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Abstract

Multidimensional data coming from numerical simulations represent, usu-
ally, tensor fields. This paper deals with glyph icons we implemented for
discrete visualization of second order tensor fields, in order to extend the
mapping operations of MUDI3 system we have developed at IAC. Iconic rep-
resentations of tensor fields we used to study a molecular dynamics problem
are discussed too.
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1 Introduction

Numerical simulations produce, nowadays, a big amount of data, whose analysis
becomes easier if visual representations can be provided to the scientists. Very often
it deals with large multivariate 3-D data sets. The visualization describes numerical
data as ”easily to understand” images that allow a rapid and global view of the
simulation results. The development of 3-D visualization techniques to derive as
much information as possible from the image is one of the main research areas in
the scientific visualization, strictly aimed to enhance the quality of the user-image
interaction.

The icons can be a good communication tool in such an area, since they are sym-
bols or pictorial representations which are similar with physical objects, actions or
functions. Infact, in the context of multivariate data representation, the icons can
encode the dependent (spatial) variables as their position and the values of field
variables as geometric characteristics such as lenghts, angles, or shapes, or as visible
attributes as color, opacity [1].

In this paper we deal with the activity we made in order to represent multidimen-
sional data by means of icons, considering the visualization of second order tensor
fields defined over three-dimensional domains.

In section 2 we focus on the problem of visualizing real and simmetric tensor field
by introducing the concept of tensor glyph [3] and we describe the implemented
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procedure.

In order to use Tensor Glyph procedure in an interactive environment it was inserted
in MUDI3 [4], a system oriented to the interactive visualization of multidimensional
data. In such a way we can use MUDI3 transformations and rendering operations
for tensor fields visualization enhancement.

The last section includes the description of an application problem, coming from
Molecular Dynamics area, whose data have been studied in cooperation with re-
searchers of the Physics Department of the University of Rome. The enclosed im-
ages demonstrate that the glyph representation gives us information more complete
than the ones provided by the other techniques. It allows also something like a
monitoring of computation method, as we point out in section 3.

2 Tensor fields visualization techniques

This section includes a brief recall of stress tensor, principal stresses, planes
and directions. Main parameters and methods for the visualization of second order
tensor fields are then described. In conclusion we describe the tensor glyph technique
we implemented.

2.1 Some definitions

In order to identify which values are to be computed for representing a second
order tensor field, we have to clarify the meaning of stress tensor, principal stresses,
planes and directions.

A second-order tensor is a quantity uniquely specified by 3 real numbers which
transforms under changes of the coordinate system according to the law [5]:

A:k = C\fi’lak’mf‘llmv (1)

where A, A, are components of the tensor in the old and new coordinate system
K and K', respectively, and o, is the cosine of the angle between the sth axis of
K' and the Ith of K. ‘

A great diversity in notation for stress components exists in literature. The most
widely used notation is, in reference to a system of rectangular Cartesian coordinates
w, y? 2

Oz Toy Tzxz
T =T 0y Ty | (2)

Tz Ty o

where o, 0,, 0, are called normal stresses and Toy, Tyzs Tyzs Tays Tozs Toz the shear
stresses.
If the nine cartesian components 04, Oy, 0z, Tay, Tyz> Tyzs Teyr Tzzy Tzz L€ known,
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we can write the stress vector acting on any surface with unit outer normal n of
components cos(n, z), cos(n, y), cos(n, z).
If P,, is the stress tensor, its components pnz, Pny, Pn- are given by the Eqs. [6]:

Png = 05 €08(N, T) + Ty cOs(N, Y) + Top cos(n, z)
Pry = Tzy cos(D, T) + 0y cos(n,y) + 7,y cos(n, 2) (3)

Pnz = Tz c08(N, T) + Ty, cos(n,y) + 0, cos(n, z).

With every state of stress, in any point, we can associate no more than three distinct
normal stresses on planes free from shear stresses. Such stresses are called principal
stresses; the planes on which they act are the principal planes; and the directions of
the outer normals to these principal planes are the principal directions.

Let o1, 02,03, be the three principal stresses characterizing the state of stress at a
point in the body, and for convenience let them be ordered in the manner oy >
o, > a3. Consider a "local” cartesian coordinate system centered at the point, with
its z,y, and z axes parallel to the principal directions corresponding to oy, 072,03,
respectively. There is no lost of generality in carrying out the discussion for a
coordinate system so oriented, since it can be established that the principal direction
can be determined for any given state of stress.

With the above conventions, the cartesian stress components become:

Op =01 Oy=02 0p=03 Toy=Tys=Tey=0
and the equations (3):
Pnz = 01€08(N,T);  Pny = 02€08(N,Y); Pnz =03 cos(n, z). (4)

2.2 Parameters for the visualization of tensor fields

Second order threedimensional tensors are fundamental values in a wide range
of application fields [7]. Stresses and strains referred to solid objects identify tensor
fields. In fluidynamics, stresses, viscous stresses, rate of strain and momentum
are described as tensor data. In steady-state Navier-Stokes equations describing
gasdynamics problems with only one quantity, momentum flux density is a tensor
field.

Since a lot of variables can give information concerning a tensor field, we need
to accurately individuate, among them, the parameters which are useful for the
visualization. As we anticipated in section 2.1, a second order tensor field defined
over a threedimensional domain is represented by a 3x3 array of scalar functions
(2).

The independent visualization of these nine functions is possible, but it could be
not easy to interpret. In our work we considered only real and symmetric tensors,
but it can be demonstrated that a wide class of antisymmetric real and complex
Hermitian tensor fields can be reduced to a sum of real and symmetric tensors and a
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vector field. For example the velocity gradient in a fluid is composed by the sum of
rate of strain tensor and the rate of rotation that are, respectively, symmetric and
antisymmetric tensor fields.

Now we consider a real symmetric tensor field, that is a law that maps to each point
z of the space a tensor, as a 3x3 array ||T(z)|| with the condition that 7 = Tk:.
|T ()| has three real eigenvalues 01, 02, 03 and three real and orthogonal eigenvectors
eM(z), e®(z), e®)(z) at every point z in the space. Instead of considering the single
scalar components of ||T'(z)]|, we can take into account the three orthogonal vector
fields:

v0(z) = e(2)eP(2).

We can conclude that the visualization of a symmetric real tensor field is equivalent
to the simultaneous visualization of three orthogonal vector fields, since they include
all the information concerning the amplitude (the eigenvalues) and the direction
(the eigenvectors) which are represented, in matricial notation, by the components

of |T'(z)|-

2.3 Discrete visualization of tensor fields

Direct and indirect methods are used for the visualization of tensor fields [3].

- Direct methods provide a symbolic representation of the local magnitude and direc-

tion of the vector field. Indirect methods describe the physical effect of the vector

field and give only an idea of the its local characteristics. In other words, a direct

method corresponds to a discrete visualization, generally realized by means of an

iconic symbol, whereas indirect methods allow continuous representations.

Discrete representation methods have been considered in our work.

A technique for a discrete representation of a tensor field is the Lamé Stress Ellip-

soid [6]. In fact, if Egs. (3) are solved for three direction cosines, then, squared and

added, the Eq. :

2 2 2
pnm pﬂy pnz
fnz , 70y 4 TRz 5
o? o o} ’ (5)

is obtained, since the sum of the squares of the direction cosines is equal to unity.
This is the equation of an ellipsoid referred to a coordinate system having prz,
Pny, Pno as cartesian axes (principal coordinate system). Considering these stress
components synonymous with the coordinates z,y and z of the local coordinate
system at the point, the previous equation can be written :

2y 2
LN M) 6
o} ol + o2 (6)

The surface is called the stress ellipsoid or the ellipsoid of Lamé. It has the
property that the lenght of the radius vector from origin O to a point P(zyz) =
P(Pnz, Pny, Pnz) oD the ellipsoid surface is equal to the magnitude of the stress acting
on the plane through P(z,y, 2).



Figure 1: Glyph-icon for the tensor fields representation.

The semiaxes lenght is equal to the magnitudes of the principal stresses at the point,
i.e. the minor and the major semiaxis of the ellipsoid represent, respectively, the
minor and the major stresses acting on all the planes through the point.

There are degenerate cases of ellipsoid. The ellipsoid becomes an ellipsoid of revo-
lution about the axis parallel to the third stress when two of the principal stresses
are equal. It becomes a sphere when all the principal stresses are equal.

The Stress Quadric of Cauchy [8] is another method for representing the equations
governing the state of stress at a point. Consider the quadric surface:

oz + 02y2 + 0322 = +1,

constructed in the local coordinate system at the point. This surface allows a more
complete representation of stress tensor information. However, it is not an intuitive
representation. In fact, it takes considerable effort to interpret the directional infor-
mation, and the quadric surface can be self-occluding.

In this paper we are describing a direct method based on tensor glyph for the visu-
alization of second order tensor field. In [3] a glyph is defined as a geometric icon
that represents multi-variate or higher-dimensional information at given positions.
Data values are mapped to various physical attributes of the icon as geometry, color,
surface, texture. Therefore, we can describe all the information included in the ten-
sor data by means of a glyph visualized in each sampled point. The tensor glyph
of the figure 1 derives from the Lamé Stress Ellipsoid. In fact, a modified geometry
can be used for the construction of such an icon, in order to indicate directions and
" magnitudes of the principal stresses. The color is used to encode their signs.

We can summarize the procedure for the construction of the tensor glyph in the
following actions. Firtsly, we have to compute direction and sign of the principal
stresses in each point (where the stress is known) and to construct a cylindrical shaft
having the direction of the major principal stress and the lenght proportional to its
magnitude. Minor and major radii of the elliptical disk, that is built around the
central portion of shaft, represent, respectively, magnitudes and directions of the
minor and the middle principal stresses. It is possible to scale the dimensions of the
disk by a factor «, according to the lenght of the shaft. Colors are associated with
the shaft and disk surface in order to indicate, as mentioned above, the signs of the
principal stresses: blue indicates tension, yellow indicates compression.

The procedure also deals with the degenerate cases, i.e. when some of the stresses
vanish. In fact, the elliptical disk is reduced to a segment or the shaft becomes a
circle if one of the principal stresses is equal to zero. The elliptical disk becomes
a point or a segment and the shaft becomes a circle if two of the principal stresses
are equal to zero. The tensor glyph is not visualized if all the principal stresses are
equal to zero.
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Figure 2: Non simmetric tensor field derived from a computational code with a fixed
origin of the coordinates.
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Figure 3: Miller’s plane indicates the zone where the stresses rapidly vary.
g

3 An interactive visualization of tensor fields to
study a molecular dynamics problem

In order to use the procedure Tensor Glyph in an interactive environment, we
inserted it into a system oriented to the multidimensional data interactive visual-
ization, named MUDIS3, that has been designed at IAC [4]. The system runs under
UNIX workstations and it consists of C programs that use the PEX graphics library
[10].

At WSCG’95 [2] we presented the MUDI3 functionalities and some experiments car-

ried out for testing cognitive and perception aspects of its iconic interface.

Here we include the results and the images dealing with an application, aimed to

the interactive visualization of second order tensor fields by means of tensor glyphs.
The figures 2,3,4 show the images derived from the visualization of data produced

by a computing code of a Molecular Dynamics problem. This code has been used

at the Physics Department of the University of Rome ”La Sapienza” for studying a
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Figure 4: Symmetric tensor and scalar fields derived from a computational code
with a new origin of the coordinates at the centre of each microscopic volume.

phenomenon of mixture of hydrogen in palladium. Particularly, the study is focused
on the behaviour of a palladium crystal in which some hydrogen atoms are sparsely
included. The mycroscopic observation indicates that, in particular termodynamical
conditions, outside from the coexistence zone, the hydrogen is concentrated in some
points of the crystal without further uniform mixtures. The condensation of the
hydrogen in the solid produces a force field in the lattice of the metal. Such forces
cause a stress field that becomes a strain field if the solid is allowed to relax.

A relevant and still unsolved question in the physics of hydrogenated metals is the
range of the strain field generated by a droplet of hydrogen atoms field in the metal-
lic matrix. This field is regarded as a possible cause for the remarkable condensation
capability of hydrogen atoms in the coexistence region of the phase diagram [11].
The computation of the stress tensor field is, in this case, no trivial, because one
expects the fields vary significantly over distances of the order of the cell parameter
of the lattice. One has thus to define the stress tensor, which is usually thought
as a hydrodinamical field, in a microscopic volume entailing few atoms (actually:
one atom and its six first neighbours in the face centered cubic (fcc) structure of
Palladium). Moreover, as the interaction potential of Palladium has a many-body
nature [12, 13], no clear definition is possible of the "forces crossing the surfaces of
the volume”, as it is usually done in the elasticity theory [14]. The only practical
way to compute a stress tensor field is, in this case, to apply the formula:

Ta,f = ng)f.((;) (7)

to the unrelaxed lattice; here r(?) and f() are the position of, and the force acting on
particle 7 inside the chosen volume, and «, 3 = X,y,2. As the lattice is unrelaxed, the
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total force acting on the volume is not zero, and a straightforward use of formula
(7) leads to values which are not independent, as they should be, of the choice of
the origin of the coordinates.

The computed field may thus become non symmetric even around a single hydrogen
impurity, which is the source of the stress (but not the origin of the coordinates);
as shown in fig. 2. To avoid such an unphysical asymmetry, formula (7) has been
used by re-defining for each microscopic volume a new origin, located on the atom
positioned at the (symmetrical) centre of that volume. The stress tensor defined in
this way is, indeed, symmetric around the source of the stress. Since the crystal we
are studying has a fcc structure , the palladium atoms are situated also at the centre
of its facets, besides at the vertices of each cube of the grid. Corresponding to each
of these points we visualized local stresses that are caused from the microscopical
interactions with a hydrogen single atom placed at the centre of the crystal. A first
interesting information about these data, comes from the visualization of the Miller
planes [15]. Such planes {100} {101} {111}, have particular symmetries and they
are generally used for representing microscopical dynamics by means of scalar fields.
Particularly we can see the visualization of the plane < 111 > in fig. 3. The picture
on this plane passing through the impurity indicates that there is a particular zone
where the stresses rapidly vary.

The image of figure 4 indicates that the phenomenon can be better understood by
means of the glyph tensors visualization. In this image both the scalar field and the
tensor field are displayed. In the shaded image the color modifications represent the
scalar variable modifications. In this case the scalar variable has been mapped to
the shear stress component 7.

The bigger glyph is located at the point where there is the impurity and the field
is symmetric around it. The icons around the impurity atom clearly show that the
stress tensor field decays very rapidly, and it is negligeable outside a volume of a
couple atomic cells. The graphic representation allows, nevertheless, to recognize
that major principal stress extends mainly along the close packed direction < 110 >
and < 100 >. Moreover, the glyph’s color gives information about the tension and
compression states: blue indicates tension and yellow indicates compression. By
means of the use of a red scale we can also easily distinguish that the mapped
variable has a high variation in the zone where the stress is high.

4 Conclusions

The research described has been addressed to the use of icons, named glyphs,
for the representation of second order tensor fields. To this purpose we developed the
procedure Tensor Glyph and we included it in the MUDI3 system in order to easily
experiment this functionality. In this way we had the possibility both to combine
more than one visualization technique in the same image and to enhance the quality
of the image by means of image transformation functionalities of MUDIS. So Tensor
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Glyph has been tested and MUDI3 system has been extended.

Further developments of our work foresee the realization of continuous techniques for
the representation of second order tensor fields, mainly by means of hyperstreamlines
surfaces and we are also comparing them with the discrete technique here described.
Anyway, we would like to point out that the Molecular Dynamics application we
studied, demonstrated that discrete representations by means of tensor glyph are
better than continuous ones when an analysis of atomic distances phenomena must
be carried out.
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