1920 pixels
2 GB RAM and an Adreno 320 Graphics processor.

A ROI-based visualization has been considered in the
Wavelets-based scheme and in the Hybrid approach,
while in the rest of columns, the whole volume V has
been rendered at a uniform resolution. This is valid in
both cases (tables 1 and 2). Zoom has been adjusted in
a way that the total amount of rendered ROI pixels in
the application viewport is a 25% of the total of view-
port pixels. The amount of ROI pixels in the viewport
is relevant, as it measures the total amount of required
high-quality casted rays during ray-casting rendering.

Compression rates correspond to the amount of data
sent over the network, and relate this amount to the to-
tal memory requirements of the volume models, which
are 7.4 MBytes in Table 1 and 128 MBytes in the
case shown in Table 2. In contrast to the previous
schemes, our techniques allow multi-resolution render-
ing with progressive transmission of volume data. For
the Wavelet based approach, the presented figures on
the amount of data over the network represent the nec-
essary information to reconstruct four levels of wavelet
compression, wl = 4. The compression rate in this case
is between 21% and 32%.

In case of the Gradient Octree approach, data includes
the octree structure plus material and gradient informa-
tion at its deepest, maximum resolution level. In the
Hybrid scheme, the information over the network rep-
resent both the necessary data to reconstruct two levels

of wavelet compression for the low resolution model
and the nodes representing the Gradient Octree leaves
in the selected region of interest (ROI). This approach
also requires a client GPU being able to manage 3D
textures. The compression rate in this case is between
20% and 22%, with an average frame rate in the mobile
device between 7 and 16 fps.

The proposal in this paper Hybrid approach results in
a compression rate which is between 4% and 18%, with
an average frame rate in the mobile device between 8
and 16 fps when wl = 2. It also requires a client GPU
being able to manage 3D textures.

The VrMed viewer is presented for comparison pur-
poses. Some of the parameters in the tables do not ap-
ply to this case, as VrMed is a stand-alone application
without network transmission. The average frame rates,
48 and 20 fps, are obviously higher than those in the
previous cases but these figures show that our proposed
approaches are performing within reasonable efficiency
limits.

The Thin Client based approach sends a maximum of
0.18 MB of data through the network per frame during
an interactive session with a single client (of course, the
total amount of transmitted data depends on the number
of interaction frames). This is due to the fact that the
technique requires the transmission of rendered images
from the server when the user interacts with the model
in the client side. This fact makes this scheme network
dependent, with framerates which decrease in network
congestion cases. We have observed that our thin-client
implementation becomes useless when the number of
clients is above 8. On the other side, this scheme does
not require sophisticated client GPUs, as clients must
only decompress and show pre-rendered images. This
can be an advantage for basic client devices, but result
in an under-utilization of client GPUs in the case of
most present devices. The asterisks in the Thin client
column in tables 1 and 2 mean that data sizes are per
frame sizes. The compression rates obviously depend
on the number of transmitted frames.

The Hybrid approach is specially well suited in the case
of large models. The comparison between tables 1 and
2 show that this is a scalable scheme, with compres-
sion rates that decrease when the size of the volume
model increases. The corresponding frame rates are
larger than in the case of Gradient Octrees, being of the
same order of magnitude than Thin Clients.

Comparing Thin clients to Wavelets, Gradient Octrees
and the Hybrid approach, we can define the break-even
interaction period as the number of frames required to
have an equivalent amount of information sent over the
network. Break-evens are computed as the ratio be-
tween the size of the compressed model as sent over
the network in our approaches and the size of a single
Thin Client frame image. In the case of the skull model

Journal of WSCG

Volume 23, 2015 24 ISSN 1213-6972

No.1



Figure 4: Hybrid Visualization. Interaction with the
hybrid skull model. ROI size: (128×64×64).

Figure 5: Hybrid Visualization. Interaction with the
hybrid thorax model. ROI size: 416× 224× 224 (a),
256× 160× 256 (b), 96× 128× 480 (c), and 256×
512×256 (d), (e) and (f).

in Table 1, this break-even is 11 frames for Wavelets,
21 frames for Gradient Octrees and 11 frames for the
Hybrid approach.

In the case of the thorax model in Table 2, the break-
even is 51 frames for Wavelets, 79 frames for Gradient
Octrees and 17 frames for the Hybrid approach. By
considering the number of frames per second in each
case, we can conclude that the information we are send-
ing is equivalent to the total information sent by the
Thin Client approach during an interaction period in
between 1 and 10 seconds. In the case of the Hybrid

approach, break-evens are 11 frames and 17 frames,
meaning this Hybrid scheme outperform Thin Clients
in interaction cases longer than around 20 frames.

Thin Clients can also be compared with the presented
approach in terms of frame rates. Frame rates depend
on the network bandwidth, the present approach being
better than Thin Client approaches in geographic re-
gions with a limited bandwidth. In fact, the presented
proposal can be specially useful in world regions with
limited network infrastructures but requiring fast access
to 3D medical data, like non-urban areas.

The Volume Viewer approach as presented in the last
column of both tables does not require sophisticated
client GPUs, as clients are rendering stacks of 2D tex-
tures. Frame rates in the client are reasonable. The
main drawback in this case, however, is the amount of
information being sent over the network, which makes
it unusable in the case of large volume models.

The proposed hybrid scheme allows interactive inspec-
tion by rotating and zooming volume models. Users
are able to select ROI portions of the visualized model,
as well as choosing a transfer function from the set of
transfer functions ({T Fk}) inside the the selected ROI.
Interface options include also, planar section selection
and offsets structures visualization in front of the se-
lected section plane. Users can also choose the reso-
lution of the low resolution region, by reconstructing
models, by using one, two or three wavelet reconstruc-
tion steps.

Wavelets Gradient Hybrid VrMed VrMed Volume
Sheme Octrees Approach Viewer Thin Client Viewer

Multi-resolution 3 3 3 no no no
Progressive transmission 3 3 3 no no no

Compression rate (%) 32 22 18 - ∗ 100
Data over the network(MB) 1.91 3.8 2.04 - 0.18* 7.3

Client requirements 3D Tex 3D Tex 3D Tex - Image Stack
2D Tex

Frame rate (PC version) 52 24.12 46.53 48.24 48.24 -
Frame rate (mobile) 24.2 - 16.32 - 20.23 17.0

Table 1: Comparison between the approach presented
in this paper (blue column) and some previous schemes
for remote visualization of volume models. Study of
the Skull model with a resolution of 256× 256× 112
and 7.3 MB of size.

Wavelets Gradient Hybrid VrMed VrMed Volume
Sheme Octrees Approach Viewer Thin Client Viewer

Multi-resolution 3 3 3 no no no
Progressive transmission 3 3 3 no no no

Compression rate (%) 21 20 4.2 - ∗ 100
Data over the network(MB) 16.4 27 5.3 - 0.32* 128

Client requirements 3D Text 3D Tex 3D Tex - Image Stack
2D Tex

Frame rate (PC version) 14 10.31 18.03 20.34 20.34 -
Frame rate (mobile) 13.20 - 8.07 - 20.23 -

Table 2: Comparison between the approach presented
in this paper (blue column) and some previous schemes
for remote visualization of volume models. Study of the
Thorax model with a resolution of 5123 and 128 MB of
size.

Journal of WSCG

Volume 23, 2015 25 ISSN 1213-6972

No.1



7 CONCLUSIONS & FUTURE WORK
We have proposed a Hybrid approach that inherits the
advantages of the algorithms presented in [1] and [2]
while keeping a good performance in terms of band-
width requirements and storage needs in client devices.
Information over the network consists on static infor-
mation (being only set once) and dynamic informa-
tion. Dynamic information must be re-sent whenever
the ROI is redefined by the user. The complexity (mem-
ory and data transmission requirements) of the static
and dynamic information has been discussed. The main
conclusion is that the hybrid scheme is flexible enough
to represent several materials and volume structures in
the ROI area at a very limited static and dynamic infor-
mation transmission cost.
The Hybrid approach has been proved to be specially
well suited in the case of large models. The pre-
sented experimental tables show that the Hybrid ap-
proach is a scalable scheme, with compression rates
that decrease when the size of the volume model in-
creases. Corresponding frame rates are larger than in
the case of Gradient Octrees, being of the same order
of magnitude than Thin Clients. Our compression re-
sults are better than similar client server schemes for
volume rendering, and compare favourably to March-
ing Cubes based approaches. While these last schemes
must send an average of three triangles per voxel in
segmented volumes, the presented approach only sends
three bytes/voxel. We consider that our approach may
enrich the user experience during the inspection of vol-
ume medical models in these low performance devices.

ACKNOWLEDGMENT
This work has been partially supported by the Project
TIN2013-47137-C2-1-P of the Spanish Ministerio de
Economía y Competitividad.

8 REFERENCES
[1] Lázaro Campoalegre, Pere Brunet, and Isabel

Navazo. Interactive visualization of medical vol-
ume models in mobile devices. Personal Ubiqui-
tous Comput., 17(7):1503–1514, 2013.

[2] Lázaro Campoalegre, Pere Brunet, and Isabel
Navazo. Gradient octrees: A new scheme for re-
mote interactive exploration of volume models.
Proc. of the CAD/Graphics, 2013.

[3] Manuel Moser and Daniel Weiskopf. Interac-
tive volume rendering on mobile devices. In
Vision, Modeling, and Visualization VMV, vol-
ume 8, pages 217–226, 2008.

[4] Jose Maria Noguera and Juan Roberto Jiménez.
Visualization of very large 3d volumes on mobile
devices and webgl. In WSCG international con-
ference on computer graphics, visualization and
computer vision, 2012.

[5] Marcos Balsa and Pere Vázquez. Practical vol-
ume rendering in mobile devices. In Advances
in Visual Computing, pages 708–718. Springer,
2012.

[6] Klaus Engel and Thomas Ertl. Texture-based vol-
ume visualization for multiple users on the world
wide web. In Virtual Environments, pages 115–
124. Springer, 1999.

[7] Eric LaMar, Bernd Hamann, and Kenneth I. Joy.
Multiresolution techniques for interactive texture-
based volume visualization. In IEEE Visualiza-
tion, pages 355–361, 1999.

[8] Enrico Gobbetti, José Antonio Iglesias Guitián,
and Fabio Marton. Covra: A compression-domain
output-sensitive volume rendering architecture
based on a sparse representation of voxel blocks.
In Computer Graphics Forum, volume 31, pages
1315–1324, 2012.

[9] Shigeru Muraki. Volume data and wavelet trans-
forms. Computer Graphics and Applications,
IEEE, 13(4):50–56, 1993.

[10] Insung Ihm and Sanghun Park. Wavelet-based 3D
compression scheme for interactive visualization
of very large volume data. Computer Graphics
Forum, pages 3–15, 1999.

[11] Stefan Guthe, Michael Wand, Julius Gonser, and
Wolfgang Straßer. Interactive rendering of large
volume data sets. In Visualization, 2002. VIS
2002. IEEE, pages 53–60. IEEE, 2002.

[12] Jianlong Zhou, Manfred Hinz, and Klaus D Tön-
nies. Hybrid focal region-based volume rendering
of medical data. In Bildverarbeitung für die Medi-
zin 2002, pages 113–116. Springer, 2002.

[13] Yanlin Luo, José Antonio Iglesias Guitián, Enrico
Gobbetti, and Fabio Marton. Context preserving
focal probes for exploration of volumetric medical
datasets. In Proceedings of the International Con-
ference on Modelling the Physiological Human,
pages 187–198, 2009.

[14] Lazaro Campoalegre. Contributions to the inter-
active visualization of medical volume models in
mobile devices. In PhD Thesis, UPC, 2014.

[15] Eva Monclús, José Díaz, Isabel Navazo, and Pere-
Pau Vázquez. The virtual magic lantern: An
interaction metaphor for enhanced medical data
inspection. In Proceedings of the ACM Sympo-
sium on Virtual Reality Software and Technology,
pages 119–122, 2009.

[16] C. Rezk-Salama, K. Engel, M. Bauer, G. Greiner,
and T. Ertl. Interactive volume on standard
pc graphics hardware using multi-textures and
multi-stage rasterization. In Proceedings of the
ACM SIGGRAPH/EUROGRAPHICS workshop
on Graphics hardware, pages 109–118, 2000.

Journal of WSCG

Volume 23, 2015 26 ISSN 1213-6972

No.1




