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Abstract

The paper presents a new approach to the theory of aspect graphs. This approach is based on
the presumption that an equivalence relation can be introduced on the set of images of a given
scene. The equivalence relation induces the decomposition of the set of images, which is
infinite, into the finite number of classes. Similarly, also the space surrounding the scene is
decomposed into the classes. From every point of certain class, equivalent images of the scene
are perceived. The aspect graph is the graph that contains the information about these classes
and the relations between them. Presented theory enables to put the approaches published
earlier into the unifying framework. The paper also presents an example in which the general
theory of aspect graphs is applied to the three-dimensional problem. Also an algorithm for
computing the decomposition of space into the classes is proposed.

Keywords. Aspect graph, visual potential graph, visibility.

1 Introduction

The idea of aspect graphs is a relatively new one. From one point of view, it
develops a traditional problem of computer graphics, the problem of visibility. On
the other hand, it brings some completely new concepts. It seems, for example, that
the aspect graph can be used for representing objects in three-dimensions. The idea
is to represent object by a number of different two-dimensional views from different
viewpoints. Views are organised in an aspect graph. Thus, the aspect graph can be
used as an alternative or supplementary model of a scene, which may be useful
when solving various problems such as, for example, the problem of visibility,
problem of navigation in a scene, and the problem of three-dimensional object
recognition. '

The idea of aspect graphs is based on work done by Koenderink and van Doorn
(Koenderink, 1975, 76, 79). They studied the optical field that occurs when
observing a plane. They also introduced a graph structure which they called the
visual potential. Each node in this graph structure represents a different view of the
object. A number of algorithms for computing different versions of the aspect graph
of practical scenes have been described since then. Some of them are based on the
use of the orthographic projection (Gigus, 1991), (Plantinga, 1986), others use the
perspective projection (Stewman 1991), (Eggert 1993). Many algorithms deal only
with certain classes of objects (Stewman 1991),(Maripuri, 1990). In this paper we
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present a general theory of aspect graphs, which enables to put the approaches
published earlier into the unifying framework.

2 General Theory of Aspect Graphs

Let us now consider a scene 4 which is a subset of the three-dimensional Euclidean
space E3. The scene may consist of an arbitrary number of mutually disconnected
objects. Mathematically, § = 4; U b U ... U b,. All the objects of the scene are
opaque. Points that do not belong to the objects form the exterior . Obviously, I=—
3. Let us observe the scene 4 from any particular point pe of the exterior. Thus we
obtain the image I, which is a subset of the two-dimensional Euclidean space E2.
Now, if the viewpoint p moves through all the possible positions in the exterior, we
obtain a set of images § = {I, | peX }. For every two distinct viewpoints p, q, the
corresponding images I, I, generally differ. Therefore, J is an infinite set. We
suppose that the mapping n: 7—J, which maps every point pel of the exterior onto
the corresponding image 1€/, is given by a central projection of all those points of
the scene that are visible from a chosen viewpoint p. The viewpoint p is the centre
of the projection.

In many applications, however, it is not necessary nor feasible to consider the
image I, as the collection of all its points. Instead, it is often appropriate to extract

only some set of relevant information. We use the term aspect for this set of
information, and we use A to denote this set. The set of all possible aspects of the

scene is 4 = {A},A,,...,A, }. We suppose that 4 is a finite set.
Let us suppose that the mapping o:J—4 of the set of images onto the set of
aspects is known. Thus, the aspect A; corresponding to a given image I, can be

determined. We let Kera denote the kernel of the mapping o. Kera is a binary
equivalence relation on the set J. Two members of the set J are connected by this

relation if and only if they have the same destination in the set 4, that is, I, Kera Iy

< a(lp)=o(ly). The kernel Kera of the mapping a induces the decomposition of the
set § of images into the classes. All the images corresponding to the same aspect are

in the same class. We denote §/k.,,, the set of classes of this decomposition.

Let o be the composite mapping c=na, 6:7—>4. Then similarly Kerc induces
the decomposition of the exterior 7 into the classes. A certain class X of this
decomposition contains all the viewpoints giving the images corresponding to the
same aspect A;, that is, X; = { xeZ | o I, ) = A; }. We use the term aspect region
for a class of this decomposition, and denote /.. the set of all these classes. It is
easy to see that T=X; UX, U.. UX,, and X;n X; =@ if i#j. Obviously, there
is a mapping ¥xero, €> ¥kers» Which is one-to-one and onto.

Let us now consider a viewpoint peZ and its open ball neighbourhood B(p,r)=§
xeE3 | distance(p,x) < r }, r>0. We suppose that this neighbourhood does not
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contain any points of the scene. Let us now construct the set Agp ) = { 0(X) | x€

B(p,r) } of aspects that belong to points of the neighbourhood B. The following
cases can be distinguished:

i) For the viewpoint p, a radius r>0 can be found such that Agy = {Aj}, 1
Kpp,nl = 1. In this case p is an inner point of the region X;.

ii) For the viewpoint p and any radius >0, the inequality |[4gp )[>1 holds. In this
case p lies on the boundaly between the aspect regions. Specifically, if for r—0
ABpn = {Ai A} i |AB(p pl = 2, then p lies inside the face that forms the
boundary between the reg1ons Xi, X; of the aspects A;, A;. The regions X;, X;
and aspects A;, A; are called adjacent regions and adjacent aspects respectively.
We use the notatmn X Adj X, A;j Adj A; to express this relationship.

Now we assume that the viewpoint p occupies various positions in the exterior, for
example, it moves along some curve. In the moment when the viewpoint moves
across the boundary from one aspect region to another, a sudden change occurs in
the image. We use the term visual event for this change.

Let Aj,Ajed be two adjacent aspects. We let 11 denote the set of all ordered pairs
of adjacent aspects of a given scene. That is, 1= { (A;, A;) | ApAjed A Aj Adj Ay }.
Obviously, every element ( A;, A;) of the set 7l represents the situation when the
viewpoint moves from the region X to the region X; through the boundary between
them. The move yields the change of perceived plcture This event corresponds to
the change of the aspect from A, to A;. Given a pair (A;, Aj) of adjacent aspects, we
assume that the difference between these aspects can be detennmed More formally,
a mapping 8:1—8 is considered. Every element D of the set § represents the
difference of some pair of adjacent aspects. As D represents some visual event, §
then is the set of all these possible events. The kernel Kerd of the mapping &
induces the decomposition on the set 7. In one class of this decomposition, there are
all the pa1rs (A, A)) of adjacent aspects for which the move of the viewpoint from
the region X; to X y1elds the same visual event. k.5 denotes the set of classes of
this decomposmon.

Let us use the term D-visual event for the event that is represented by a certain
element D of the set 5. All the points of the exterior from where the D-visual event
is perceived form the region of this visual event. We use Up to denote this region .
Let X; and X; be the regions of aspects A; and A;, and let cl(X) and cl(X;) denote
the closures of the regions X; and X respectlvely The region of D-v1sual event
then can be described as follows

Up = { xeE3 | 3(A,A)en : 8(A3A)=D A xecl(Xy) axeclX) 3. (1)

Every point of the boundary of the closure of any bounded aspect region lies in the
region of some visual event or on the boundary of some object of the scene.
Conversely, every point of any visual event region belongs to the closures of at least
two aspect regions and cannot lie inside any aspect region. The regions of all
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possible visual events partition the exterior into the finite number of convex regions,
which are aspect regions.

Consider a scene 4, exterior %, set § of images, set 4 of aspects, and the
mappings o, T, c=no. as was explained earlier. We know that the kernels Kera, Ker

o of the mappings o, ¢ induce the decomposition of the set of images, and the
decomposition of the exterior into the finite number of classes. We also know that

there is a one-to-one mapping ¥kere, <> ¥Kers- Let us now construct the directed
graph P=(¥,%) that corresponds to the decomposition of the set of images and thus
also to the decomposition of the exterior. In this graph, ¥ is the set of nodes and W<
¥xY is the set of edges. The node vje¥ corresponds just to one aspect A; (thus it also
corresponds just to one element of the set J/k,r,, and just to one element of the set
I/kers)- There is an edge v;v; in the graph £ if and only if A; and A; are adjacent
aspects, i.e., (Aj, A€ In the graph P we now introduce labels of nodes and labels
of edges. We do it as follows: we use the pair (A;, X;) to label the node vj, and the
pair (U, D) to label the edge v;v;. In the second pair, Uj; denotes the intersection
cl(Xp) N cl(X;) (note that U;; = Uj), and Des is the difference D=8(A;,A;) of
corresponding aspects. For the graph #, we will use the term aspect graph.

3 Aspect Graph for a Three-dimensional Scene

Now we will present an example of application of the general theory stated in the
previous section. We will focus on three-dimensional scenes. First we will choose
the form of aspect, which also determines the mapping o. Then we will study how
the visual events manifest themselves, and what are the properties of the space
decomposition. We will give special attention to determining visual event regions.
Finally, we will state an algorithm for computing visual event regions.

Let us consider a scene in the three-dimensional Euclidean space E3. The scene
contains objects bounded by planar faces. We suppose that we know the boundaries
of all the objects of the scene. These boundaries consist of faces, edges and vertices.
Let V be a set of symbols such that there is a one-to-one mapping between the set V
and the set of all vertices of the scene. Similarly, let E be the set of symbols such
that there is a one-to-one mapping between this set and the set of all edges of the
scene.

3.1 Aspect and Aspect Region

In our example we let the aspect A be a subset of (VU(EXE)), that is, Ac(VuU
(EXE)). One can easily see that any aspect contains two types of elements: symbols
from the set V, and pairs of symbols from the set E. An aspect contains the symbol
v;eV if and only if the picture perceived from a given viewpoint contains the image
of the vertex that corresponds to the symbol v;. Similarly, an aspect contains the pair
(ei,€)) ej.€;E if and only if the picture perceived from a given viewpoint contains
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the intersection of the images of the edges that correspond to the symbols €;,€;-
Obviously, the pairs (e;,e;) are unordered. Furthermore, we exclude the situation
when i=j. Note that this definition of aspect seems to correspond with the idea that
edges and vertices play the most significant role when decoding images by both
human and artificial vision systems.

Every visual event can be described by four types of basic actions. Ins(v;) and
Del(v;) denote the actions when the aspect is modified by adding and deleting the
symbol v;, respectively. This corresponds to the situation when the image of some
vertex appears or disappears. Similarly, Ins(e;,€;) and Del(e;,e;) denote the actions
when the aspect is modified by adding and deleting the pair (e;,¢;) of symbols. This
corresponds to the situation when the intersection of the images of the edges €;€;
appears or disappears in the picture. Let Q be the set

Q= {Ins(vj)|v;eV} U { Del(vj) | vieV }

U { Ins(e;e;) | ej.¢5€E } U { Del(e; € | €;,¢i€E } 2)

and let 2Q denote the set of all subsets of Q. Then for any visual event must be
DcQ 3)
The set of visual events thenis 5 c2Q 4)

In principle, the algorithm presented later is based on determining the members
D of  with subsequent computation of Up. For that reason we focus on the issue

what sorts of visual events § can consist of and what are the mechanisms that cause
these events.

3.2 Visual Event

Let us first consider the event when the image of a certain vertex vj appears or
disappears. This event will be referred to as a v-visual event. Since all the objects of
the scene are supposed to be bounded by planar faces, the only way in which a v-
visual event may happen is that the image of the vertex v; seems to appear or
disappear behind the image of some edge e, of the scene. Thus, a v-visual event
arises from the interaction between some vertex v; and some edge e;. Let us now
suppose for a while that the scene contains a separated vertex v; as depicted in
Figure la. In this case a v-visual event consists in transition of the image of the
vertex v; across the image of the edge e,. Since the vertex v; appears or disappears
during this event, the difference D is D = {Ins(v;)} or D = {Del(v;)}. The region
Uy, of this visual event is depicted in Figure 1a. When observing our scene from
any point of this region, the vertex v; seems to lie on the edge e;.

However, if we deal with real solids, then the mere D={Ins(v;)} or D={Del(v;)}
do not describe admissible visual events. Since some edges always originate from
every vertex, the appearance or disappearance of a vertex is always accompanied by
the appearance or disappearance of intersections of some edges. Considering
possible cases how the edge ek and the edges originating from the vertex v;j can be
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situated, several cases of v-visual event can be distinguished. Figure 2 gives more
detailed information about this problem. For each case of v-visual event, the figure
shows a pair of pictures that are perceived by an observer before and after that
particular case of v-visual event. For each case, it also provides the corresponding
value of the difference D.

Figure 1. Two types of visual events can be distinguished in an image of a given scene. a) The v-
visual event occurs when the vertex v; seems to appear or disappear behind the edge ey. This
phenomenon can be perceived from the region U, b) From the region U, the edges e;, e; seem to
intersect each other thus producing the illusion of a t-node. c) The t-visual event occurs when the
t-node seems to appear or disappear behind the edge e;. This phenomenon can be perceived from
the region Uy,

Now we consider the event during which the intersection of two edges appears
or disappears. First we suppose that the scene contains just two edges e;,¢;. In this
case all the viewpoints from where both edges seem to intersect each other form a
region Uy, which is a subset of E3 (Figure 1b). The boundary of this subset forms
the region of the events {Ins(e;,e;)} and {Del(e;.e;)}. This region consists of planar
faces, each of which being determined by one edge and a vertex of the other edge.
Not surprisingly, in this case the visual event region can be determined as a set of v-
visual event regions.

In practice, however, we do not deal with scenes that contain only two edges.
Moreover, every edge belongs to the boundary of some solid. In a picture of a real
scene, intersection of the edges e;, ¢; is perceived as a t-node where the visibility of
further edge changes. In the previous paragraph we have clarified one mechanism
how the t-node e;, e can occur. In real scenes, however, the situation is more
complicated. In fact, the t-node need not be visible from every point of the region
Uy, instead, it can be hidden behind other objects of the scene. Since all the objects
of the scene are supposed to be bounded by planar faces, the t-node e;, ¢; must
always seem to appear or disappear behind some edge e, of the scene. Therefore,
this event will be referred to as a t-visual event. The region Uy, of the t-visual event
is depicted in Figure 1c. When observing the scene from any point of this region,
the edges ¢;, ¢;, € seem to intersect in one point. If we deal with real solids, then
again the mere D={Ins(e;.¢j)} or D={Del(e;,ej)} do not describe admissible visual
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events. For scenes containing real solids, the admissible values of the difference D
are stated in Figure 2a,b.

before after

c j ej
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Figure 2. In a picture of a real scene, the visual events manifest themselves in different ways. For
t-visual event, following situations can be distinguished: a) the t-node appears (or disappears), b)
the edge appears. Similarly for v-visual event: c),d),e) the vertex appears, f) the edge appears, g)
splitting of an edge, h) transition of an edge.

3.3 Visual Event Region

Now we will discuss the problem of determining visual event regions. Recall that a
visual event region is defined as the set of points from where a certain visual event
is perceived. Visual event region is formed by a surface in space. We will first
examine the case when the visual event region does not contain any internal points
of any solid of a given scene, that is, visual event region does not intersect any
solid. We let Up, denote the region determined using this assumption. Later on we
will introduce additional correction to solve also more complicated cases.

For t-visual event, the region Up, is defined by three different edges v;vi, viv;,
VimVn € E. To obtain the most general case, we suppose that no two of these edges
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are collinear and no two intersect each other (Figure 3a). Since from all the points
of the region Up, the edges must seem to intersect in one point, Upg consists of
those lines of sight that simultaneously intersect all three edges. Thus, Up is a part
of a ruled surface. The equation of this surface is given by

X(u,W) = Xp(u) + W r(u) ©)

where u,w are parameters, xp(u) is a point on the edge vyvy, and r(u) is the
direction of a line of sight (Figure 3a). Let v, and v, be the position vectors of the
points v, and v,, respectively. Furthermore, let qp, denote the difference vy, - v,
and x;(u) let be the intersection of the edge v;v; with the line of sight. Then we have

Xm(®) = Vin + U Qs Qmn = Vn " Vm> (6)
r(w) = xp(w) - X;(w).
Finally, if we use x,(u) to denote the intersection of the edge viv; with the line of

sight, then the condition that the lines x;x and x;; are collinear can be expressed
as

(X - X)) = A (X - Xp) where A € R. @)
By making use of (7) we obtain
_ (‘IijCIkiqmi)—u((Iiijiqmn) (®)

Qijqqumi) - u(qijqqumn) ,

(@i 9mi) ~ W9 mn) )
(qiijNki) - (‘Iijqqumi) + u(‘lij‘lkl‘lmn)

r(u) = gim + UGmn — s(u)g;; (10)

where t and s are parameters (see Figure 3a), qjj=Vv;-V;, and (q;j9mn) = qij-(qi1
X Q) (note that further similar expressions can be written when interchanging the
indices). Substituting (5) and (9) in (4), we obtain

x(u, W) = Vi + UGy + Wi + UWqyn —s(u)wg;; (11)

In order to define the region Upy, the parameters u, t, s, w must satisfy the following
conditions

O0<u<l, 0<t<1, 0<s<1, (W20)v(w<-1). (12)
It is worth pointing out that for real scenes, the condition for w produces in fact two
different regions. One region for w>0 and another for w<-1. These regions differ in
the difference D (see again Figure 2a,b).
The region Upg of v-visual event can be considered as a special case of the
region Upy of t-visual event. To achieve this specialisation, we let the edges v;v; and
vV intersect each other in a common vertex, denoted by v;. All the lines of sight
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pass through that vertex, therefore, Up, is a planar region (see Figure 3b). The
equation of this region can be expressed by

X(U,W) = Vi + W gjp + U W gy (13)
where Qim = Vm - Vis 9mn = Vo - Vmr
In this case the conditions for parameters u,w are as follows:
0<u<l, (W21)v(w<0). (14)

Figure 3. Determining the aspect regions: a) The region Up, for t-visual event, b) the same for v-
visual event, c) the region U for t-visual event, d) the same for v-visual event.

Now we will consider the situation when the region Up, of visual event can
also contain internal points of some solids of the scene, which was excluded up to
now. If we let Up, cut the solids of the scene, then we obtain the cross-section
region Ug. The region Up, can now be decomposed into two subregions, which are
denoted by U™ and U-pc. If the trajectory of the viewpoint intersects the region
U'tpc, then the visual event is perceived. On the other hand, if the trajectory
intersects the region U-p, then the entities taking part in this particular visual event
are hidden behind some solids of the scene. Since the visual event cannot be seen
from the points of the region U pc, Upc must be excluded from the visual event
region. Thus, the resulting visual event region Up is given by

Up =U*pc=Upg - Upc. (15)

Figure 3¢ shows an example of the shape of the region U-pc for t-visual event.
Similarly, Figure 3d shows the same for v-visual event.

The expression 15 represents a two-dimensional problem in the space u,w and
suggests that the visual event region Up can be found. In practice, however, the
computation of visual event region can be organised in such a way that neither
cross-section region nor the difference in the expression 15 need to be done
explicitly. Instead, knowing the equation of the region Up, the segments of the
boundary of visual event region can be determined directly. Subsequently, knowing
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these segments, the boundary of visual event region can be assembled. Note that the
boundary contains certain parts of the boundaries of the regions Upg and Ug, and
certain parts of lines of sight that pass through the vertices of the cross-section
region Ug.

3.4 Computing Aspect Regions

We now turn our attention to the problem of computing the aspect graph. The
computation of aspect regions seems to play the key role in this problem. If we use
the notation introduced in the previous sections, then the algorithm for computing
the aspect regions of a given scene can be outlined as follows:

i) Generate systematically all the pairs vertex-edge and all the triplets of edges of
a given scene. These pairs and triplets may cause v-visual events and t-visual
events, respectively.

ii) For each such pair or triplet, determine the equation (expressions 11, 13) and
the boundary (conditions 12, 14) of the region Up,. Check whether Up,
intersects some solids of the scene. If that is the case, perform the correction
expressed by the equation 15, which provides the resulting visual event region
Up.

jii) Determine the aspect regions as the non-overlapping convex regions that the
exterior is decomposed into by visual event regions.

If the scene contains only one convex solid, then the algorithm can be
considerably simplified. In this case t-visual events do not occur at all and v-visual
events can only be produced by vertex-edge pairs in which both the vertex and the
edge belong to one face of the solid. In all other cases Upy = U'cp and
consequently Up = 0. We also note that Uc =0 and Up = Up, if both the vertex
and the edge belong to one face of a convex solid.

Another substantial simplification is naturally achieved for two-dimensional
problems. Recall that in this case the scene is represented by a set of simple
polygons. Note, too, that the only visual event that can occur in this case is the event
when the vertex v; of a polygon seems to appear or hide behind the vertex v;. The
region Up, which is a segment of the line v;,v;, begins at v;, does not contain v;, and
continues to infinity. The algorithm for computing aspect regions must be therefore
adapted to generate all the pairs v;,v; of the scene. If the line determined by the pair
v;,Vj does not intersect any polygon of the scene, then the visual event region Up
equals Upy, otherwise an additional correction is needed. The correction does fully
conform with the expression 15. In two-dimensions, however, it results in simple
rules that examine the intersections of the line with the polygons representing the
scene. These rules can be stated as follows: i) if there is an intersection that lies
between the points v; and vj, then the visual event cannot occur at all, ii) if there are
intersections within Up, then U, begins at v; and continues until it reaches the first
of these intersections, and iii) in all other cases Up, equals to Upg.
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Note that some additional steps, rules and other details aimed at reducing the
time complexity of the algorithm might be mentioned in this section (one idea is to
recognise and exclude the pairs and triplets that cannot produce any visual event).
Nevertheless, since this paper aims at more conceptual view, they are not discussed
here.

4 Conclusion

In this paper, we have presented a new approach to the theory of aspect graphs. This
approach is based on the presumption that an equivalence relation can be introduced
on the set of images of a given scene. Presented theory enables to put the
approaches published earlier into the unifying framework. We have presented an
example of application of this general theory. In this example the theory has been
applied to the three-dimensional problem and we have also presented some further
theoretical results there. Namely, we have proposed certain form of aspect and
studied how the visual events manifest themselves. We have also derived the
equations of visual event regions, which partition exterior into the cells from which
equivalent images of the scene are perceived. Finally, we have sketched an
algorithm for computing these cells.
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