Real-time Animation Technique for Flexible and Thin Objects

Young-Min Kang', Jeong-Hyeon Choif, Hwan-Gue Cho

Do-Hoon Leeft

Chan-Jong Parkfft

"Department of Computer Science, Pusan National University
{ymkang,jhchoi,hgcho}@pearl.cs.pusan.ac.kr

" Department of Computer Engineering, Miryang National University
dhlee@arang.miryang.ac.kr

t1Virtual Reality Center, Electronics and Telecommunication Research Institute
cjpark@etri.re.kr

ABSTRACT

In this paper, we propose an efficient technique for the animation of flexible thin objects. Mass-
spring model was employed to represent the flexible objects. Many techniques have used the
mass-spring model to generate plausible animation of soft objects. The easiest approach to ani-
mation with mass-spring model is explicit Euler method, but the explicit Euler method has serious
disadvantage that it suffers from ‘instability problem’. The implicit integration method is a pos-
sible solution to overcome the instability problem. However, the most critical flaw of the implicit
method is that it involves a large linear system. This paper presents a fast animation technique for
mass-spring model with approximated implicit method. The proposed technique stably updates
the state of n mass-points in O(n) time when the number of total springs are O(n). We also
consider the interaction of the flexible object and air in order to generate plausible results.

Keywords: flexible object, mass-spring model, implicit method, stability

1 INTRODUCTION

For the physically-based modeling, the mass-
spring model is a simple and powerful approach to
representing flexible objects such as cloth. There
have been many techniques for simulation of flex-
ible objects [Carig92, Volin95, Provo95], and the
techniques use various models such as finite ele-
ment model, particle-system, deformable surface
model [Wang98]. Among those models, the mass-
spring model is the easiest and most intuitive.

Various techniques have been introduced to use
the mass-spring model to simulate or animate
the flexible objects [Provo95, Desbr99, Chen98].
Animation techniques based on the mass-spring
model can be formulated as a simple ordinary
differential equation. We can easily calculate the
force on each mass-point, and we can animate the

mass-point by numerical integration of the force.

Figure 1: Snapshots of Ribbon Dance Ani-
mation

Explicit Euler integration is the simplest ap-
proach to this integration procedure. However,

it requires very small time steps for simulation
or animation since this approach severely suf-
fers from the instability problem [Kass94]. Im-
plicit method is well-known solution to this in-
stability problem in numerical analysis literature
[Nakam91]. Recently, Baraff and Witkin have ex-
ploited implicit integration method to take large
steps during the simulation of cloth [Baraf98].
Since this method can significantly reduce the
simulation time by taking large steps, the implicit
method is regarded as the best choice for the in-
teractive animation of mass-spring based objects.
However, the implicit method also has a prob-
lem that a large linear system should be solved.
Although the implicit method elegantly enforces
an animation process to be a stable integration,
the large linear system involved in the implicit
method is major obstruction to the real-time an-
imation.

Desbrun proposed an efficient method to solve the
linear system with the precomputed inverse ma-
trix (i.e., precomputed filter). However, it also
suffers from heavy computation because the in-
verse matrix may not be sparse. Moreover, dy-
namic control of parameters such as mass, time
step, or stiffness of flexible object is impossible.

This paper presents a fast and stable animation
technique which stably updates the state of n
mass points in O(n) time for the real-time an-
imation of flexible objects as shown in Fig. 1.
The adaptive step size strategy or dynamic mod-
ification of animation parameters such as mass
or stiffness are not restricted in our model. We
also considered the interaction between the flexi-
ble object and the air for the plausible result.

2 MASS-SPRING MODEL AND STA-
BLE INTEGRATION

Mass-spring model is a simple technique for repre-
senting flexible objects. Mass-spring model rep-
resents an object with mass-points and springs.
The forces caused by the springs make the mass-
points move. The springs can be arbitrarily con-
structed. This mass-spring model is very intu-
itive approach to the representation of soft ob-
jects such as cloth.

By using explicit Euler integration, the mass-
points are easily animated. However, due to in-
stability problem, the simple explicit Euler inte-
gration cannot be used unless the time step h is
very small. Thus, the explicit method takes too
much time for producing an animation result of
mass-spring model [Nakam91, Kass94, Desbr99].

2.1 Implicit method for stable animation

Implicit method is a solution to the instability
problem. By using the implicit Euler method, we
can stably update the state of each mass-point as
follows:

t+h ¢ t+h h_
Vi B vitF by (1)
X§+ = xi+ v? h

where v denotes the velocity of the i-th mass-
point at time ¢, and F! is the force acting on the
mass-point at time ¢. Similarly, x¢ denotes the
location of the i-th mass-point at time ¢, m; is
the mass of the i-th mass-point, and h denotes
time interval between animation steps. Since this
integration method stably updates the next state
of mass-spring model, we can take a large step for
animation. Therefore, the implicit method is the
best choice for real-time or interactive animation
system.

However, the implicit Euler method involves Fi"
which can be approximated with a first order
derivative as follows:

Ft+h — Ft + a_FAXt+h
ox

where F! denotes the internal forces consisting
of all the internal forces F! on the i-th mass-
point (i.e., Ft = [Ft FL --- FL]T), and similarly
Axt = [Ax], Axt, - AxE]T. Because OF /0x is
negated Hessian matrix of the system [Desbr99],
we will denote OF /0x as H henceforth.

Since Ax!th = xi+h — xt = (vt + AvITh)h we
can rewrite the first equation of implicit update
in Eq. 1 as follows:

h? h
I- —H)AvI™" = (F! + hHv!)— 2
- Tmaver = @ e L
where Avith ig vith — vt If we can calculate

Avith | we can easily update the velocity and lo-
cation of each mass-point at the next step with
Eq. 1. The animation of flexible objects is finally
reduced to finding the value of Avit*. In Eq. 2,
hHv' represents additional forces. As mentioned
by Desbrun [Desbr99], these additional forces are
viscosity forces and can be easily calculated as
follows:

(hHVt)i =h Z kij (V; — Vg)
(i,J)EE

where F is the set of spring edges between mass-
points.

The implicit method has a critical weakness in
that Eq. 2 involves I — (h?/m)H which is O(n x
n)-sized matrix. Due to this matrix, we must
solve a large linear system to update the state of
model. Modified conjugate gradient method has
been used to alleviate the computation, but it is
still far from interactive animation of mass-spring
model [Baraf98].

In order to alleviate the computational burden
of the implicit method, Desbrun proposed an ef-
ficient method which approximates the Hessian
matrix H. They approximated Hj;, the entry of
Hessian matrix at the i-th row and the j-th col-
umn as Hy; = k;5, and Hy; = — E#i k;j, where
ki; denotes the stiffness constant of spring be-
tween the i-th and the j-th mass-points, and k;;
is 0 when the i-th and the j-th mass-springs are
not linked. Then the matrix (I— (h*/m)H)~! re-
mains constant during animation. They precom-
puted the inverse matrix of I — (h?/m)H, and
used the inverse matrix as a force filter for the
animation of cloth. This technique produces sta-
ble results with simple calculation. Their method
can be expressed as follows:
2 t
Avt+h — (I _ h_H)flﬁ
m m

where F is the sum of spring forces and viscosity
forces(i.e., F* = F* + hHv').

Their method is faster than the general tech-
niques which exploits the implicit method. How-
ever, the inverse matrix of I—(h%/m)H is not nec-
essarily a sparse matrix, even though I—(h?/m)H
is sparse. Moreover, the adaptive time step strat-
egy cannot be applied to the precomputed filter
method, and we cannot dynamically change the
mass or stiffness, because the calculation of the
inverse matrix requires much time. Due to these
reasons, we did not employed the precomputed
filter.

2.2 Approximation method for interac-
tive animation

We can update the the velocity change of the i-th
mass-point by considering only the linked mass-
points, because H;; is 0 when the i-th and the j-
th mass-points are not linked with spring. There-
fore, we can rewrite the implicit update scheme
(Eq. 2) as follows:

h*H;; h2 Fih
— —“)sz - — Z (HijAVj) = TTlLl

' (i.4)eE

We adopted the approximated Hessian of Des-
brun et al. for the simplicity. If we assume the
uniform spring constants k for all the spring-links,
and n; denotes the number of neighboring mass-
points that are linked to the i-th mass-point, we
can rewrite the Hessian matrix as H;; = k and
H;; = —kn;. The update formula can then be
rewritten as follows:

~ 2 t+h
m; + h2kn; Ayt — F_fh N h kZ(i,j)eE Avj
m; ! m; m;

Therefore, Avf*h can be expressed as follows:

Fih+kh? Y o cp AV

Avith =
¢ m; + kh2n;

(3)

However, we cannot calculate Av§+h directly by
Eq. 3 because it contains unknown Avﬁ-*h, the
velocity changes of the j-th mass-points which are
linked to the i-th mass-point at the next state. In
order to calculate AV§+h , the velocity change of
the i-th mass-point at the next step, we approx-
imate the velocity change of the j-th mass-point

at the next step.

AV§+h can be expressed as follows:

At Fih+h2 Y pepkpAvith

When we drop the term, h? Y - kuAv !,

t+h .

we have an approximation of Avj

Avith ~ F§h
J mj +h/2 Z(],Z)GE k]l

By using this approximation and assuming the

uniform stiffness k£, we can rewrite the update

formula for AVE-HL as follows:

Fth+ h2k Yiper Fih/(m; + h?knj)
m; + h2kn;

Avith = (4)

where n; is the number of mass-points which are
linked to i by springs, and n; is the number of
mass-points linked to j.

Since Af‘; is already known, we can directly cal-
culate the velocity change of the i-th mass-point
at the next step. This means that we can gener-
ate approximated motion of flexible objects with-
out solving the linear system which was a major

obstruction to interactive animation. Since we
update the velocity change of a mass-point by
considering only a small number of linked mass-
points, it is obvious that our model works in O(n)
time, and is faster than precomputed inverse ma-
trix (precomputed filter) method or any general
approaches to the implicit integration. More-
over, we can easily modify the mass, time step, or
stiffness during animation without any additional
computations. These dynamic change of param-
eters cannot be achieved when precomputed in-
verse matrix is used. It is easy to modify this
equation for general cases where the stiffness val-
ues of springs are different from each other. We
have tested approximated motion of flexible ob-
jects, and found that our model generates stable
animation results.

2.3 Stability of the proposed method

For the verification of stability of our method,
let us consider a simple example where only two
mass-points (i and j) of the same mass m are
linked with a spring. This is not a proof but will
be helpful for understanding why our method is
stable. Suppose that the rest length of the spring
is 0, and the stiffness of the spring is k, For the
simplicity, let us assume that the current velocity
of each mass-point is [0,0,0]*. Then, no viscosity
forces are exerted on the mass-points, and the
force acting on the mass-point ¢ and j can be
calculated as follows:

F, = —k(x{-x;)
Fi = —k(x}-x;)! = -F}

J i

It is clear that the location of the mass-points
does not, diverge when |x}{*" — x| < |x! — x|
Sincen; =n; =1, F; = =F;, and m; = m; = m,
we can calculate the location of each mass-point

at the next step, (x!*" and x!™"), as follows:

i J

t+h ot , Fh—kRZFih/(m+kh?)
X; = X+ mtkh? h

t+h .t _ Fth—kh®Fih/(m+kh?)
Xj = X% m+kh? h

Let u denotes x} —x%. Then, F! can be expressed
as -ku, we can rewrite the difference of the loca-
tions as follows:

xiHh it

m 2
: B = u(l-2. k)

" (m+kh?)?

It is obvious that |xi™" — x§+h| is less than
Ix} — xt| when 0 < mkh?/(m+kR?)*> < 1.

It is trivial to show that mkh?/(m + kh?)? is
larger than 0. Now, we have only to show that
mkh?/(m + kh?)? < 1. Because (m + kh?)?
is m? + k2h* 4+ 2mkh?, we can easily find that
(m + kh?)? — mkh® is m? + k*h* + mkh? and
larger than 0. Therefore, mkh?/(m + kh?)? < 1.

3 AIR-INTERACTION MODEL FOR
PLAUSIBLE ANIMATION

In order to generate a realistic animation of flexi-
ble thin object, two kinds of forces, drag force and
lift force, must be considered. The magnitude of
drag force is known as follows:

1
|Fp| = §C’Dp|V|ZS sin 6

where |Fp| denotes the magnitude of the drag
force, Cp is the drag force coefficient, p is the
density of a fluid, V' is the velocity of an object
relative to the fluid, S is the area of object sur-
face, and 6 is the angle between V' and the surface.
The direction of the drag force is opposite to the
velocity. The magnitude of the lift force can be
expressed similarly as follows:

1
|Fr| = iCLp|V|2S cosd

where |F,| denotes the magnitude of the lift force,
and C7p, is the lift force coefficient. The direction
of the lift force is perpendicular to the direction
of velocity.

When Nz denotes the unit normal of the i-th
mass-point, and v; denotes v;/|v;|, the angle be-
tween N; and ¥; is 7/2 — 6. Thus, [N -v;] is sinf
(= cos(n/2 — 6)). Therefore, the drag force is
proportional to |N-¥;|. Since the direction of the
drag force is the opposite direction of the velocity,

we implemented the drag force as follows:
Fp; = —Kp|N; - ¥;[[vi|*¥;

where Kp is the control parameter for the drag
force.

For the implementation of the lift force, we must
determine the direction of the lift force. Since the
direction of the lift force is perpendicular to the
direction of the velocity, we determined U;, the
direction of the lift force on the i-th mass-point
as follows:

Ni = Nl R Zf Nz - \Afz >0
—N; , otherwise
Ui = (Nl X \Alz) X \Alz

Since the direction of the lift force was deter-
mined, we have only to determine the magnitude

/

@ o) © @
k C\ J
‘ »
© G ®)

Figure 2: Movement of ribbon object in air : the figures from (a) to (d) show the sequence of ribbon
animation when the drag and the lift forces are not taken into account, and the figures from (e) to
(f) show the sequence of movement of the ribbon which is affected by the drag and the lift forces

R

Figure 3: Flag in wind : 50ecm x 50cm size flag is tied to a pole, and wind is blowing from left to
right. The velocity of the wind is 40 m/s, Kp is 0.01, and K, is 0.01. Our air-interaction model

generated very plausible animation of thin object

of the lift force. We implemented the lift force
F1, on the i-th mass-point as follows:

FLi = (KL COSQ|VZ'|2)UZ'

where K, is the control parameter for the lift
force.

Fig. 2 shows the effect of the drag force and lift
force. The figures from (a) to (d) in Fig. 2 show
the sequence of ribbon animation when the drag
and the lift forces are not taken into account,
while the figures from (e) to (f) show the sequence
of movement of the ribbon which is affected by the
drag and the lift forces

The drag and lift effect caused by wind can be
easily taken into account by calculating the rel-
ative velocity of each mass-point respect to the
air. Fig. 3 is the animation results when the
drag force and lift force are considered. The ve-
locity of the wind is 40 m/s, Kp is 0.01, and K,
is 0.01. As seen in the figure, our drag and lift
force model generated very plausible scene.

4 COLLISION

Collision detection and response are also essen-
tial for realistic animation. We adopted gen-
eral collision detection and response techniques
[Volin94, Provo97]. We have found some prob-
lems when we implemented those general tech-
niques. In this section, the problems and our so-
lutions are described.

4.1 Collision detection

The point-triangle collision is the collision be-
tween a point of one triangle and the face of an-
other triangle. Let P be a point and V, the veloc-
ity of the point, and t be the elapsed time since ¢,
then P(t) = P(ty) +¢ Vp. Similarly, let A,B,C
be points of another triangle, then A (t) = A(tg)+
tVay, B(t) = B(t0)+t Vg, C(t) = C(t0)+t Ve.
If there exists collision, then the collision time can

(a)

(b)

Figure 4: (a) is the snapshot when the threshold distance is not considered, and (b) is the snapshot

when the threshold distance is considered.

(a)

Figure 5: (a) is the snapshot when the rotation is not considered, and (b) is the snapshot when the
rotation is considered. The line segments attached to mass-points are velocities of corresponding

mass-points

be computed by the following equations[Provo97]:

t € [to, to + h]

u,v €[0,1], u+v <1 5)
AP(t) = u AB(t) + v AC(t)

AP(t)- (AB(t) x AC(t)) =0

The edge-edge collision is the collision between
an edge of one triangle and an edge of another
triangle. Let AB be an edge and V 4p the veloc-
ity of the edge, then AB(t) = AB(t9) +t Vg,
and let PQ be another edge, then PQ(t) =
PQ(to) +t Vpg. If there exists collision, then
the collision time can be computed by the follow-
ing equations[Provo97]:

t € [to, to +]

u,v € [0,1] (6)
A(t) + uAB(t) = P(t) + vPQ(t)

AP(t)- (AB(t) x PQ(t)) =0

Since the collision time calculated by Eq. 5 or
Eq. 6 is the actual colliding time, and the com-
putation may have floating point error, we ad-
just it to the time before collision. Let d; be a
threshold distance. When the distance between
a flexible object and other objects is nearer than
dg, collision is detected. The collision time can be
adjusted by the following equation:
! dt

t =t v
where t' is the adjusted collision time, and ¢ is the
collision time computed by Eq. 5 or Eq. 6. Fig.

4 shows the effect of the threshold distance. As
seen in Fig. 4(b), the flexible object does not pen-
etrate other object when the threshold distance is
considered.

4.2 Collision response

Objects undergo the friction and dissipation when
colliding. Let N be a unit normal of the colliding
surface, then the normal component of velocity is
Vy = (V-N)N, and the tangential component
of velocity is V7 = V — V. The velocity after
collision can be calculated as follows[Provo97]:

ifIVr| > ks Vi,

V' = Vi — kf| V| % — kaV
ifIVr| <ks[Vnl,

V' =k Vy

(7)

where k¢ is a friction coefficient and k4 dissipa-
tion coefficient.

When the direction of the velocity is almost the
same as that of the normal N, the velocity af-
ter collision is almost zero and the movement is
stopped. This is because Eq. 7 does not con-
sider the rotation. For edge-edge collision, collid-
ing edge undergoes the rotation. Let P, Q be the
points of the edge, Vp,Vg the velocities of the
points, and O the colliding point, then torque is

expressed as follows:

PO x Vp + QO x Vo
h

T=m
by using 7 = I3, the angular velocity w can be
calculated as follows:

PO xVp+QOxVg
B PO2 + QO?

w

Therefore, the velocities by the rotation can be
calculated as follows:

!
p=wxPO
{ [=wx QO)

Similarly the velocity is calculated for point-
triangle collision. Fig. 5 shows the effect of the
rotation. As seen in Fig. 5(b), the flexible ob-
ject rotates when the rotation is considered. By
Eq. 7 and 8, the velocity after collision can be
computed as follows:

ifIVr| > ks |V,

V' =V —kf|Vy|E —kaVy +wxr
ifIVr| <kf[Vnl,

Vi=—-k,Vy+wXr

where r is the displacement from the colliding
point to the mass-point. After collision, the posi-
tion is changed by altered velocity.

Self-collision is the collision of the flexible object
with itself. For self-collision problem, we used
Provot’s method which is based on the Volino’s
work[Volin94, Provo97].

5 EXPERIMENTAL RESULTS

We implemented animation system for flex-
ible and thin objects with OpenGL and
Open Inventor library on SGI Indigo® and O
machines with R10000 processor. The system
was implemented with the techniques proposed in
this paper. However, mass-spring has a limitation
in representing the flexible object, because mass-
spring model shows super-elastic effects. Inverse
dynamics process for adjustment of the super-
elongated spring should be considered when the
mass-spring model is used. We adopted the tech-
niques proposed by Provot [Provo95].

Our technique generated real-time animation of
flexible objects with hundreds of mass-points at
30H z or 60H z frame rate. We could also generate
interactive animation with more mass-points (i.e.,
thousands of mass-points).

We compared the results of precomputed filtering
which was proposed by Desbrun et al. and those

of our approximation. Fig. 6 shows that the ve-
locity changes calculated by our model is very
similar to those calculated by precomputed filter.
In the Fig. 6, a virtual human moves a flag and
the velocity change of each mass-point is drawn
as a line segment. Two clusters of line segments
represent the velocity changes calculated by us-
ing precomputed filter (top) and those approx-
imated with proposed technique (middle). The
velocity changes calculated by the both method
seems similar in magnitude and direction. Thus,
our model generates the stable motion of mass-
spring model as the precomputed filter method
does. Fig. 7 shows the snapshots of ribbon dance
animation which was generated by using our tech-
nique.

6 CONCLUSION

We have proposed an approximation method of
implicit integration for the stable and fast anima-
tion of mass-spring model, and showed the results
produced with an animation system which was
implemented by using the proposed techniques.
The physical correctness was not major concern
of our work, but we were only interested in fast
and plausible animation of flexible objects. The
experimental results show that our technique pro-
duces very plausible animation of flexible objects
with large steps (i.e., fast and realistic). The re-
sults show that our method can be used for in-
teractive or real-time animation system which re-
quires large time step.

Our technique is very stably because we exploit
the filtering property of implicit method. More-
over, our method is as fast as explicit method
in the calculation of the next state, since it does
not involve linear system solving which is a bot-
tleneck of implicit method. Another important
advantage of our technique is that it is very intu-
itive and easy to implement since our technique
calculates the next state with a direct update for-
mula. Moreover, our technique allows adaptive
time step, and dynamic modification of physical
parameter such as mass or stiffness.

Our technique can be applied to various anima-
tion system that requires interactive animation of
flexible objects.

7 ACKNOWLEDEGMENT

This research was supported in part by ETRI re-
search contract (1999).

(c)

Figure 6: Result comparison - Comparison between precomputed filter and proposed approximation.
A character moves a flag and the velocity change of each mass-point is shown as a line segment.
Two clusters of line segments represent velocity changes calculated by using precomputed filtering
(top) and those approximated with proposed technique (middle)

Figure 7: Result - Two snapshots of ribbon dance animation

REFERENCES

[Baraf98] Baraff, D. Witkin, A.: Large steps in
cloth simulation, Computer Graphics(Proc.
of SIGGRAPH ’99), pp. 43-52, 1998

[Carig92] Carignan, M., Yang, Y., Magnenat-
Thalmann, N.: Dressing animated syn-
thetic actors with complex deformable
clothes, Computer Graphics (Proc. of SIG-
GRAPH), pp. 99-104, 1992

[Chen98] Chen, Y., Zhu, Q., Kaufman, A.:
Physically-based animation of volumetric
objects, Proc. of Computer Animation 98,
pp. 154-160, 1998

[Desbr99] Desbrun, M., Schroder, P., Barr, A.:
Interactive animation of structured de-
formable objects, Proc. of Graphics Inter-
face 99, 1999

[Kass94] Kass, M.: An Introduction to con-
tinuum dynamics for computer graphics,
In SIGGRAPH Course Note, ACM SIG-
GRAPH, 1994

[Nakam91] Nakamura, S.: Initial value problems
of ordinary differential equations, In Ap-

plied Numerical Methods with Software,
Prentice-Hall, pp. 289-350, 1991

[Provo95] Provot, X.: Deformation constraints
i a mass-spring model to describe rigid
cloth behavior, Proc. of Graphics Interface
95, pp. 147-154, 1995

[Provo97] Provot, X.: Collision and self-collision
handling in cloth model dedicated to design
garments, Proc. of Graphics Interface 97,
pp. 177-189, 1997

[Volin94] Volino P., Magnenat-Thalmann N.: Ef-
ficient self-collision detection on smoothly
discretized surface animations
using geometrical shape regularity, Com-
puter Graphics Forum (Proc. of Eurograph-
ics), Vol. 13(3), pp. 155-166, 1994

[Volin95] Volino, P., Courchesne, M., Magnenat-
Thalmann, N.: Versatile and efficient
techniques for simulating cloth and other
deformable objects, Computer Graphics
(Proc. of SIGGRAPH), pp. 137-144, 1995

[Wang98] Wang, B., Wu, Z., Sun, Q., Yuen,
M.: A deformation model of thin flexible
surfaces, Proc. of WSCG’98, pp. 440—446,
1998

