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Abstract

This paper introduces one way how to define in a mathematically correct way the
complexity of the polygonal scene for rendering. This complexity allows to compare
previously uncomparable rendering algorithms via computing the complexity of
various scenes, and give the more rigid solution of other related problems. The
advantages of this unified approach are discussed.

1 Introduction

Let Sbe a given polygonal scene with N patches. The inventor of the notion
"scene" is not known, for some ancient references, which are suspect to introduce this
notion, see e. g. [Fole90], [Watt92]. The rendering R(S) of S depends on the
complexity of S. In many papers the complexity of the scene is simply identified with
N. In contradiction to this "dealing with environmental complexity and with human
perceptual issues" are the 1994 answers to the question of Peter Shirley: "What are the
key issues that are still unanswered or not answered well in realistic image
synthesis?", [Shir94]. It is suitable to distinguish between geometric and perceptual
or visual complexity of the scene, as discussed in [ChSh94].

Our research focused to -the geometric complexity of the scene. Intuitively, it
is possible to formulate following observations. (The last pair of them remain
questionable.)

1. Empty room is not complex.
2. Adding objects increases the complexity of the scene.
3. Refining mesh doesn't change the complexity.

4. The meshed sphere has only a little bit higher complexity than meshed cube. (Simple
topology means low complexity: e.g. thorus has higher complexity than the sphere.)
5. The complexity depends on the size of objects.

6. The complexity depends on the number of objects.

A number of patches (N) became the most heavily used complexity measure
for rendering algorithms based on polygonal description of a scene. This is due to -
the fact, that most algorithms require the computation of entities, which number
depends directly on the number of patches. As an example one can look at hemicube
radiosity algorithm [CoGr85], where the evaluation of O(N"2) formfactors is
necessary in order to solve an equation system for energy equilibrum for the given
scene. A similar situation concerns the progressive refinement algorithm [Cohe88].
One iteration step requires the computation of N formfactors. On the other hand,
the total number of the iteration steps depends more on the material properties of the
scene (self emmitance of light sources, reflective properties of objects) and therefore
the visual complexity of the scene is involved instead of geometric complexity.

A problem of the visual and mathematical quality of a solution to global
illumination problem depends mostly on the meshing of the given scene. This is
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mainly due to the latest advances in evaluation of energy transfers between two
polygonal patches (see closed form expression of polygon-to-polygon formfactor
in [ScHa93]). If meshing is used only as a preprocessing method, a lot of
information gained by a rendering method is wasted (e.g. information on shadow
borders). Therefore, new methods have been developed, which take advantage of
these additional information. To mention at least the most important ones: adaptive
patch subdivision [Cohe86] (the patch is subdivided if a illumination gradient between
vertices of the patch is too high), discontinuity meshing [Lisc92] (the patch is
subdivided along the shadow boundaries caused by light sources), hierarchical
radiosity [Hanr91] (the energy interaction between two patches occurs on those
levels of subdivision hierarchy, where the error is acceptable).

As long as the number of energy transfers depends on the geometrical properties
of the scene, the number of meshing patches is not enough to be able to
compare the quality of different methods. Moreover, a good geometrical
complexity measure is necessary framework for comparison of different meshing
strategies. This motivates the following formulation of research problem:

Let §1, §2 are the scenes both with N patches. Let SI seems inuitively more
complex than S2. Give the function f which formalizes the intuition (as
approximately summarized in 6 numbered observations above) so that

f(S1) < £(S2).

The paper is organized as follows. Section 2 gives some trivial complexity
measures, which can be used for very rough orientation in the topic and gives
some first observations. Section 3 gives the overview of necessary graphtheoretic
notions, and definition of scene complexity. Section 4 explains the algorithm for
complexity measurement and results obtained. Section 5 contains the discussion of
the results, and conclusion. .

2 Trivial Complexity Measures

2.1 Area Approach

The number of patches is still the most popular complexity measure, but we will
consider some other approaches.

If revisited the patch data, there are available patch corners 3D coordinates,
normal vector to the patch, light energy of the patch, and reflectivity properties. Let
the scene S has extents in all dimensions denoted by intervals EX, EY, EZ, where
EX = [xmin, xmax], EY = [ymin, ymax], EZ = [zmin, zmax]. If the scene envelope
(bounding box) is not a paralelogram, we can bound it by the bounding box of volume
EX * EY * EZ. Then the empty scene, having no interior objects, has the total area
equal to the size of surface of volume EX * EY * EZ

A(S) =2 (EX*EY + EY*EZ + EZ*EX )
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Fig. 1. The scene with trivial complexity.

If the scene is nonempty, what represents the practically used cases, then there is
simply computable the total sum of areas of all patches

P(S) = sum of areas of all patches.

Observation of fraction P(S)/A(S) - 1 behaviour gives the simplest complexity
measure. It is zero for empty scene. It grows with the total area of the scene (together

with the area of boundary). However, this cannot distinguish rather differently
complex scenes. This is illustrated in Fig. 2.

Fig. 2. Two scenes with equal area complexity.

The area approach gives for scene complexity measure the function

f1(S) = P(S)/A(S) - 1.
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2.2 Normals of Pairs of Patches .

The set of patch normals gives another characterization of the scene. The
distribution of normals doesn't seem to be a measure of scene complexity, but we can
observe the pairs of patches, too. There are 3 possible cases for their normals:

1. Patches are coplanar, the normals are equal, with some tolerance.

2. Patches are visible to each other, the normal halflines can intersect.

3. Patches are invisible,

This gives N(N-1)/2 pairs, and their qualification into the three groups
characterizes the scene from the aspect of normals statistics. Denote NC number of
pairwise coplanar patches, NV number of visible pairs, NI number of invisible pairs
of patches. The numbers NC, NV, NI must be normalized by dividing by N(N-1) to
give three numbers independent from N, their .sum equals to 2. The function

£2(S) = (NC/N(N-1), NV/N(N-1), NUN(N-1) )

gives a simple statistical measure, which can distinguish scenes according to
distribution of normals of pairs of patches.

2.3 Three or more patches

The previous approach can be generalized to triplets or quadruplets of normals
of patches. The combinatorial number of possible cases increases - and the
redundancy, too. If we take into account only the adjacent patches, we can
decrease the volume of results. In particular, for triangulated scene there is useful to
consider quadruplets, because each triangle has 3 neigbours in "well done" scenes.
Another problem arises if two objects touch themselves. There occurs "new
adjacency" not recorded in data structure.

To conclude this kind of observations - it seems that the normals statistics gives
too much unnecesary information and it needs to be improved (or restricted) by
adjacency considerations. The crucial disadvantage of this approach is that it gives
only very rough estimation of light reflections.

2.4 Visibility Approach

Another straightforward way how to obtain scene complexity definition is the
patch visibility precomputation. In fact, it seems that the scene complexity cannot be
expressed adequately only with patch area measure or normals statistics information.
The appropriate definition of scene complexity cannot be reduced from global
topology description aspect and light reflection model. One possible answer to this
question is outlined in next two sections.

3 Graphtheoretical Preliminaries

The fundamental notion used here to evaluate the scene complexity is the
reachability graph G: the vertices of G mean single patches of polygonal scene and
the edges represent their bilateral visibility. For the sake of uniqueness it is suitable
to assume that any pair of patches is either totally visible or invisible. Thus we
consider the scene with visibility obstacles blocking the two given patches completely.
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For any scene it is possible to satisfy the assumption by appropriate subdivision of
patches, but we can't do this in practice.

For given patch P the illumination contribution from other patch depends on the
number of refections necessary for the ray to reach one patch from the other. In
graphtheoretic language this means the distance d(u v) of two representing vertices u,
v of reachability graph G. The distance is the minimum number of edges of a path
connecting the pair of vertices. (The path may be not unique!) If such a path does not
exist, the distance is infinite. The reachability graph G is a connected one and
therefore all distances are finite. (For two separate rooms the infinite distances are not
taken into account.)

The graphtheoretic distance induces some other notions, which we will need for
further considerations. The excentricity of a vertex v is a maximum distance d(v,u)
for all u in G. Maximal excentricity is diameter of G, diam (G), minimal
excentricity is radius of G, r(G). An important parameter, describing the metric
structure of G, is the average distance of vertices, it is the average of N(N-1) possible
distances in G.

When applying to the scene complexity, from the graph parameters described
above, the average distance of reachability graph G could give the suitable scene
complexity measure, because it is independent from the number of patches, and from
possible singular cases (unlike diameter), and from the localization of light sources
and observer (unlike radius).

4 Algorithm and Results

If the reachability graph G(S) of given scene S is not very large, and it is possible
to store the graph in given memory, there is no problem to compute the distance of
a fixed pair of vertices, e.g. by Dijkstra's algorithm, respectively to compute all
distances, e.g. by Floyd's algorithm. Both classical algorithms are described in
many books, e.g. in [SwTh84].

The complications arise if G is too large to be stored in given memory. The scene
with N patches may be storable in memory, while the O(N"2) edges of reachability
graph could cause memory overflow. This problem can be solved using the following
idea.

The distances of given vertex v in G is possible to compute without having all G in
memory. Evidently, the computational cost increases, because we must test if two
vertices are adjacent or not. The algorithm of computing the distances of vertices
from given fixed vertex v we can roughly described as follows. Each vertex will be
assigned distance value DIST, initially zero for starting vertex v and infinite for all
others. The strategy is breadth first search with starting vertex v. We test each vertex

In the next phase we test the vertlces with DIST(u) = 1. If a vertex u with DIST(u)
1 is connected with any vertex w with infinite distance value, we set the DIST(w)
2. This phase finishes if we have investigated all vertices u with DIST(u) = 1, or if
all vertices have finite distance value. The process is repeated. In the k-th phase we
search the vertices with DIST(u) = k, searching for adjacent vertices w, connected
with some other vertex with infinite distance value. In this case we set DIST(w) =
k+1. This process finishes if all vertices have the finite evaluation. The average
distance of the reachability graph G(S) of given scene S is evidently the average of
DIST(u) for all u in G. Next figure illustrates the reachability graph.

~7
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Fig. 3 Scene S1, and the reachability graph G(S1).

Using the approach as described above, we have obtained following results:

batches 12 288] 1152 320] 1344] 1344 | 92 1264 538

Tab. 1 The complexity of given scenes.
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scene 1 empty room. scene 2 scene 1 aftor refining the mesh.
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scene 9 as scene 7 but four chairs have

been aded.
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5 Conclusion

We have calculated the complexity for a set of scenes, which are illustrated in
appendix. The results show that the formalization of scene complexity using the
average distance in reachability graph gives a good evaluation of intuitively
estimated complexity. The computational price for this is very high for real scenes.

There are many further questions unsolved. Should we take instead of the shortest
one all ways of light? How compute this for partially visible patches without
subdivision? How to express various (non-triangle) patches? Is this complexity
measure sufficient enough?

We have introduced a new approach to define the complexity of given polygonal
scene. This complexity allows to compare previously uncomparable rendering
algorithms via computing the various scenes complexity. It seems it will be
possible to generate the scene with given complexity, and give the more rigid solution
of other related problems. The main advantage of this way of scene complexity
definition is the formalization of less or more intuitively used notion scene
complexity. This research will continue with many well known scenes evaluation.
We would like to ask the scene users community to send us their scenes, or any scene
complexity results and ideas.
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