
Parallel Visibility Computations

for Parallel Radiosity

by

W. St�urzlinger and C. Wild

Johannes Kepler University of Linz
Institute for Computer Science
Department for graphical and parallel Processing
Altenbergerstra�e 69, A-4040 Linz, Austria, Europe

Tel.: +43(732)2468-884, Fax : +43(732)2468-10
e-mail: wrzl@gup.uni-linz.ac.at



Parallel Visibility Computations

for Parallel Radiosity

W. St�urzlinger and C. Wild

Institute for Computer Science, Johannes Kepler University of Linz, Austria

Abstract

The radiosity method models the interaction of light between di�use re
ecting sur-

faces, thereby accurately predicting global illumination e�ects. Due to the high com-

putational e�ort to calculate the transfer of light between surfaces and the memory re-

quirements for the scene description, a distributed, parallelized verison of the algorithm

is needed for scenes consisting of thousands of surfaces. We present a distributed, parallel

radiosity algorithm, which can subdivide the surfaces adaptively. Additionally we present

a scheme for parallel visibility calculations. Adaptive load redistribution is also discussed.

1 Introduction

Radiosity has become a popular method for image synthesis due to its ability to generate im-
ages of high realism. It was �rst introduced to computer graphics by Goral et al. [GORA84].
Further research resulted in the progressive re�nement method, which is able to produce
good approximations of the �nal solution very quickly [COHE88]. The radiosity method was
extended to include specular re
ection through the so called two-pass approach. For recent
developements see [MALL88, SILL89, SILL91].

Common to all these methods is the representation of the surfaces of the environment by
a mesh of quadrilaterals and triangles. These \patches" are used to store the radiosity on
the respective part of the surface.

The geometric formfactors were �rst calculated by the use of a hemicube [COHE85]. A
hemicube is placed around the center of a patch and all other patches are projected onto
its surfaces. The projected area gives an estimate for the geometric formfactor between the
patches.

Because this estimate of the formfactors may be inexact even for simple cases [BAUM89],
other methods for computing the formfactors were suggested and/or implemented. Baum
used a hybrid method involving both numerical and analytic methods [BAUM89] and other
methods use raytracing to compute the formfactors [WALL89, SILL89, MALL88, TAMP91].
Wallace subdivides the shooting patch until an analytic solution to approximate the form-
factor of the delta-areas can be used. Then the formfactors for all visible delta-areas are
summed up giving a good approximation to the formfactor of the shooting patch.

The calculation of the formfactors accounts for most of the computation time of the ra-
diosity method. Also the memory requirement is clearly a function of the number of patches.
These problems led to the developement of parallel implementations of the progressive re-
�nement radiosity method [BAUM90, RECK90, FEDA91, CHAL91].

1



1.1 Progressive Re�nement

The radiosity method partitions the surfaces of the scene in small, 
at patches and computes
the illumination for each of those patches. The radiosity of a patch is determined by the
radiosity it emits directly plus all light that is re
ected. This is described by the radiosity
equation:

Bi = Ei + �i

n�1X

j=0

Fi;jBj (1)

where

� n is the number of the patches.

� Bi is the radiosity of the i-th patch.

� Ei is the emitted radiosity of the i-th patch.

� �i is the re
ectivity of the i-th patch.

� Fi;j is the formfactor from patch i to patch j.

The linear equation system de�ned above can be solved with e.g. an iterative Gauss-Seidel
solution method and this method converges quickly in practice. As the memory usage to
store the formfactor matrix is proportional to n2 this method becomes impractical for larger
n. The progressive re�nement method solves this equation system iteratively also. Due to a
reordering of the solution process, it is only neccesary to calculate (and store) one column of
the matrix per iteration step. The iteration then distributes (\shoots") the radiosity of the
patch with the maximum unshot radioisity to all other patches in the environment.

2 Parallelization of the Progressive Re�nement Method

2.1 Previous Research

Parallelization of the Progressive Re�nement Method has been atempted in several ways.
Baum [BAUM90] used a multiprocessor workstation calculating the hemicubes using a hard-
ware z-bu�er. Recker [RECK90] used a cluster of workstations.

Feda [FEDA91] presented an implementation on a transputer network, where each proces-
sor has local memory. The formfactors were calculated using the hemicube method. Chalmers
[CHAL91] also presented an implementation on a transputer network. He improved the ac-
curacy of the formfactor calculation by using the analytical approch described by [BAUM89].

The use of the hemicube or the analytical method still su�ers from the problem that
the formfactors and the visibilities are determined using the \shooting"-patch as projection
center. This leads to noticeable artifacts. A better method is to calculate this information
directly for each receiver.

In the following sections we assume that we have a number of processors with local memory
and that we have a interconnecting network. We did our tests on an nCube with 64 nodes
with 4 MB memory each, connected by a hypercube topology network, but we emphasize
that the algorithm can be ported easiliy to other architectures.

2



2.2 Parallel Progressive Re�nement

This paper presents an approach based on the calculation of formfactors by raytracing as
described by Wallace [WALL89]. Raytracing is used to determine the visible parts of the
\shooting"-patch as seen from each patch. The formfactor of these visible parts is then
calculated using the analytical solution to the contour integtral. The visibility is determined
by subdividing the \shooting"-patch regularily into M parts and tracing a ray from the
receiver to each of these parts.

In the following discussion we assume that each processor stores the data for all patches.
Therefore the number of patches is limited by the available memory on each processor. In
section 3 we will show how this algorithm can be extended for larger numbers of patches.
Then the following steps are performed until the solution has converged:

� All processors send their \best" patch to the master processor, i.e. the patch which has
the most unshot radiosity.

� The master processor chooses the globally best patch as \shooter" and sends this infor-
mation to all processors. Note that the \shooter"-geometry and its radiosity data are
distributed to all processors in this step.

� The following steps are performed on all processors in parallel:

{ For each receiving patch we determine the visibility of the \shooting"-patch by
tracing rays to the shooter. Each ray is intersected with all other patches. For
the visibile parts we calculate the formfactor and add the resulting contribution
to the receiver radiosity.

In contrast to many previously presented algorithms, we don't have to update radiosity
values on other processors, we just communicate to determine the \shooter"-patch.

2.3 Rendering

After the solution has converged we render the scene. This can be done e.g. by sending
all patches to the workstation and using its hardware z-bu�er to render the picture. An
alternative is to render the picture in parallel also. This could be done as follows:

We partition the picture into N parts and assign each part to one of the N processors,
we can use a ring topology to distribute all patches to all processors, or exploit the network
topology more fully. The load distribution will be quite uneven for this method, as di�erent
parts of the picture will \contain" signi�cantly di�erent numbers of patches. This has been
reported by Feda [FEDA91] but they also propose a scheme which assigns every N -th scanline
to a processor thus distributing the load much more evenly.

3 Parallel Visibility Calculation

In section 2.2 we presented a parallel progressive radiosity algorithm. One shortcoming of
the method of section 2.2 is, that the number of patches is limited by the available memory
on each processor. This is due to the fact, that we have to intersect each visibility ray with
all other patches to determine the visibility of the \shooter"-patch.

3



Each processor which calculates and stores the radiosity of patches is called radiosity
processor from now on, and processors assigned to visibility calculations are called visibility
processors.

Let us assume that we assign a number of visibility processors to each radiosity processor.
The patches of the scene are distributed evenly among each group of visibility processors.
I.e. the union of the patches stored on the visibility processors assigned to one radiosity
processor is equal to the set of patches of the scene.

Master Processor

Radiosity Processors

Visibility Processors

Figure 1: Communication structure for 2 visibility processors assigned to each of 3 radiosity
processors.

In other words we store the scene four times in the above con�guration, three times split
into each of the visibility processor pairs and one time split into the three radiosity processors.

The following algorithm also assumes that we use a �xed subdivision of the \shooter"-
patch, e.g. into 16 or 64 parts.

� We send a point, for which the visibility is to be determined, from the radiosity processor
to its visibility processors.

� Each visibility processor determines for each part of the subdivision of the \shooter"-
patch, if it is visible or not and returns the result in a bit vector to its radiosity
processor.

� The radiosity processor collects all response messages from its visibility processors and
binary-and's the bit vectors together. The resulting bit vector describes now which
parts of the \shooter"-patch are visible. All bits, which are set, correlate to a part of
the \shooter"-patch which was determined visible on all visibility processors. All zero
bits correlate to parts invisible on at least one visibility processor, i.e. at least one
patch obstructed the part of the \shooter"-patch. The ratio of set bits to the number
of parts of the subdivision describes now the visibility of the \shooter"-patch.

To reduce the communication overhead, we transfer the points, for which the visibilities
are to be determined, in blocks of e.g. 100 to the visibility processors. Also the resulting bit
vectors are transfered in identical sized blocks back to the radiosity processor.

4 Patches and Elements

The two-level hierarchy of patches proposed by [COHE86] can also be used with this method.

4



We subdivide each patch into elements and store these elements locally on the processor.
The visibility and formfactor calculations now need to be done for each element, therefore
we will have to communicate more frequently with the visibility processors. The visibility
processors still store only the geometry for \their" patches for the intersection tests.

Additional communication overhead will also appear during the rendering phase, as all
elements have to be transfered (and rendered).

For a better load distribution we distribute the patches so that an approximate equal
number of elements has to be handled by each radiosity processor.

4.1 Adaptive Subdivision of the Environment

This approach can be generalized by subdividing the elements adaptively, e.g. if the radiosity
values at the corners of an element are too di�erent. The test is done after the energy has
been distributed to all elements. The adaptive subdivision of elements progresses recursively
until all elements are (almost) uniformly lit.

In the parallel version adaptive subdivision is a local decision, therefore there is no addi-
tional communication overhead, except for a greater number of visibility tests.

4.2 Dynamic Load Balancing

Of course this scheme is not optimal from the standpoint of load distribution. Some proces-
sors with deeply subdivided surfaces (i.e. a great number of elements) will have a signi�cantly
higher load for all further interactions than others. As we �nd that a processor has a signif-
icantly higher number of elements than other processors, we can transfer some patches and
the associated elements to a less loaded processor.

This strategy can also be used if we run out of memory while apaptively subdiving.

5 Implementation and Results

Our approach was implemented on an nCube2 with 64 processors, which is a distributed
memory computer where the nodes are connected with a hypercube topology network. The
performance of a single processor is 2.5 MFLOPS.

As a basis we used the progressive radiosity algorithm for patches and elements. We
parallelized this algorithm as desribed in section 2.2 and implemented the parallel visibility
calculation method (section 3). For practical reasons we used the �rst radiosity processor as
master processor.

All given times are in seconds for one iteration of the progressive radiosity algorithm. In
the tables R denotes the number of radiosity processors, V the number of visibility processors
and T denotes the total number of processors.

We used the following scenes for out tests.

Name Patches Elements

Scene 0 52 1162

Scene 1 288 4648

Scene 2 832 18952

Scene 3 3328 74368

The �rst test was performed with a varying number of radiosity processors without visi-
bility processors.

5



R V T Scene 1 Scene 2

4 0 4 170 2728

8 0 8 107 1361

16 0 16 60 683

32 0 32 14 427

64 0 64 4 244

The time decreases sublinearily due to the fact that all processors are synchronized im-
plicitely by the best \shooter"-patch selection.

Then a varying number of radiosity processors with three visibility processors each was
tested.

R V T Scene 1 Scene 2 Scene 3

4 3 16 64 993 -

8 3 32 39 483 8436

16 3 64 23 244 3882

Again the time decreases sublinearily, but this time the synchronization process is not as
noticeable as in the previous test.

The next test was performed with a varying number of visibility processors per radiosity
processor.

R V T Scene 1 Scene 2

4 0 4 170 2728

4 1 8 175 2770

4 3 16 64 993

4 7 32 31 463

4 15 64 19 252

The performance increases with the number of visibility processors as expected, but the
increase is not linear as the communication overhead increases with the number of visibility
processors.

Another test was performed with a �xed number of total processors and di�erent con�g-
urations.

R V T Scene 1 Scene 2 Scene 3

4 15 64 19 252 (3811)

8 7 64 18 222 3781

16 3 64 23 244 3882

32 1 64 14 433 5513

64 0 64 4 244 2727

We could not obtain data for scene 3 with 4 radiosity and 15 visbility processors because
the radiosity processors ran out of memory for this con�guration (not enough memory for
elements). Therefore the time is given for a con�guration with 5 radiosity and 11 visibility
processors for a total of 60.

The con�gurations with no visibility processors perform quite well. Too small a number
of visibility processors slows the algorithm down, as the radiosity processor has to wait for
the visibility processors to �nish.

6



For 7 visibility processors (i.e. 8 radiosity processors) we have a local minimum. For scene
1 this is also the optimum.

Greater numbers of visibility processors also decrease the performance due to the greater
communication overhead.

The communication overhead for the visibility calculations is quite noticeable, especially
for small scenes, i.e. scene 1. Here it is a lot quicker to perform the visibility test locally than
to wait for the data from the visibility processor to return.

For scene 0 we also measured the total time, i.e. the time the progressive radiosity algo-
rithm took to reach convergence. The progressive radiosity algorithm performs 138 iteration
until convergence on all con�gurations.

R V T Scene 0

1 0 1 4861

4 7 32 426

8 3 32 503

32 0 32 457

4 15 64 299

8 7 64 278

16 3 64 306

52 0 52 371

As scene 0 consists of 52 patches we were not able to exploit the 64 processor nodes fully.
Interestingly enough the fastest time was reported for the con�guration with 8 radiosity and
7 visibility processors.

6 Conclusion and Further Extensions

The newly presented method has a number of advantages.

� Formfactor calculation is done by raytracing, which proved to deliver much more accu-
rate results than the hemicube method.

� There is no need to distribute radiosity values after formfactor calculation, as in pre-
vious parallelization attempts. Therefore all calculations can be done locally, and no
communication is necessary in this phase.

� The method allows adaptive subdivision of the surfaces. Additionally the uneven load
which results from the adaptive subdivision can be redistributed using the scheme
described in section 4.2.

� The parallel visibility calculation method allows us to render scenes where the memory
to store the patches and elements exceeds the available memory per processor node. We
are currently modelling some scenes, where even the memory for the patches exceeds
available memory. i.e. � 15000 patches. As the results indicate, for certain processor
con�gurations the method also outperforms the naive parallelization of the progressive
radiosity method.

In the current version the visibility test is quite ine�cient, as we don't use any optimiza-
tion method to speed up the ray tracing. We are currently implementing an octree method

7



to improve the performance of the visibility tests. This should speed up the whole algo-
rithm signi�cantly. Especially we expect, that con�gurations with 3 to 7 visibility processors
perform substantially better.

All processors are synchronized at every progressive radiosity iteration by the best \shooter"-
patch selection, therefore the performance is determined by the slowest processor. Detecting
such a processor and transfering some of its patches (and the assoicated elements) to other
processors should improve the performance of following progressive radiosity iterations con-
siderably.

References

[BAUM89] Daniel R. Baum, Holly E. Rushmeier, James M. Winget, \Improving Radiosity

Solutions through the Use of Analytically Determined Form-Factors", Computer
Graphics (SIGGRAPH '89 Proceedings), July 1989.

[BAUM90] Daniel R. Baum, James M. Winget, \Real Time Radiosity Through Parllel Pro-

cessing and Hardware Acceleration", Computer Graphics (SIGGRAPH '90), July
1990.

[CHAL91] Alan G. Chalmers, Derek J. Paddon, \Parallel Processing of Progressive Re�ne-

ment Radiosity Methods", in Proceedings of the Second Eurographics Workshop
on Rendering, May 1991.

[COHE85] Michael Cohen, Donald P. Greenberg, \The Hemi-Cube: A Radiosity Solution

for Complex Environments", Computer Graphics (SIGGRAPH '85 Proceedings),
August 1985.

[COHE86] Michael Cohen, Donald P. Greenberg, Dave S. Immel, Phillip J. Brock, \An E�-

cient Radiosity Approach for Realistic Image Synthesis", IEEE Computer Graph-
ics and Applications, March 1986.

[COHE88] Michael Cohen, Shenchang Eric Chen, John R. Wallace, Donald P. Greenberg,
\A Progressive Re�nement Approach to Fast Radiosity Image Generation", Com-
puter Graphics (SIGGRAPH '88 Proceedings), August 1988.

[FEDA91] Martin Feda, Werner Purgathofer, \Progressive Re�nement Radiosity on a Trans-
puter Network", in Proceedings of the Second Eurographics Workshop on Ren-
dering, May 1991.

[GORA84] Cindy M. Goral, Kenneth E. Torrance, Donald P. Greenberg, Bennett Battaile,
\Modelling the Interaction of Light Between Di�use Surfaces", Computer Graph-
ics (SIGGRAPH '84 Proceedings), July 1984.

[MALL88] Thomas J.V. Malley, \A Shading Method for Computer Generated Images", Mas-
ter's Thesis, University of Utah, June 1988.

[RECK90] Rodney J. Recker, David W. George, Donald P. Greenberg, \Acceleration tech-

nique for Progressive Re�nement Radiosity", Computer Graphics (SIGGRAPH
'90), July 1990.

8



[SILL89] Francois Sillion, Claude Puech, \A General Two-Pass Method Integrating Spec-

ular and Di�use Re
ection", Computer Graphics (SIGGRAPH '89 Proceedings),
July 1989.

[SILL91] Francois X. Sillion, James R. Arvo, Stephen H. Westin, Donald P. Greenberg, \A
Global Illumination Solution for General Re
ectance Distributions", Computer
Graphics (SIGGRAPH '91 Proceedings), July 1991.

[TAMP91] F. Tampieri, D. Lischinski, \The Constant Radiosity Assumption Syndrome", in
Proceedings of the Second Eurographics Workshop on Rendering, May 1991.

[WALL89] John R. Wallace, Kells A. Elmquist, Eric A. Haines, \A Ray Tracing Algorithm

for Progressive Radiosity", Computer Graphics (SIGGRAPH '89 Proceedings),
July 1989.

9


