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Abstract

This article suggests a new approach to discrete Ray-Tracing in which a two
step three-dimensional DDA and an octree are used. A very important problem
regarding this kind of Ray Tracing, also known as Raster Ray Tracing, is the
amount of memory required to store the 3D raster grid which will contain the
discretized scene to be visualized. Since the resolution of this grid is huge because
the voxel is assumed to be approximately the size of a pixel on the screen, it is
limited by the maximum amount of memory of todays’ machines. Although using
an octree and assuming that the majority of space will be empty, as such is the
case in most scenes, an important memory saving is achieved. This memory
saving helps using discrete Ray Tracing in normal workstations. It is shown that
the special octree presented here doesn’t slow down Ray Tracing significantly and
even competes with normal discrete Ray-Tracing. It is also shown that in critical
cases this octree will not occupy much more space than a normal 3D grid.

Another important problem is the bottleneck caused by the three-dimensional
DDA in such huge resolution grids. This problem is solved by dividing these
grids into two low resolution ones. The process can be divided in two steps where
optimal times of three-dimensional DDA are achieved. This is shown through
the comparative tests with the single step process.

Key Words: Ray-Tracing, Discrete Ray-Tracing, Raster Ray-Tracing, Octree,
Three-dimensional DDA, Voxel.

1 Introduction

Ray-Tracing algorithm is now widely known not only by experts but also by the general
public as a very powerful and simple tool for rendering realistic scenes. Despite that, it
has the reputation of being a high time consuming process, although many efforts have
been made to accelerate it in many different ways. This reputation is due to the fact that
it has to determine which objects of the scene are intersected by a certain ray, task where

*grants CNPq (Conselho Nacional de Desenvolvimento Cientifico e Tecnolégico)

300 .

[ |



most of its time is consumed as observed in [Whitted, 1980]. In fact all acceleration
methods are somehow related to the problem of ray/object intersection. Some use
simple bounding boxes ([Rubin and Whitted, 1980]) to avoid most of the objects that
are certainly not crossed over by the ray. Others use subdivision methods to decompose
the universe in subspaces modifying the ray to travel these special structures ([Fujimoto
et al., 1986, [Glassner, 1984], [Arvo and Kirk, 1987],[Snyder and Barr, 1987, [Sung,
1991], [Stolte and Caubet, 1992], [Yagel et al., 1992], [Gargantini, 1993]), to disregard
subregions where ray does not pass through. Many other original ways have been
suggested like the Beam Tracer, where several rays are treated at once inside a beam
([Heckbert and Hanraham, 1984]), but it works only with polygonal objects and good
only for relatively simple scenes. Another is the ray under-sampling ([Akimoto et al.,
1991]), where less rays are shot and the illumination is hopefully most of the time
interpolated, but it is not proper for very high quality images and also works well only
in relatively simple scenes.

Among the methods that use 3D space subdivision, some subdivides space uniformly
([Fujimoto et al., 1986],[Snyder and Barr, 1987, [Sung, 1991], [Stolte and Caubet,
1992], [Yagel et al., 1992], [Gargantini, 1993]) or adaptatively ([Glassner, 1984)), or
even other kinds of subdivision in more dimensions to exploit ray coherency ([Arvo and
Kirk, 1987]).

The subdivision process, called voxelization ([Stolte and Caubet, 1993]), that sub-
divides space uniformly assigns the objects’ outline geometry to a 3D voxel grid. In this
process only the part of the geometry that pierces the voxel is assigned to it. This voxel
grid is normally stored in the 3D array format, but it can also be stored in an octree
([Fujimoto et al., 1986],[Sung, 1991], [Stolte and Caubet, 1992),[Gargantini, 1993]).

A special interesting acceleration method was suggested recently in [Yagel et al.,
1992]. It is called Discrete or Raster Ray Tracing, because it works entirely into the 3D
voxel space, the discrete space. The big advantage of this method is that no intersection
calculation between ray and objects is needed, allowing a very fast Ray Tracing. The
big disadvantage is the high resolution 3D voxel grid necessary to achieve good quality
images. This grid is then limited to the machine memory size. The grid resolution in
[Yagel et al., 1992] is 256 x 256 x 256 to a 80 Mb machine. The maximum resolution
was 320 x 320 x 320 to a 128 Mb machine. This easily denotes the difficulty to run this
method in a normal workstation. It is also clear that these resolutions are not enough
for getting good quality images.

Considering this problem, we suggest in this paper an implementation of the Discrete
Ray Tracing using an octree. Using the octree suggested here the utilization of the
method will not be dependent on the machine memory, but on the number of occupied
voxels. On this way simple scenes can be generated in machines poor in memory. On
the other hand, it allows to use higher resolutions necessary to get good quality images,
which is impossible nowadays by using directly 3D grids.

Nevertheless as stated in [Yagel et al., 1992] most of method’s processing cost falls
in the discrete traversal algorithm, namely the Three-dimensional DDA. In [Yagel et
al., 1992] a non conventional DDA was created to reduce this time. This solution
is not enough in high resolution 3D grids. It is a known fact that its efficiency falls
down between the fifth and the sixth levels of the octree ([Fujimoto et al., 1986],[Sung,
1991]). We suggest a two step process to profit of its optimal performance in both
steps. This allows us to visualize quite huge 3D grids in short time. On the other
hand, the algorithm precision is very important for the correctness of this approach.
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The reason is that the transition between the two levels is calculated in floating point
arithmetics. Our DDA is similar to the one shown in [Fujimoto et al., 1986] but the
mapping of floating point values in fixed point using integer variables, offers, at the
same time, efliciency, accuracy and multi-precision flexibility.

We compare our two steps approach with the same program implemented in only
one step. Results show that an optimization of the order of one fifth of time is achieved.

2 The Octree

2.1 Introduction

The octree suggested here uses the spatial enumeration in fixed sized blocks, which we
call cells, of eight elements each. This approach allows a very fast vertical traverse due
to operations’ simplicity. We show that memory requirements for this octree are also
very interesting.

The octree is defined dividing space recursively in eight regions of equal dimensions
in each level until each of these regions has the size of a voxel (Figure 1). Each element
of each cell corresponds to a sub-space of the correspondent volume on a given level.

Figure 1 represents the octree implementation with five levels (left) and its visu-
alization into space (right). Five cells are associated to the octree of Figure, where
each one is located in successive levels of the octree. Each element on last level
corresponds to a voxel into a 3D grid of 2% x 2% x 2° resolution, which can be rep-
resented by its coordinates: (X,Y,Z). The eight voxels showed in Figure 1, on last
level (k=4), pink-coloured, are: V;(30,30,30) -the only one not seen in 3D diagram-,
V4(31, 30, 30), V2(30,31,30), V3(31,31,30), V4(30,30,31) -the only explicitly shown in
Figure-, V5(31,30,31), V5(30,31,31), V2(31,31,31). They are shown in this order in
diagram on the left. This order is the same adopted in [Fujimoto et al., 1986]. Each
cell is therefore an array of eight elements where the order of an element is related to
its position inside the sub-volume that the cell represents.

We define the order of the voxels in cell for octrees with n levels. Each coordinate
X, Y, Z of a voxel in an uniformly subdivided space with a resolution 2" x 2™ x 2"
is a binary number that is defined as a summation of two powers (see below). The
total number of levels of the octree is n. Be k the index of a bit in binary coordinate
(k = n — 1, the rightmost bit; £ = 0, the leftmost bit). Therefore the index of an
element of a cell in a certain level k is given by ¢y = x4 + 2-yx + 4-2x, where z, y, and
2z are the correspondent bits of the coordinates X, Y and Z indexed by k:

n-1 n—1 n-1
X=Z:Ek'2k Y-——Zyk°2k Z=sz°2k

k=0 k=0 k=0
0<X<2" -1 0<Y<2"n-1 0<Z<2" -1

Tk, Yk, 2k € {0,1}

2.2 Vertical Traverse Performance

Because of the property of dividing space in eight portions recursively, the vertical
traverse of the octree shown here, has a complexity of O(logsN) for a full octree, where
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Figure 1: Block diagram showing the octree

N is the total number of cells.

Although the vertical traverse performance depends also on the processing in each
of its levels. This processing is done by the algorithm that implements the lookup of a
voxel. This algorithm is given in a notation similar to the C language (Figure 2). X, Y
and Z are the coordinates of the voxel to be searched. The << and >> operators are
respectively the binary left and right shift. The array cell is a pointer but the notation
of array is more convenient for clarity purposes. Hence variable ¢ does not really exist.
At algorithm exit variable cell will contain the address of the cell where the voxel is (a
null address indicates that voxel does not exist) and the value of ¢ is the voxel index in
this cell (in the real implementation, the pointer cell has the voxel address).

In Figure 2 algorithm, variable mask has initially the bit n —1 set (n is the number
of octree levels, as seen before) and all the other reset. The pointer cell receives the
address of the first octree cell, which is the father of the whole octree. The main
processing is done into a loop shown here by a while command. The loop is totally
controlled by variable mask which is shifted right in each successive cell. When mask
arrives to one, the loop is interrupted as shown. Otherwise, the index of the element
in cell is initialized and calculated. Making a logical "and” between mask and each
coordinate is an easy and fast way to ignore a zero bit, which indicates no contribution
to the index. On the other hand, if it is one, its contribution is accumulated in the
index.

Therefore, variable mask has in reality two different functions in algorithm. These
functions are the exit control of loop and filter of the bit to be considered. This is
very important because with this scheme the proper bit and the loop control are both
updated by just one shift operation. When a whole branch of the octree does not
exist (when cell[i] is zero) the process is immediately interrupted. This extra test is
necessary to the algorithm correctness and reduces useless processing when voxel does
not exist.
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mask =1<< (n—1)
cell = octree root cell

bool = TRUE
while (bool)
{i=0

if (Z and mask) #0) i=i+4
if (Y and mask) #0) i=1i+2
if (X and mask)#0) i=i+1
if ((mask and 1) == 0)
{if (cell[i] #0)
{ mask = mask >>1
cell = cell[1]

else bool = FALSE

}
else bool = FALSE
}

Figure 2: Octree vertical traverse

Then, in this algorithm, there are the following operations: 4 logical ands, 1.5
additions (because each addition has 50% probability of being executed), 2 comparisons
and 1 shift. This makes only 8.5 integer arithmetic operations for each octree level.
But it is even faster for empty regions.

It is easily shown that this implementation is faster than the linear octrees ([Gargan-
tini, 1982]), but this demonstration is out of the scope of this article. This conclusion
is particularly interesting since linear octree serves as a base to many octree implemen-

tations ([Glassner, 1984], [Sung, 1991], [Gargantini, 1993]).

2.3 Memory Requirements

The octree shown here is formed with cells of eight elements each. Each element can
have eight son cells, right from the first cell. Hence, the memory allocation for the full
octree obeys a geometric series with step 8:

80 4+ 8 +82+8%..+8" = 11__88

For last level, there are 8"~! cells that will correspond to 8" leaf elements or voxels.
Then for indexes, there will be in a full octree the following number of cells:
1-8rt 1

1
0 1 2 3 n—2 __ _____'n—l__'___
8" +8 +8°+8°...4+8 =—T_§ -7 8 Z

A 3D array of voxels of 2* x 2" x 2", which has 8" voxels, will contain 8! cells.

Therefore a full octree has practically %, x 8"~! more cells than the equivalent 3D array.

Although memory requirements for the full octree will be about 14% greater than a
3D grid, it is highly improbable that this situation would happen without being forced.
Anyway, memory requirements for a 3D grid are still prohibitive for high resolutions.
Hence the octree as proposed here seems to be much more appealing than the 3D grid
in the Discrete Ray Tracing context, where grid resolution is high.

304

—_—



3 Three-dimensional DDA

Space Regular subdivision allows to use incremental techniques to identify ray-traversed
voxels in their exact order of appearance in a very efficient way due to simplicity
and fast integer operations. These techniques allow to implement Ray Tracing in a
completely discrete way. For high resolution 3D grids, this solution is not enough. A
better performance strategy becomes necessary. Our solution is dividing the task in
two steps. This approach forces the use of algorithms of connection 6 ([Yagel et al.,
1992]) for the correct algorithm continuity in second step.

Fujimoto et al. ([Fujimoto et al., 1986]) have suggested an incremental DDA for
identifying ray-traversed voxels rapidly, called 3DDDA. The main advantage of their
approach is using integer calculi. Our three-dimensional DDA is inspired of their im-
plementation. Unfortunately, it is impossible to compare both algorithms since not
enough details are given about their SDDDA.

list = NIL
do
{if (tMazxX < tMazY)
{if (tMaxX < tMazxZ)
{ X = X + stepX
if (X == justOutX)
return(NIL) [* outside grid*/
tMazX = tMazX + tDeltaX

else
{Z=2+ stepZ
if (Z == justOutZ)
return(NIL)
tMazZ = tMazZ 4 tDeltaZ

else
{if (tMazY < tMazZ)
{Y =Y 4 stepY
1f (Y == justOutY)
return(NIL)
tMazY = tMazY + tDeltaY

else
{Z=2+ stepZ
if (Z == justOutZ)
return(NIL)
tMazZ = tMazxZ + tDeltaZ

lia}t = ObjectList[X][Y][Z]
} while(list == NIL)
return(list)

Figure 3: Three-dimensional DDA of Amanatides and Woo

Another method was suggested by Amanatides and Woo ([Amanatides and Woo,
1987], Figure 3), which is similar to the one shown in [Snyder and Barr, 1987]. The
big disadvantage of the method is using floating point calculation. Even though in
some processors the floating point additions are as fast as integer ones, the algorithm
precision is limited. Snyder ([Snyder and Barr, 1987]) suggests that the algorithm
could be implemented with integer arithmetics. Our experience, on the other hand,
([Stolte and Caubet, 1992]) demonstrated that this solution is not very precise. It also
generates many problems scaling ¢ to an integer variable when (tmaz — tmin) < 1.

For the two pass process, we need not only a 6 connected algorithm but also a very
precise calculation. If the initialization is done with double precision (64 bits) variables,
the maximum mantissa precision is 53 bits. Our algorithm should work at least at this
precision. Most of the processors work with 32 bits, which force us to use 2 integer
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variables. Although the incremental calculi tend to propagate the errors very rapidly.
To correct these errors, a higher precision than 53 bits is required. Using fixed point
notation, it is possible to enhance the precision, since all the 64 bits can be used instead
of only 53. The solution is straightforward, but this analysis is out of the scope of this
article.

1 XYZ.ant = XY Z and mask

2 /* loops while inside empty space */

3 while (true)

4 {f ((XYZ >> shift.drive) and mask.drive) 3 limit)
5 * process driving axis */

[ {XYZ=XYZ+ incdrive

7 if ((XYZ and mask) # XY Z_ant)

8 { XYZ.ant = XY Z — incdrive

9 break

10

1 }

12 else

13 /* process incremental axis */

14 {XYZ=XYZ+ inciinc

15 /* calculate next limit for this inc. axis */
16 limit flisinc] = Lmitflicine] + limitoquot f[i-inc]
17 ¢f (carry)

18 { miti[i-inc] = limiti[i_inc] + inclim[ising] }
19 Limiti[i_inc] = limiti[isinc] + limit_quoti[i.inc]
20 /* decide which inc. axis is the nearest */
21 if (Iimiti[i1] > limitii2])

22 { limit = integer_part(limiti[0])

23 iinc =0

24 if ((XYZ and mask) # XY Z_ant)

25 { XYZ.ant = XY Z — inc.inc

26 incuine = inc.incl

27 break

28

29 inc.inc = incancl

30

31 else

32 { if (limiti[il] < Limiti]i2])

33 { limit = integer_part(limiti[1])

34 f.inc =1

35 if ((XYZ and mask) # XY Z_ant)

36 { XYZ.ant = XY Z — inc.inc

37 inc.inc = inc.inc2

38 break

39

40 tnc.ine = inc.inc?

41

42 ehe

43 {if (llm'tf[tl] > limit f[i2])

44 limit = integer_part(limitif0))

45 tdnc =0

46 if ((XYZ and mask) # XY Z.ant)
47 { XYZ.ant = XY Z — inc.inc
48 tnc.inc = inc.incl

49 break

50 }

51 inc.inc = inc.incl

52

53 else

54 { limit = integer_part(limiti[1])

55 idnc=1

56 if (XY Z and mask) # XY Z_ant)
57 { XYZ.ant = XYZ — incinc
58 inc.inc = inc.inc2

59 break

60

61 inc.inc = incinc2

62

63 }

64 }

85 }

66 }

Figure 4: Our Three-dimensional DDA

Our algorithm (Figure 4) is based on the principles shown in [Fujimoto et al.,
1986). The axis of greatest movement is called driving axis. The other two are called
incremental axes. The basis of the algorithm is to increment unconditionally the driving
axis coordinate while there is no change in the coordinates of the other two axes. Once
such a change is detected, the correspondent incremental axis coordinate is incremented



instead. This clearly gives a connectivity 6 traversal.

The algorithm stays into a loop while it traverses an empty region (detected by
octree nodes that do not have descendents). This is done to avoid descending the
octree every time a new voxel is traversed (a more detailed description is given later).

During the initialization process (not shown in Figure 4), the first intersection points
between line and the two passive axes are calculated. The coordinates of these points
corresponding to the driving axis are called limits and are both stored in fixed point
notation using integer arrays (limiti and limitf). One of these two limits will arrive first
depending on the sense of displacement along the driving axis. The integer part of this
limit is stored in the variable called limit.

For a 6 connected traverse, only one coordinate must be updated in each step. If
the driving axis coordinate is not equal to limit (line 4), the chosen axis is the driving
one, otherwise it is the corresponding passive one. In either case, the corresponding
coordinate is incremented and a test to exit the loop is executed. However, each time
a passive axis is processed, its new limit and the value of limit must be determined.
Although these tasks are highly time consuming, their complexities are mainly due
to 64 bits calculations using 32 bits variables. In 64 bits machines, they could be
accomplished with only one arithmetic operation and one test.

The decision to keep the three coordinates (X, Y and Z) into just one variable
(XY Z) was mainly to store them in just one register variable, and to accelerate certain
tasks like ascending the octree (Figure 5), and tests for exiting loops. This decision
force us to spend extra arithmetic operations to filter the coordinates.

The successive limit calculation is done incrementally. The increment is the quo-
tient between the displacement along driving axis and the displacement along an in-
crement axis, that is the inverse slope. It is also stored in integer arrays (limit_quoti
and limit_quotf) using fixed point notation. In our 32 bits implementation, the incre-
mentation is done in two steps, as indicated in algorithm (lines 16-19, i_inc indicates
the increment axis as can be seen in lines 23, 34, 45 and 55). This separation (using
two 32 bits variables instead of one 64 bits variable) is also responsible for the code
duplication observed in lines 44-52 and 54-62.

Once the new limit is calculated, the nearest one of the two must be determined to
be assigned to limit. The sense of displacement along driving axis can be forwards or
backwards. Hence, the tests must be reversed accordingly. To avoid useless repetition
of code and extra tests, this task can be better done indirectly through pointers (the
real implementation) or through indexes (! and ¢2 in algorithm, lines 21, 32 and 43 )
assigned during initialization. Although this could be also done by reversing the signs
of limits when the displacement is backwards, which allows an implementation entirely
with registers. :

It is evident that our 32 bits implementation can be slower than the algorithm of
Amanatides and Woo (Figure 3), depending on machine. Although, if our method of
skipping empty regions is adapted to their algorithm, a 64 bits version of our algorithm
can be strongly competitive or even faster. In any case, our algorithm is 11 bits more
precise which justifies its utilization in our two pass process.

The final condition test (lines 7, 24, 35, 46 and 56) allows us to skip empty spaces
without descending or ascending the octree. Variable mask is shown in algorithm of
Figure 2. It is used in our Three-dimensional DDA to identify the exact bit that changes
the value only when the DDA leaves the empty region. If it has been changed the DDA’s
loop is finished and the octree’s vertical traverse restarts as shown in algorithm of Figure
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5.

Push and pop operators of Figure 5 denote an external stack to keep the addresses
of the parents cells, as done by many authors ([Fujimoto et al., 1986], [Sung, 1991] et
[Gargantini, 1993]). The first part of main loop ascends the octree while no common

father is found. The second part descends the octree (basically the same as Figure 2).
The third part is the Three-dimensional DDA of Figure 4.

/* one mask for each coordinate */
mask = 1 << (n—1)
mask = mask or (1 << ((n —1) << 1))
mask = mask or (1 << (((n—1)<<1)+(n-1)))
/* three coordinates in one *
XYZ =(Z << ((logg N) - 1))
XYZ=XYZor (Y << (((loggN) ~1) << 1))
XYZ=XYZor (X << ((((loggN)—1) << 1) + ((logg N) — 1))
cell = root cell address of octree
push(cell)
t.c = 0 /* index of last changed coordinate*/
test.end = mask
XYZant = XYZ
/* repeat while inside octree*/
while (true)
{ XYZ.ant = XY Z.ant zor XY 2

if (XY Z.ant and test.end) break

mask = mask >> 1

/* ascend octree ’til common father arrives*/

while (XY Z.ant and mask)

{ por
mask = mask << 1

}
mask = mask << 1
pop(cell)
X = XYZ and mask.X
Y = XYZ and mask.Y
2= XY2Z and mask-Z
/* The lines different from fig. 2 are commented */
bool = TRUE
while (bool)
{ push(cell) /* push address cell */
i=0
if ((Z and mask) # )l= i44
tf((Y and mask) #0) i=i+2
if ((X and mask) #£0) i =
if ((mask and 1) == 0)
{4f (eellli] # 0)
{ mask = mask >> 1
cell = celifi]

}
else bool = FALSE
}
else bool = FALSE
}
i f (cellls] # 0)

{ /*second step*/ }
/* 3DDDA, algorithm from fig. 4%/

Figure 5: Octree traversal with empty space skip

4 Results

In table of Figure 6, our results for the test image 1 are summarized. For the test
image 2, our results are summarized in Figure 7. Images were calculated using a
Crimson SGI workstation (R4000+R4010,100MHz,128Mb). These tables indicate the
screen resolution (first columns), 3D grid resolution (second columns), the time for the
single step ray tracing (third columns), and times for the two step ray tracing with
different number of levels of the octree in the first step and the second step (fourth
columns). The numbers in parentheses are respectively the number of levels in the first
step and in the second step. The ”+” separating them indicates that their addition
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gives the total number of octree levels. All the times include the CPU time for the
voxelization and the generation of a PostScript file of the image.

Res. 2D | Res. 3D | RT 1 step | RT 2 steps

1024 2048° 25°06” | 8°21” (4+47)
5’38” (5+6)
5’03” (6+5)
5'36” (7+4)
1024* 10243 12’52 | 3'59” (4+6)
3’03” (5+5)
2’59” (6+4)
3’40” (7+43)
5122 10243 328 1’14” (4+6)
1°00” (5+5)
0’59” (6+4)
1°09” (743)
2562 10243 1°06” 0’33” (4+6)
0°29” (5+5)
0’29” (6+4)
0°32” (7+43)

Figure 6: Comparison results for image 1 (Figure 8)

Res. 2D | Res. 3D | RT 1 step | RT 2 steps

10242 1024° 18’117 | 5727”7 (446)
405” (5+5)
3'44” (6+4)
404” (74+3)
512° 10243 710" | 2°05” (4+6)
1’44” (5+5)
1’'44” (6+4)
146" (7+3)
2562 10243 2’027 1’14 (4+6)
' 1’09” (5+5)
1°07” (6+4)
1°09” (74+3)

Figure 7: Comparison results for image 2 (Figure 9)

The best time in our two step process was always with 6 levels in the first step. This
result was expected because it agrees with DDA performance given by other authors
([Fujimoto et al., 1986], [Sung, 1991]). The best time we have obtained in comparison
with the single step process was with the largest 3D grid (2048 x 2048 x 2048) and
largest screen resolution, which, in our two step process, is represented by one fifth of
the single step process time. This result agrees with the observation in [Yagel et al.,
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Figure 8: Image 1

Figure 9: Image 2
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1992) that most of the time of the discrete ray tracing was spent in three-dimensional
DDA. We have bypassed this problem creating the two step process, thus profiting
of its optimal performance. This was only possible because of the the octree’s multi-
resolution characteristic.

A curious fact however is that the advantage of the two step process declines (al-
though the times are always better than the single step) for lower screen resolutions.
We believe that the origin of this behavior is the floating point calculation during the
transition of the two steps. Therefore, our system is ideal for very high resolution 3D
grids and large images. The resolution of the 3D grid is limited by the surface of the
object and the memory size.

5 Conclusion

We presented the implementation of a Discrete Ray Tracing using an octree. A method
to avoid completely the vertical traversal of the octree over empty regions was imple-
mented (as previously shown). While it was in empty regions, only the DDA was
active in a closed loop. This reduced in about 50% the global time over the previous
implementation. Our results with simple test scenes are similar to the ones obtained in
[Yagel et al., 1992]. Since the performance is very sensible to the DDA processing and
since the skip empty regions procedure still run the complete DDA, we have assumed
that a multi-precision DDA (as briefly described previously) could lead us to even bet-
ter results. Effectively this was verified for high resolution grids and high resolution
screen. The advantage of the method decays though for lower resolutions probably due
to the floating point calculation for the transition between the two steps. Although the
method is an efficient tool to visualize huge volumetric data realistically.

Free-form non symmetrical surfaces (like in Figure 9) have virtually a different
normal vector for each voxel allowing no kind of compacting in memory space. The
choice of B-Spline surfaces for our test scenes was to show that the technique is not
limited to planar figures. On the other hand working with high resolution discrete
ray tracing can simplify complicate tasks related to curved surfaces. Examples are
the visualization of intersections between surfaces or between surfaces and cut planes.
Although this visualization is possible with standard ray tracing, it is not simple to
put in evidence the intersection (with a different colour for example) or to obtain the
points of the intersection curve. These tasks are straightforward using high resolution
discrete space. Our ray tracing can visualize them realistically in a short time as shown
in our examples.

The octree and the DDA introduced here are shown to be very convenient to be
used in the context of the Discrete Ray Tracing.
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