
Complex Water Effects at Interactive Frame Rates

Jörn Loviscach
Hochschule Bremen
Flughafenallee 10

28199 Bremen, Germany

jlovisca@informatik.hs-bremen.de

ABSTRACT
Due to the complexity of the effects, it is difficult to achieve photorealism and physically correct motion in
interactive 3-D water simulations. We present a simulation and visualization method which goes a long way
towards physical reality, e. g. by producing Kelvin ship waves and displaying images of real caustics on the water
surface. Using efficient approximations and employing the specialized 3-D and CPU features of modern PCs,
this simulation runs at rates of several frames per second. Part of this solution is the emulation of a hardware
accumulation buffer on consumer 3-D graphics cards with the help of texture shaders.

Keywords
water waves, Kelvin waves, caustics, refraction, Fresnel effect, accumulation buffer

1 INTRODUCTION
As an important part of nature, water is an obvious
object to simulate in virtual 3-D worlds. Its physical
description reads rather simple: a fluid which is almost
incompressible, inviscid, and in many cases transpar-
ent. However, the faithful reproduction of the dy-
namic and optical behavior of water requires sophisti-
cated calculations which typically limit interactive wa-
ter simulations to coarse sketches of the real world.

In this paper, we present an interactive simulation and
visualization method for a water surface which reacts
to sudden disturbances (such as a stone thrown into
a pool) as well as to continuous disturbances such as
traveling ships. As can be seen in Fig. 1, the water
is rendered with: geometrical deformation by large
waves, bump details of small waves, caustics on the
ground (seen refracted through the surface), shadows
in the caustics, sun highlights, and sky reflection.

To achieve a high frame rate, this method em-
ploys special features of today’s mainstream PC

Permission to make digital or hard copies of all or part of
this work for personal or classroom use is granted without
fee, provided that no copies are made or distributed for profit
or commercial advantage and that all copies bear this notice
and the full citation on the first page. To otherwise copy or
republish, to post on servers or to redistribute to lists, a prior
specific permission and/or a fee are required.

Journal of WSCG, Vol. 11, No. 1., ISSN 1213-6972
WSCG ’2003, February 3–7, 2003, Plzen, Czech Republic.
Copyright UNION Agency — Science Press

hardware: first, the render-to-texture capability and
the texture shaders of 3-D graphics cards; second,
single-instruction/multiple-data computation within
the CPU. On a Pentium(R)-4 system (2.53 GHz) with
a GeForce 4TM Ti 4200 graphics card, a demo scene
with a height field resolution of 384×384 runs at ap-
proximately 6 fps, virtually independent on the win-
dow size.

The main contributions of this work are:

• an interactive simulation of water surface waves
producing capillary waves and ship waves which
are physically correct in linear approximation,

• a method to generate caustics and shadows within
caustics through MIP-mapping,

• a method to emulate a hardware-accelerated ac-
cumulation buffer (a feature missing in many 3-D
graphics cards) with texture shaders.

Figure 2 sketches the architecture of our prototype im-
plementation with Windows(R) and OpenGL(R). By
dragging and clicking with the mouse, the user can
drag a ship through the water or place point-like dis-
turbances as if he were dropping stones into a pool.

Section 2 outlines previous work done in the areas
of hydrodynamical simulation for 3-D animation pur-
poses and for fast caustics computation. Our wave
simulation algorithm is described in section 3. The

Gravity/Capillary
Ring Waves

Kelvin
Ship Waves

Caustics
on the Ground

Caustics Seen
in Refraction

Fresnel Reflection
of Sky

Sun Highlights Ship Shadow
in Caustics

Water Surface

Ground

Ship

Figure 1. The system simulates the dynamics and
optics of water surface waves. (Side length: 15 m)

Simulation EngineUser Interface

3-D Visualization

Ship
Position

Mouse Click
or Drag

Synchronization

Height
Field

Figure 2. The user interface, simulation, and
visualization tasks are assigned to three

synchronized processing threads.

basic rendering of the water surface is the topic of sec-
tion 4, whereas section 5 details how caustics are ren-
dered in our system with 3-D hardware support. For
this last step, we require a fast, hardware-based accu-
mulation buffer. Section 6 describes how this can be
emulated using consumer 3-D hardware. This solution
is interesting in itself, e. g. for image processing ap-
plications. The concluding section 7 summarizes the
results and offers an outlook on possible future work.

2 PREVIOUS WORK
In a recent survey, Adabala and Manohar [Ada02]
identify three major types of fluid models for com-
puter graphics: texture-based (2-D, fractal, or 3-D),
combining textures and particles (blobs, grids, or par-
ticle maps), and completely particle-based.

The seminal works of Fournier and Reeves [Fou86]
as well as Peachey [Pea86] can be seen as forerun-
ners of the 2-D texture-based category. A wide-spread
approach to the dynamics of height fields uses finite-
difference methods, as described by Kass and Miller
[Kas90]. On modern hardware, such an approach eas-
ily runs in real time even with a high grid resolution,
as, too, does the method of Chen and Lobo [Che95],
who replace the full three-dimensional Navier-Stokes
equations with a two-dimensional version. Loviscach
[Lov02] also uses a height field, but generates time
evolution by convolution with a ring wave. This imple-
mentation cannot achieve interactive speed but is able
to reproduce phenomena like Kelvin ship waves and
the complex ring waves formed by gravity and capil-
lary waves on deep water. Glassner [Gla02] geometri-
cally constructs height fields for a simplified model of
Kelvin ship waves.

An excellent method to simulate phenomena like
breaking waves and poured liquid belongs to the cat-
egory “textures and particles combined”: Enright,
Marschner, and Fedkiw [Enr02] build upon previous
work by Foster and Fedkiw [Fos01] as well as Stam
[Sta99]. They combine a partial differential equation
solver for a voxel-based flow with marker particles to
trace the surface. For a grid size of 540×75×120 the
simulation takes 13 minutes per frame.

Trading realism for speed, several researchers have
tried to achieve interactive fluid simulations. Schnei-
der and Westermann [Sch01] simulate waves using
fractal noise and then render these in real time with
light reflection and ground refraction using modern
consumer graphics hardware.

Jensen and Goliá̌s [Jen01] synthesize a height field
from a given spectrum and distort it to obtain choppy
(Gerstner) waves. Details of the waves are fitted in by
the algorithm of Kass and Miller [Kaa90] and by a 2-
D version of Stam’s solver [Sta99], all on a 64× 64
grid. Light rays going through the vertices of the sur-
face triangles are followed onto the ground, taking into
account the refraction according to Snell’s law. These
triangles are illuminated inversely proportional to their
area, comparable to backward beam tracing [Wat90].
Shafts of light, which are important for underwater
scenes, are rendered by slicing the volume into layers
which are approximated by blending textured planes.

Hinsinger, Neyret, and Cani [Hin02] also synthesize
Gerstner waves. Their scheme adapts to the visible
size of each surface element. Thus, it is possible to
render views across the water to the horizon at high
frame rates.

Several authors discuss the fast rendering of optical ef-
fects within water. Nishita and Nakamae [Nis94] cal-

culate so-called illumination volumes formed by each
triangle on the water surface and the sun rays enter-
ing at its vertices. Scan line by scan line, from top to
bottom, this illumination volume is projected into the
accumulation buffer. Caustics on curved surfaces in
the water are painted at the same time. Illumination
volumes hitting objects are cut away for all following
(i. e. lower) scan lines, which leads to physically cor-
rect shadowing.

Iwasaki, Dobashi, and Nishita [Iwa01] render caustics
on the ground like Jensen and Goliá̌s [Jen01]. Their
method paints the above-mentioned illumination vol-
umes as shafts of light by adding filled polygons to the
frame buffer. Using additional sample planes together
with z- and stencil buffers, caustics can be rendered
onto submerged objects in the water. For the genera-
tion of shadows, a flat water surface is assumed.

Trendall and Stewart [Tre00] employ several approx-
imations to reformulate the computation of refractive
caustics as a convolution problem. High-end graphics
hardware is able to handle this at interactive rates.

Research into real-time global illumination is not lim-
ited to refractive caustics in water. Jozwowski [Joz02]
generates photon maps in real time: For each rendered
frame, another 100 photons are sent into the scene,
adding to the photons of the former frames. This
method obviously cannot cope with the dynamics of a
water surface. Sloan, Kautz, and Snyder [Slo02] ren-
der global illumination effects for dynamic lighting in
real time. However, they mostly rely on pre-computed
radiance transfer functions. In addition, their low-
frequency sampling is not intended to reproduce com-
plex detail like that of water caustics.

3 SIMULATION OF WAVES
A complete simulation of water waves requires that
the velocity field is calculated throughout the entire
water volume. This means solving the non-linear Eu-
ler equations (i. e. Navier-Stokes equations with zero
viscosity) subject to a non-linear boundary condition.
[Enr02] goes a long way towards this goal.

Nevertheless, to achieve maximum simulation speed
and minute detail, we chose to treat the water surface
as a height field. This reduces the computational load
by several orders of magnitude so that even surface
resolutions of 1024× 1024 pixels can be handled in-
teractively. This kind of simulation is limited to ocean
or pool waves: Breaking waves, waterfalls etc. cannot
be simulated using a height field.

In many approaches, the time development of the
height field is calculated with a finite-difference
scheme. However, this is only acceptable for the shal-

low water limit where every wave moves at the same
speed, regardless of wavelength. Waves on an ocean
of infinite depth, however, can move at an arbitrarily
large speed—a phenomenon hard to reproduce with a
finite-difference scheme that acts locally. Simulations
with fixed wave velocity represent sound waves rather
than the surface waves of deep water. Therefore, such
simulations lack characteristic effects such as Kelvin
ship waves and the complex form of ring waves.

The same is true for Navier-Stokes computations in
2-D: Much of the physics of water waves is deter-
mined by the boundary condition at the surface—but
this boundary condition is lost when solving only a
flattened version of the Navier-Stokes equations.

A basic idea to reproduce typical water wave phe-
nomena without computational overhead is to work
in linear approximation and use Huygen’s principle:
From each point of a wave, a new ring wave emanates.
Therefore, to calculate the propagation of the waves
in a time span∆t, one convolves the wave field with
the profile of a ring wave. This ring wave and thus the
convolution kernelΨ is given [Lov02] by

Ψ(x) =
∫ ∫

R2

d2k
4π2 exp

(
i(k ·x−ω(|k|)∆t)

)
, (1)

wherex is the 2-D position on the plane of the ocean,
k denotes the wave vector, and the angular frequency
ω(k) fulfills the dispersion law

ω(k) =
√

gk+
T
ρ

k3,

with gravity accelerationg = 9.8kgm/s2, surface ten-
sion T = 0.072kg/s2, and mass densityρ = 1.0 ·
103kg/m3 (using typical values).

Sudden disturbances are simply added to the wave
field. The waves generated by a continuously mov-
ing ship, however, are more difficult to simulate: They
must not look as if a series of stones had been dropped
into the water. Rather, the waves generated by a ship
over one time step of length∆t can be integrated,
assuming that a ship follows an approximately lin-
ear path with constant velocityv in this time interval
[t, t + ∆t]. Let ft(x) describe the ship’s profile at time
t, i. e. this function equals one inside the ship, else-
where it is zero. Then the waves generated in[t, t +∆t]
and observed at timet +∆t are described using a more
complex convolution [Lov02]:

∫ ∫
R2

d2y
(

ft(x−y)Φ1(y)+ ft+∆t(x−y)Φ2(y)
)

(2)

where

Φ1(y) :=
∫ ∫

R2

d2k
4π2 exp

(
i(k ·y−ω(k)∆t)

)
×

(
−1+ iω(k)∆t

e−iα(k) + iα(k)−1
α(k)2

)
,

Φ2(y) :=
∫ ∫

R2

d2k
4π2 exp(ik ·y)

×

(
1+ iω(k)∆t

eiα(k)− iα(k)−1
α(k)2

)

with α(k) := (k ·v−ω(k))∆t.

The simulation then runs as an infinite loop:

• Propagate by convolving with expression (1).

• Add new sudden disturbances, if any.

• Add new ship waves according to expression (2).

• Cut off the waves at boundaries (see below).

• Repeat.

For computation, the wave field is discretized to a grid
of sizeN×N with e. g.N = 512. The new ship waves
calculated in the third step only are of importance in
the neighborhood of the ship. This is covered by a
smaller domain, e. g. 64×64. Call this 2M×2M. Of
course the time step∆t must be small enough to pre-
vent the waves from visibly leaking past this area.

To simulate an infinitely extended ocean on the finite
square gridN×N, we have to get rid of boundary
effects. As in [Lov02], a margin ofM (for M see
preceding paragraph) is used, so that only the inner
(N−2M)× (N−2M) points of theN×N grid appear
in the visualization. However, where [Lov02] used a
linear cutoff, a quadratic cutoff turned out to be better
and effective in all experiments. This means that in
the fifth step, the wave field at grid position(p,q) with
0≤ p,q < N is multiplied byh(p)h(q) defined by

h(p) :=


1−
(p

M −1
)2

if p < M
1 if M ≤ p < N−M

1−
(

N−1−p
M −1

)2
if p≥ N−M.

The time-limiting step in the calculation is the con-
volution on theN×N grid. The computation of the
ship waves on the much smaller domain 2M×2M is
negligible in comparison. To obtain optimum speed,
all convolutions are done with Fast Fourier Transform
(FFT), multiplication with the pre-calculated Fourier
transform of the kernel, and inverse FFT. The cutoff
by h(p)h(q) prevents problems with the periodicity of
the Fourier transform.

In the Fourier domain it is easy to add a pseudo-
random spectrum of wind waves, as can be seen in
Figure 1. Furthermore, in the Fourier domain we can
blur the profile of the ship by multiplying by a Gaus-
sian. The resulting wave spectrum contains fewer
small wavelengths, simulating the impression of real
ship waves.

In the prototype, the FFT and most other paral-
lelizable operations are implemented with the aid of
Intel(R)’s C function library called Integrated Per-
formance Primitives 2.0 (IPP). This library provides
arithmetic and image-processing functions based on
the single-instruction/multiple data features of mod-
ern PC processors, known as MMXTM and Streaming
SIMD Extensions (SSE).

Figure 3. Second-order effects lead to steep wave
crests and flat troughs. (Image detail)

In [Lov02], the wave field produced by the convolution
computations is directly used as a height fieldη ; here
this wave field is used as velocity potentialφ . This al-
lows to take into account a certain non-linear effect up
to the second order: The stronger a wave, the steeper
are its crests and the flatter its troughs, see Figure 3.
Along the line of analysis of Stokes waves given in
[Deb94] one can approximate this effect as follows: If
the velocity potential is sinusoidal

φ(x, t) = aei(k·x−ωt)

with a fixed amplitudea, wave vectork and angular
frequencyω = ω(|k|) then the height field up to sec-
ond order ina is

η(x, t) = ai
|k|
ω

ei(k·x−ωt)−a2 |k|3

2ω2 e2i(k·x−ωt). (3)

For arbitraryφ , a corresponding calculation can easily
be done in the Fourier domain. This means that for
each full simulation step, three expensiveN×N FFT
operations to be done: twice a complex-to-complex
FFT (forward/inverse) for the convolution and one
complex-to-real FFT to calculate the height field.

We have found a way to triple the perceived speed of
the algorithm: Since the method is stable for large
time steps, the time step can be increased by a fac-
tor of 3. For each such stepη(x, t + ∆t) is computed;

both η(x, t + 1
3∆t) and η(x, t + 2

3∆t) can be interpo-
lated. This interpolation cannot be linear due to the
strongly oscillating nature of the waves, but a cubic
approximation turns out to be effective:

η(x, t +
1
3

∆t) ≈ 20
27

η(x, t)+
7
27

η(x, t +∆t)

+
4
27

η̇(x, t)− 2
27

η̇(x, t +∆t),

and similarly forη(x, t + 2
3∆t). Here, η̇ is the time

derivative ofη . It can be calculated fromφ in analog
manner to equation (3).

Because only the real parts ofη and η̇ are of inter-
est, both can be determined fromφ in a single inter-
twined N×N complex-to-complex FFT which com-
putes Re(η)+ iRe(η̇). Therefore there are threeN×N
FFT operations perfull simulation step, but effectively
there is only one such operation per displayed frame.

4 RENDERING THE SURFACE
The surface of clear water mainly becomes visible
through reflection and refraction. Our method calcu-
lates the reflections of the sun and of a uniformly blue
sky as well as the refraction of the ground together
with the caustics and the ship’s shadow within them
(see section 5).

Using a simulation of 512× 512 grid points with an
invisible, 64 points wide border results in a displayed
height field of 384×384 grid points. The number of
pixels on the screen roughly corresponds to this num-
ber. Drawing the height field as 383×383 quadrangles
would therefore not be efficient.

A fast method to render the water surface would be
to use a single large quadrangle with an appropriate
texture. However, the missing of geometry would
be obvious when rendering high waves or ship walls.
Hence, we chose a compromise similar to [Jen01,
Lov02]: The surface is only deformed by waves of
a large wavelength, to which the effect of the small
wavelengths is added by perturbing the normals.

For a good balance between rendering speed on one
hand and detail in geometry on the other, a subsam-
pling factor of 4 proved to be appropriate. Therefore,
the water surface consists e. g. of 95× 95 instead of
383× 383 quadrangles, each of which is rendered as
two triangles. The height field of the reduced geome-
try is found by weighted average.

Through multitexturing, several textures are applied
to this surface to hide its rough geometry. The main
texture is identical to the ground texture (see sec-
tion 5), except that it is applied as a refraction map,
i. e. with distorted coefficients. These originate from

Figure 4. At a refraction index of 1, the effective-
ness of the linear approximation of the texture
coordinates becomes obvious: The tile pattern

appears almost without distortion. (Image detail)

two sources. First, each of the 95× 95 vertices has
texture coordinates which describe which point of the
ground would be visible here if the water was flat and
located at the height of this vertex. This is calculated
through linear approximation. Figure 4 shows the ef-
fectiveness of this approach: If the refraction index of
the water is set to 1, the considerable geometric defor-
mation is undone almost perfectly.

The “offset texture 2-D” mode of texture shaders al-
lows to displace these coarse texture coordinates pixel
by pixel according to another texture. For this we use
an image of size e. g. 512×512 which contains a lin-
ear approximation of the effect of the refraction due to
the inclination of the normals.

In total, the texture coordinates of the refraction map
are calculated as follows:(

u
v

)
=
(

u0
v0

)
+η

(
a
b

)
︸ ︷︷ ︸

given per vertex,
lin. interpolation

+
(

c d
e f

)(
ηu

ηv

)
︸ ︷︷ ︸

given per
original grid point

Here,
(

u0
v0

)
is the texture coordinate with the water

at rest,η is the local mean value ofη , also used for
geometry, andηu, ηv are the differences of the height
field along the indicated direction. The spatially vary-
ing valuesa, . . . , f are found on initialization by tak-
ing numerical derivatives of an exact geometric calcu-
lation based on Snell’s law of refraction.

Two additional high-resolution textures are used to add
reflections to the water surface. Both the normalized
vectorv and the normalized half vectorh between the
viewer and the sun are computed at initialization. This
is done for every visible point of the original grid.

Then, during visualization, for every frame the normal
vectorn is calculated at each of these points as well.
We have found that the following expressions give fast
and faithful approximations to Fresnel sky reflection
and glaring sun highlights, respectively:

f := clamp(1.0−2.5n ·v),
g := clamp(100.0n ·h−98.95),

where the clamp restricts the values to[0,1]. Like al-
most all other operations, these calculations are done
almost exclusively with help of the IPP function li-
brary. The resultsf andg are used as the alpha chan-
nel of a blue texture (sky reflection) or as luminance
texture (sun highlights), respectively.

A further speed-up could result by offloading the field
of normal vectors as texture to the graphics card and
using more sophisticated texture shaders such as “Dot
Product Reflect Cube Map” and texture combiners.
However, since many graphic chips can access only
four textures simultaneously, the complete rendering
would then typically demand multiple passes.

5 PAINTING CAUSTICS
The system uses a subsampled version of the height
field (e. g. 96×96 grid points) to generate caustics and
render them into a texture. This texture is used on
the ground (a large square) and—with distorted tex-
ture coordinates—on the water surface, see section 4.

Light
Source

Water
Surface

Ground

Figure 5. The caustics simulation computes light
rays through each vertex by linear approximation.

The caustics computation proceeds as in [Wat90]:
Light rays are sent from the sun through each vertex on
the water and refracted according to the normal vector.
Thus, each triangle on the surface is projected down to
a distorted triangle on the floor, see Figure 5. The cal-
culation of the 2-D coordinates(x,y) on the floor can
be done by linear approximation:(

x
y

)
=
(

x0
y0

)
+
(

a b
c d

)(
ηx
ηy

)

Here, ηx, ηy are the differences of the height field
along the indicated direction. The spatially varying
valuesx0, y0, a, . . . , d are computed during initializa-
tion like the (different) coefficients in section 4.

Due to the distortion, the triangles on the ground par-
tially overlap each other. This means that the respec-
tive shafts of light are overlaid on the floor—an effect
which is simple to achieve with additive blending.

Every triangle on the ground receives the sametotal
amount of light, i. e. its luminance has to be inversely
proportional to its area. This can be taken into ac-
count by giving each triangle a corresponding gray
tone, as in [Jen01]. However, in order to save CPU
time, we offload the area calculation to the graphics
card—through MIP (multum in parvo) mapping. Nor-
mally, MIP mapping is applied to diminish aliasing
due to texture pixels being smaller than screen pix-
els: The graphics chip automatically uses a reduced
version of the texture with a suitable resolution. To
this end, different detail levels of the texture have to
be prepared as levels of a MIP map. In our applica-
tion however, we simply fill the MIP map levels with
constant-color images, each level four times brighter
than the previous one, until white is reached. As the
prototype shows, the hardware interpolation between
MIP map levels hides these steps very well.

Figure 6. The rendered caustics image is blurred
to hide triangles and aliasing. (Enlarged sections

framed, Colors adjusted for print)

Thus, the caustics can be rendered as an OpenGL(R)

vertex array, given that an appropriate blending mode
and MIP map texture are chosen. However, since
each triangle is rendered in a single color, often dif-
ferent from its neighbors, the edges of the triangles
become visible. In addition, many graphics cards do
not support fullscreen antialiasing in offscreen graph-
ics buffers. To fix these problems, the resulting texture
image can be blurred as shown in Figure 6, see sec-
tion 6.

Figure 7. The ship’s shadow on the water surface
is rendered into the lower levels of the MIP map

used for caustics. (Colors adjusted for print)

To take the shadow of a ship into account, we project it
onto the water surface using a matrix transformation in
OpenGL(R). The result, i. e. the shadow on the surface,
is rendered in black into the MIP map, see Figure 7.
(The higher levels are skipped because of their low
spatial resolution.) After rendering this texture on the
deformed vertices, the shadow is automatically placed
on the floor at the proper position.

6 ACCUMULATION BUFFER
The caustics generation following section 5 results in
an texture image that has yet to be blurred. A typ-
ical approach in OpenGL(R) would be to use convo-
lution or to write multiple, shifted renderings into an
accumulation buffer. However, many consumer-level
graphics cards do not support these functions in hard-
ware. In addition, reading from a graphics buffer takes
up excessive time, so that the PC processor cannot help
much. Using texture shaders one can emulate a single-
color accumulation buffer with 12 bit depth. This is
sufficient to average 16 gray scale images without a
loss in precision. The way texture shaders and shifted
textures are applied here partially resembles the lattice
physics by Harris e. a. [Har02].

When applied to blurring a given 8 bit texture, the
method runs as follows, see Figure 8:

• Switch to a RGBA graphics buffer with the same
dimensions and a depth of 4× 8 bits. Its green
channel will later contain the sum of the higher
4 bits, its blue channel the sum of the lower 4 bits.

• Configure the texture to be blurred for dependent
texture lookup with help of a precalculated tex-

extract high and low
parts by dependent

texture lookup

combine by dependent
texture lookup

a b

0 a

0 b

255

don’t care

don’t care

don’t care

c

d

A

G

B

A

R

R

A

G

B

c

c + floor((d+7)/16)

d

0

+

+ 7

=

Original Texture

draw texture 16 times
at shifted positions

using additive blending

Blurred Texture

Figure 8. For blurring a gray scale texture, the
high and low four-bit-parts of its values are

treated separately with the help of texture shaders.

ture: If the original texture containsa in its higher
four bits andb in its lower four bits, the resulting
texture hasa in the lower four bits of the green
channel,b in the lower four bits of the blue chan-
nel. The remaining bits of these channels are set
to zero.

• Activate additive blending of the texture.

• Render it 16 times: 4 times at its original posi-
tion, 2 times with a shift of one pixel to the left

etc. to create a convolution with

(
1 2 1
2 4 2
1 2 1

)
, an

approximation to Gaussian blur.

• Switch to another graphics buffer of the same di-
mensions and a depth of 8 bits. It will later con-
tain the blurred texture as a gray scale image.

• Configure the graphics buffer used in the previous
steps as a texture with dependent texture lookup.
Use a precalculated texture to the following ef-
fect: If the previous graphics buffer containsc in
the green channel andd in the blue channel, write
a gray level ofc+ b(d+7)/16c.

• Use the content of the new buffer as texture.

7 RESULTS. OUTLOOK
We have described an simulation and visualization

Computation Step Time
wave propagation (13 of full step) 52 ms
generate ship waves (1

3 of full step) 6 ms
generate and blur caustics 18 ms
prepare sun and sky reflection textures51 ms
render water surface 42 ms

Table 1. Time spent per rendered image in the
main steps. See text for details on the system.

system that simulates and renders a water surface
with many of its complex hydrodynamic and opti-
cal features. The prototype works at an interac-
tive frame rate: It achieves 5.9 fps on a Pentium(R)-
4 system (2.53 GHz) under Windows(R) XP with a
GeForce 4TM Ti 4200 graphics card, a total grid size
of N = 512, a margin ofM = 64 and an original-grid-
to-vertex subsampling factor of 4.

Even though the calculation of the ship waves and
the caustics proceeds relatively fast, three steps of the
method limit the speed: theN×N FFT used for prop-
agation, the precalculation for sun and sky reflections,
and the drawing of the water surface, see Table 1. Ob-
viously, with the FFT and the drawing being hard to
accelerate, the reflection calculation presents itself as
a starting point for further improvement. In addition,
the system could be adapted for underwater scenes
with shafts of light rendered using the MIP-mapping
method introduced for caustics.

While the presented hydrodynamical simulation is suf-
ficient for open-ocean scenes with small ships, it can
still be extended. Especially, we look for ways to
incorporate water wave reflections at boundaries—
which notably includes ship walls, an effect neglected
in the presented simulation. Further topics include
the refraction of water waves over depth variations in
the ground (e. g. in front of a shore), the simulation
of which has been studied thoroughly starting with
[Fou86, Pea86].

Further investigation can be spent on the diffraction at
barriers and how to model additional effects caused by
the non-linearity of the hydrodynamical equations. If
the elevation and wavelength are of comparable size,
the linear approximation can hardly be justified mathe-
matically while still delivering plausible-looking sim-
ulations. However, additional means such as a power
series expansion—as partially applied in section 3—
might slightly improve the results.

8 REFERENCES
[Ada02] Adabala, N., Manohar, S. Techniques for Realistic

Visualization of Fluids: A Survey. Computer Graphics
Forum 21, No. 1, pp. 65–81, 2002.

[Che95] Chen, J. X., da Vitoria Lobo, N. Toward Interactive-
Rate Simulation of Fluids with Moving Obstacles Us-
ing Navier-Stokes Equations. Graphical Models and
Image Processing, Vol. 57, No. 2, pp. 107–116, 1995.

[Deb94] Debnath, L. Nonlinear Water Waves. Academic
Press, 1994.

[Enr02] Enright, D., Marschner, St., Fedkiw, R. Animation
and Rendering of Complex Water Surfaces. Proc. of
SIGGRAPH ’02, pp. 736–744, 2002.

[Fos01] Foster, N., Fedkiw, R. Practical Animation of Liq-
uids. Proc. of SIGGRAPH ’01, pp. 23–30, 2001.

[Fou86] Fournier, A., Reeves, T. A Simple Model of Ocean
Waves. Proc. of SIGGRAPH ’86, Vol. 20, Nr. 4,
pp. 75–84, 1986.

[Gla02] Glassner, A. Andrew Glassner’s Notebook: Duck!
IEEE Computer Graphics and Applications 22, No. 4,
pp. 88–97, 2002.

[Har02] Harris, M. J., Coombe, G., Scheuermann, Th., Las-
tra, A. Physically-Based Visual Simulation on Graph-
ics Hardware. SIGGRAPH/Eurographics Workshop on
Graphics Hardware, pp. 109–118, 2002.

[Hin02] Hinsinger, D., Neyret, F., Cani, M.-P. Interac-
tive Animation of Ocean Waves. Proceedings of ACM
SIGGRAPH Symposium on Computer Animation,
pp. 161–166, 2002.

[Jen01] Jensen, L. S., Goliá̌s, R. Deep Water Ani-
mation and Rendering. presented at Game Devel-
oper’s Conference Europe 2001. www.gamasutra.com/
gdce/jensen/jensen01.htm, 2001.

[Iwa01] Iwasaki, K., Dobashi, Y., Nishita, T. Efficient Ren-
dering of Optical Effects within Water Using Graphics
Hardware. Pacific Graphics 2001, pp. 374–383, 2001.

[Joz02] Jozwowski, T. R. Real Time Photon Mapping. Mas-
ter’s thesis, Michigan Technological University, 2002

[Lov02] Loviscach, J. A Convolution-Based Algorithm for
Animated Water Waves. Eurographics 2002 Short Pa-
per Presentations, pp. 381–389, 2002.

[Nis94] Nishita, T., Nakamae, E. Method of Displaying Op-
tical Effects within Water using Accumulation Buffer.
Proc. of SIGGRAPH ’94, pp. 373–379, 1994.

[Pea86] Peachey, D. R. Modeling Waves and Surf. Proc. of
SIGGRAPH ’86, Vol. 20, No. 4, pp. 65–74, 1986.

[Kas90] Kass, M., Miller, G. Rapid, Stable Fluid Dynam-
ics for Computer Graphics. Proc. of SIGGRAPH ’90,
Vol. 24, No. 4, pp. 49–57, 1990.

[Sch01] J. Schneider and R. Westermann. Towards Real-
Time Visual Simulation of Water Surfaces. Vision,
Modeling, and Visualization 2001, pp. 211–218, 2001.

[Slo02] Sloan, P.-P., Kautz, J., Snyder, J. Precomputed Ra-
diance Transfer for Real-Time Rendering in Dynamic,
Low-Frequency Lighting Environments. Proc. of SIG-
GRAPH ’02, pp. 527–536, 2002.

[Sta99] Stam, J. Stable Fluids. Proc. of SIGGRAPH ’99,
pp. 121–128, 1999.

[Tre00] Trendall, Ch., Stewart, A. J. General calculations
using graphics hardware, with application to interac-
tive caustics. Proceedings of Eurographics Workshop
on Rendering 2000, pp. 287–298, 2000.

[Wat90] Watt, M. Light-Water Interaction Using Back-
ward Beam Tracing. Proceedings of SIGGRAPH ’90,
pp. 377–385, 1990.

