A Unified Framework for Collision Detection, Avoidance, and
Response

Kevin L. Steele and Parris K. Egbert
Computer Science Department

Brigham Young University
Provo, Utah USA 84602

ABSTRACT

Collision detection and collision avoidance
algorithms are necessary for accurate and realistic
animation, but are presently implemented separately
and independently. This is a disadvantage when
designing some simulations or animations which
would otherwise benefit from the availability of both
algorithms during run-time. We propose a unified
algorithm incorporating both collision detection and
collision avoidance simultaneously during an
animation. Our algorithm benefits animations whose
moving objects generally require collision-free
movement, but under certain circumstances may
collide with other objects within the scene. The
algorithm utilizes vector fields as its basis, and we
present a supporting algebra that facilitates the design
of a simulation’s behavioral interaction. Two sample
simulations are presented, and their implementation
and performance is discussed.

1 INTRODUCTION

Applications utilizing computer graphics and
computer animation are becoming more abundant
each year. Such systems take advantage of the
communicative power of three-dimensional graphics
to more effectively present information to the user,
frequently taking advantage of advanced modeling,
rendering, and animating techniques to achieve their
end.

One important group of animation techniques often
required by an application to deliver realistic object
movement is collision detection, collision avoidance,
and collision resolution or response. These strategies
are essential for the correct animation of objects in a
scene that would otherwise intersect one another and
yield unrealistic results. Collision detection
anticipates the exact or approximate time and
location in which two objects will collide and begin
to inter-penetrate, collision avoidance seeks to avoid
such contact through path planning, and collision
response directs object motion in response to a
collision.

Previous work on these strategies has produced
workable solutions [MOO88, GAR94], but many are
cumbersome and special-cased. The problem is
further compounded when real-time performance is
desired, since most proposed solutions cannot be
computed in the short interval available between the
frames of a real-time system [HUB95].

In this paper we propose a unified framework of
vector fields that encapsulates solutions to both
collision detection and collision avoidance. With the
framework in place, both collision detection and
avoidance can be incorporated into the same
simulation or animation, providing a simple and
general interface to object interaction rules. Other
systems [CAM90, LIN9S, HUB96] generally
incorporate either collision avoidance or detection,
but not both. However, some animations can be
more effectively executed with both present. For
instance, birds flying in a flock tend to avoid one
another, but under special circumstances, a strong
wind perhaps, they may collide with one another or
other objects. Both collision avoidance and detection
are necessary to resolve all possible interactions.
Rather than require the animator to pre-define the
paths of all the birds and then check for collisions on
those paths, our unified collision avoidance/detection
algorithm can be applied to such animations and will
handle all possible interactions without user
intervention.

2 VECTOR FIELDS AS
INTERACTIVE CONSTRAINTS

The basis of the unified collision analysis framework
is the vector field. Typical use of vector fields in past
computer graphics applications has been one of
passive visualization. Data from natural or
physically-based phenomena are gathered into sets or
generated from mathematical models, and are
collectively represented by vector fields. These
vector fields model the actual phenomena, and are
rendered to aid in visualization. Weather patterns
[WIL91], ocean currents [JOH91], fluid dynamics
[SHI91], and general 3D vector fields [CAB93,
GLO91, SCH91] have all been made easier to
visualize with the aid of advanced three-dimensional
rendering techniques.

Recent work [EGB96, HIL94, WEJ91] demonstrates
the usefulness of using vector fields as active
constraints in polygonal model construction and
manipulation, virtual sculpting, interactive terrain
generation, animation, and collision avoidance.
These methods employ a user-defined vector field
utilized as an on-screen tool to interact directly with
the model to be modified. As the user passes the
vector field over portions of the model, those graphic
elements (polygons, vertices, etc.) coming into
contact with vectors within the vector field are
modified relative to the strength and orientation of
the vectors. If these vectors are interpreted as forces
or loads, and the polygons of the model are treated as
physically-based objects subject to such forces, then
those elements of the model can be manipulated or
constrained in a predictable and controllable manner.

Using this technique, the modeler can sculpt "hand-
crafted" objects, generate realistic mountainous
terrain, or define the paths of animated objects—all
based on the contours and vector strengths of user-
definable vector fields. Vector fields used in this
context can be chosen from a library of commonly
used fields for modeling, or can be defined using a
procedural interface such as a programming
language.

2.1 Dynamic Vector Fields

To meet our particular needs, we extend the classic
definition of a vector field [STE91] by expanding its
function domain to be a subset of R" rather than R°.
Thus we define a vector field as:

Let G be a subset of R". A vector field on R"

is a function F(xy, Xy, X3, ..., X,) that assigns
each point (Xi, X, X3, ..., X;) in G a three-
dimensional vector F(xj, X;, X3, ..., Xy)-

Expressed in terms of its component functions, this
vector field is

F(x1, X2, X3, ..., Xn) = F1(X1, X2, X3, ..., Xp)i +
Fa(x1, X2, X3, ..., Xp)j +
F3(x1, X2, X3, ..., Xp)k

Note that the vector field function maps F: R" - R°.
Having an n-space function domain allows the vector
fields to be dependent on any number of variables in
the system, not just the three spatial dimensions. We
thus think of the vector field as dynamic in nature,
and refer to it as a dynamic vector field, a vector field
in three-space that changes with respect to an
arbitrary number of user-defined variables. These
variables can represent time, proximity of one object
to another, etc.

3 UNIFIED FRAMEWORK

With the dynamic vector field definition in place, we
propose a common framework that will unify
collision detection, avoidance, and response
computations. The basis for the framework is our
interpretation of dynamic vector fields as physical
force fields, similar to that proposed in [HIL94]. In
this approach, each object in a simulation is treated
as a particle that can move freely in Euclidean space
subject to external forces. The objects maintain their
own positions and, depending on the type of
simulation, velocities and accelerations as well.
Vector fields are then introduced into the simulation,
and any particle found within the boundary of a
vector field is given an external force vector
equivalent to the vector field function evaluated at
the position of the particle. Such particles’ positions,
velocities, and/or accelerations are modified based on
the external forces.

A brief description of the framework and associated
algorithm follows; a more detailed explanation is
given in section 3.2. Assume a simulation or an
animation in which collision detection and/or
avoidance occur. Each independently moving object
in the scenario maintains its own mass, position,
velocity, and acceleration, and is surrounded by a
dynamic vector field. As objects approach one
another and intersect the critical set of another’s
field, vectors from the fields are sampled and
interpreted as forces acting upon the opposing
objects. Since the objects maintain mass, position,
velocity, and acceleration, their motion can be
predicted and controlled via the field that "hit" them.
In this way, either collision avoidance, collision
detection, or both can be used between any two
objects depending on how their field functions are
defined. Additionally, the field function determines
the collision response to each object involved.

3.1 Vector Field Algebra

An important aspect of our proposed framework is
the interaction of vector fields with other vector
fields. In a physically-based simulation, overlapping
force vectors are usually added together. However, a
less restrictive rule would be advantageous, allowing
for a more flexible modeling environment. For this
reason, we define a vector field algebra to govern the
interaction of two or more fields in the same vicinity.

To simplify the situation, we split vector fields into
two components[] a spatial component, defining the
critical set, or spatial bounds outside of which the
function yields zero vectors, and an algebraic
component, defining the vector field function itself.
For example, a vector field function that defined

vectors all pointing away from the origin, and whose
lengths were constant within a unit's distance from
the origin and zero outside that distance, would have
a critical set whose loci of points comprised a unit
sphere centered at the origin. Under our split
definition of vector fields, the spatial component of
that function would be the unit sphere, and the
algebraic component would be a function returning
constant-length vectors emanating from the origin.

This is arguably unnecessary, since a "traditional"
vector field function includes its critical set
boundary. We found the split definition enormously
helpful, however, in optimizing the interactive
treatment of fields using raster graphics algorithms.
For instance, since vector fields can be interactively
dragged around a simulation, it made sense to
provide a geometric primitive such as a sphere or
cube that encapsulates the vector field for the user to
manipulate and drag. With a visual icon representing
the vector field’s boundary, the user then intuitively
understands the critical set of the field.

We define the spatial operations using the regularized
boolean set operations of union (0°), intersection
(n"), and difference ('), and the algebraic operations
using the vector operations of addition (+), cross
product (x), and replacement (). This duality of
operations in the algebra requires that we include
both types of operations in our descriptions and
definitions. For instance, we cannot take the cross
product (X) of two vector fields; rather, we take the
cross product of the union (x D*) of two vector
fields. Figure 1 shows the possible combinations that
are defined in the algebra, along with their
corresponding operators. The next two subsections
formally define the two types of operations.

Union |Intersection| Difference

Addition +0* +n* —*
Cross Product | x[J* xn* —*
Replacement | - [O* -n* —*

Figure 1: Combinations of algebraic operations with
boolean set operations to resolve vector field
interactions, given with their corresponding
operators. The difference operation has no algebraic
component because it is exclusively sufficient to
resolve the interaction. That is, after the difference
operation, there is only one vector field function left,
and hence no need for a functional component.

3.1.1 Spatial Operations

Since dynamic vector fields have an F: R" - R’
mapping, their domains must occupy common
dimensions for any spatial operation to be applicable
to them. Given two domains R™ and R", we define
the regularized boolean set operations for the subsets
E of R" and G of R", which respectively bound
separate vector field functions, to be intuitively the
same as in [FOL90], with the following extensions to
allow for operations on subsets of differing
dimensions:

Let 4, B, and C be sets of linearly
independent coordinate axes where

A= {als A2, A3 <00y am}a

B= {bl, bz, b3, ceey bn}, and

C= {C], €2y €39 ceey Ck}.

Let £ and G be subsets of R” and R"
respectively, whose coordinate axes are
given by 4 and B respectively, and E*G be
any regularized boolean set operation on £
and G. The operation E*G yields a subset F
of R*, k <m + n, where the coordinate axes
of R¥is C = 4 O B. The subset F consists of
the union, intersection, or difference of £’ =
S(E); S: R" — R with G’ = T(G); T: R" ~
R*, such that for any slice H; in R” (of
coordinate axes 4) of F, H; = E, and any
slice H, in R" (of coordinate axes B) of F,
H 2= G.

The slice operation in the above definition is
intuitively defined as taking a subset of the object by
holding invariant some of the coordinates of the
object while allowing the rest to vary. For example,
taking a 2D slice in z of a 3D object is simply
extracting a plane out of the 3D object perpendicular
to the z axis. The plane extracted is selected by
fixing the Zz-coordinate to a user-defined value.
Also, note that the — symbol in S: R” — R" and T:
R"— R* represents linear transformations from R”
and R" to R, rather than the replacement operation
used previously in the algebra.

To describe the extended boolean set operations in
simple terms, each m-dimensional and n-dimensional
volume is transformed up into the least k-space
possible, with all coordinate axes of R™ and R"
included in R, and then combined using the union,
intersection, or difference operator. The
transformation makes the original volumes invariant
across each new dimension. For example, if a two-
dimensional image is extruded along the z-axis to
create a three-dimensional volume, the new volume is
invariant, or constant across z because any two-
dimensional slice taken along z is the original image.

The following is an example of an extended boolean
set operation: A 3D vector field that is also
dependent on time and another 3D vector field that is
also dependent on & (perhaps a distance) are
combined using the sum of union operation. The
least k-space possible is R’, where the fourth and fifth
dimensions are time and J. The first vector field is
transformed up to R°, and the new object is constant
across 0. The second vector field is transformed up
to R’, and the new object is constant across time.
The union of the two new objects is an object of
dimension R’ whose volume includes both of the
original two.

3.1.2 Algebraic Operations

Now that we have defined the interaction of vector
field volumes, we can define the wvector field
algebraic operations of addition, cross product, and
replacement:

Let 4, B, and C be sets of linearly
independent coordinate axes where

A ={a, a5, a3, ..., ap},
B = {by, by, b3, ..., by}, and
C = {cy, 35 C3y ...y Ok}

Let £ and G be subsets of R” and R"
respectively, whose coordinate axes are
given by 4 and B respectively. Let U and V
be vector fields in the subsets E of R” and G
of R" respectively, and E*G be any
regularized boolean set operation on E and
G. An algebraic operation U°V is the vector
field V in the subset E+G of R* in which the
following three conditions hold:

1. Every point (¢, ¢, Cs, ..., ¢) in (E—*G)
Nn* (E+G) is assigned the vector U(a,, ay,
a, ..., an),

2.Every point (¢, ¢y, C3, ..., ¢) in (G—*E)
Nn* (E+G) is assigned the vector V(b,, by,
b, ..., by),

3. Every point (cy, ¢, C3, ..., ¢) in (En*G)
n* (E+G) is assigned the vector U(a,, ay,
as, ..., am) + V(b], bz, b3, ceey bn) for
addition, U(ay, ay, as, ..., an) X V(by, by,
bs, ..., by,) for cross multiplication, and
V(by, by, bs, ..., b,) for replacement,

where, for each a;, a; - ¢;, where i is the
coordinate axis of E*G that corresponds to

the /" coordinate axis of E, and similarly for
b.

Dynamic vector fields are closed under addition,
cross multiplication, and replacement. Addition is
both commutative and associative, and replacement is
associative:

U, V, and W are vector fields.

U+V=V+U (commutative)
(U+V)+W=U+ (V+ W) (associative)

UsV) s W=Us (VoW (associative)

Since union and intersection, the only regularized
boolean set operations that require further algebraic
operations (the difference operation requires no
algebraic operations), are both commutative and
associative, all regularized boolean set operations can
be performed independent of any algebraic field
operations. This means that all the algebraic
properties mentioned above hold whether the set
operation to combine the vector fields be union,
intersection, or difference. Figure 2 shows examples
of both the spatial operations and algebraic
operations.

Spaia()lns Algebraic Operations

Union A
‘+ ‘ = ‘
(sum)
Inter_ ‘)) ‘
section
(replace-

replac
ment)

[\
Cross
product)

Figure 2: Examples of the spatial operations of
union, intersection, and difference, and the algebraic
operations of addition and replacement. Since cross
multiplication only applies to three dimensions, the
2D example is not shown. The result in three
dimensions would be a vector field whose vectors are
cross products of the operands.

Difference

3.2 Collision Avoidance

In [EGB96] Egbert, et. al., described a collision
avoidance scheme utilizing vector fields as forces as
described in section 3. As objects approach vector
fields in their simulations, an opposing force is
exerted on the object, which in turn modifies its
trajectory to minimize the opposition. The objects in
such simulations behave as if there were magnetic
repulsive fields between them. The strength of the
“magnetic field” is determined by the vector field
function.

These vector fields are not dynamic but are static, in
that their functions are only dependent on location in
the field, providing the mapping F: R~ R’. The
algorithm 1is discrete, since it freezes objects at
regular, or discrete intervals to check proximity to a
field and update the object's position and velocity
accordingly.

Our framework uses Egbert’s technique for collision
avoidance, and subsumes and expands it for collision
detection. Egbert uses a simple scheme for resolving
vector field interactions by taking the sum of the
union of any overlapping fields. We instead
incorporate the full algebra given in section 3.1,
using operations appropriate for the needs of the
simulation. For instance, the spatial CSG operations
can be used to construct a layered composite vector
field as shown in figure 3.

3.3 Rigid-Body Collision Detection

Collision detection seeks to determine the time and
point of impact at which a collision between two
rigid bodies occurs. We again use a discrete
algorithm, checking object proximities at regular
intervals. However, the vector fields surrounding
each object for collision detection are dynamic, their
functions depending on location within the field as
well as the type and velocity of object entering the
field.

As a simple example of how the algorithm works,
consider two spheres moving independently in a
closed volume with the possibility of colliding. Each
sphere has an associated position and velocity, and
for purposes of this example can bounce elastically
off the walls of their enclosing volume. Additionally,
each sphere has a dynamic vector field surrounding it
which maintains the same position and velocity as the
sphere. The dynamic vector field has a spherical
bounding volume with a radius of at least the length
of the sum of the two largest sphere's radii in the
simulation (the only spheres in this simple example).

Static, radially inward-
pointing vector field

Dynamic, radially outward-
pointing vector field

Vector field interaction resolved as:
InnerField = U* OuterField

Figure 3: Example of a composite vector field. The
outer field is a static, radially inward-pointing field
simulating a gravitational field. An object entering
the field is pulled toward the center until it comes
into contact with the inner field, a dynamic, radially
outward-pointing field simulating the surface of
another object. With the spatial/algebraic boolean
operator, the combination is considered one vector
field.

To optimize performance, all sampling of the
dynamic vector field function is done at the center of
any approaching spheres. A field function yields a
vector according to the following rules:

e If no spheres (besides the one it's
surrounding) are within its boundary, the
function returns the zero vector.

e Otherwise, for each approaching sphere
within its boundary:

e If the approaching sphere does not
intersect the approached sphere
(determined from each sphere's radius,
hence the need for a dynamic vector
field), the function returns the zero
vector.

e Otherwise, the function returns a force
vector in the direction of the approaching
sphere whose length is the magnitude of
the velocity vector of the approaching
sphere.

Spheres that receive force vectors can change their
acceleration, velocity, and position accordingly. If
these variables are modified according to Newtonian
laws of motion, a physically-based simulation is
produced.

A more complex simulation would be one in which
objects are comprised of multiple parts, each having
its own surrounding vector field. These objects could
additionally experience torque forces, exhibit angular
velocity, and preserve angular momentum. In such a
simulation, the repulsive vector fields behave exactly
the same as in the simple case; the only difference is
force vectors are applied to angular as well as
translational motion. Section 4 describes an example
of this in which we construct composite vector fields
around more complex objects that spin and at times
collide.

3.4 Unification

Given the previous algorithms for collision avoidance
and detection, it is straightforward to incorporate
them both into the same simulation. Essentially, each
object that has the potential of colliding with other
objects is assigned its vector field based on how it
will interact with the rest of the scene. If an object is
to be avoided, a static repulsive vector field of the
appropriate strength is assigned to it. If an object is
allowed to actually collide with other objects (that
aren’t trying to avoid it), a dynamic vector field is
assigned based on the rules in section 3.3. The same
object can even be given both types of fields. Since
all vector field interactions are resolved using the
algebra under its binary operations, all objects’
surrounding vector fields are inserted into a tree (see
figure 4) prior to starting the simulation. While the
simulation is running, collisions are resolved using
one algorithm that simply evaluates the composite
vector field and updates motion variables
accordingly.

Gt G
SELEL

Object B Object C

Object A

Figure 4: Tree structure of a composite vector field.
The leaves of the tree are individual vector fields,
and the nodes are spatial/algebraic operators. The
tree is interpreted as a single composite vector field.
In this example, three objects A, B, and C each have
a large attractive field and a small repulsive field as
in figure 3 which are combined using a replacement
of union operator. These three compositions are then
combined with a sum of union operator. If the three
objects were placed in a simulation, they would
attract one another until a collision occurred, at
which time they would bounce in a physically
accurate manner. Note that binary operators typically
must be placed in a binary tree. Since the sum of
union operator is associative, however, it can have
any number of operands, so its node can have any
number of children.

4 IMPLEMENTATION AND
PERFORMANCE

We implemented our simulations and supporting

vector field algebra under Open Inventor™! running
on Silicon Graphics platforms. Under its strictest
definition, the algebra calls for vector field
boundaries of arbitrary shape and dimension. Our
implementation, however, utilizes only four
geometric ~ primitives provided by Open

10pen Inventor is a trademark of Silicon Graphics,
Inc.

Inventor[d sphere, cone, cube, and cylinderd as
shape boundaries. Additionally, we have allowed
only the algebraic domain, rather than both the
algebraic and spatial domains, to have more than
three dimensions. These two restrictions made
implementation much easier and more efficient, while
still permitting us adequate freedom in defining our
vector fields. As an example of these restrictions,
consider a dynamic spherical vector field whose field
strength, i.e., vector magnitude, varies inversely
proportional to the field’s distance to a wall
(increases as it approached the wall, etc.). The
algebraic domain is four-dimensional, comprised of
X, y, z and distance, but the spatial domain, the
spherical boundary, remains three-dimensional, being
comprised only of x, y and z.

Given these restrictions in our algebra, our first
simulation was a proof-of-concept for the dynamic
vector fields and algebra and involved collision
detection among a group of equally-sized spheres.
Each sphere was surrounded by a dynamic vector
field, as described earlier, and collisions were
checked each frame. On collision, the spheres
received forces and reacted in a physically accurate
manner. Running on an SGI O2 with a single MIPS
R5000 processor, we achieved reasonable interactive
performance with up to about twenty spheres.

Our second simulation utilized both collision
detection and avoidance to demonstrate the
interaction of ammonia molecules in a closed
container. Each ammonia molecule, comprised of
three hydrogen atoms and one nitrogen atom, was
surrounded with two vector fields per atom[] a
dynamic field for handling the physical interactions
of collisions with other molecules, and a static field
for simulating the electrical attractions and repulsions
between molecules (see color plate 1). Collision
detection is seen in the physical interactions, and
collision avoidance in the electrical interactions.
Translational and angular velocities are computed on
a frame-per-frame basis with forces from the fields
computed as described above; color plate 2 shows a
short sequence of the animation where two molecules
are colliding. Running on an SGI O2 with a MIPS
R5000 processor, our simulation performed
adequately, maintaining interactive frame rates with
up to about ten ammonia molecules.

5 CONCLUSION

We have designed the vector field algebra to be
general purpose. This is done to provide an algebraic
framework for many diverse applications, each
requiring its own subset of the algebra's operations
for its activities. Hence, each implementation of the

algebra is generally a subset of its full capability, and
can be tailored to the needs of the application. For
instance, as mentioned earlier, the vector field
definition calls for virtually any type of 3D geometry
to be available for use as the bounding volume of the
vector field. If an application needs only simple
geometric primitives for its vector field volumes,
there is no need to provide it with computationally
expensive and time consuming NURBS surfaces.
Likewise, another application may require more
flexible surface definitions, which it utilizes at the
cost of performance.

As shown by the second simulation, our framework
of wvector fields effectively intermixed collision
detection and avoidance with successful results.
During simulation run-time, only one straightforward
evaluation algorithm is necessary to resolve
collisions, reducing overhead and simplifying
implementation. The framework is general enough to
permit many physically-based properties and
elements to be implemented within it, including
gravity, light, electromagnetism, and rigid-body
collisions.

REFERENCES

[CAB93] Cabral, B. and Leedom, L. Imaging
Vector Fields Using Line Integral Convolution.
Proceedings of SIGGRAPH 93 (Anaheim,
California, August 1-6, 1993). In Computer
Graphics Proceedings, Annual Conference
Series, 1993, ACM SIGGRAPH, New York,
1993, pp. 263-270.

[CAM90] Cameron, S. Collision Detection by
Four-Dimensional Intersection Testing. I[EEE

Transactions on Robotics and Automation, 6, 3
(June 1990), 291-302.

[EGB96] Egbert, P. and Winkler, S. Collision-
Free Object Movement Using Vector Fields.
IEEE Computer Graphics and Applications, 16,
4 (July 1996), 18-24.

[FOL90] Foley, J. D., van Dam, A., Feiner, S. K.,
and Hughes, J. F. Computer Graphics,
Principles and Practice (Second Edition).
Addison-Wesley, Reading, MA, 1990.

[GAR94] Garcia-Alonso, A., Serrano, N., and
Flaquer, J. Solving the Collision Detection
Problem. [EEE Computer Graphics and
Applications, 14,3 (May 1994), 36-43.

[GLO91] Globus, A, Levit, C. and Lasinski, T. A
Tool for Visualizing the Topology of Three-

Dimensional Vector Fields. In Visualization '91.
(October 1991), IEEE Computer Society Press.

[HIL94] Hilton, T. L. and Egbert, P. K. Vector
Fields: An Interactive Tool for Animation,
Modeling and Simulation with Physically Based
3D Particle Systems and Soft Objects. In
Proceedings of Eurographics 94, Computer
Graphics Forum, 13, 3 (1994), 329-338.

[HUB95] Hubbard, P. Collision Detection for
Interactive ~ Graphics Applications. [EEE
Transactions on Visualization and Computer
Graphics, 1, 3 (September 1995), 218-230.

[HUB96] Hubbard, P. Approximating
Polyhedra with Spheres for Time-Critical
Collision Detection. ACM Transactions on
Graphics, 15,3 (July 1996), 179-210.

[JOH90] Johnson, M. A., and O'Brien, J. J.
Modeling the Pacific Ocean. The International

Journal of Supercomputer Applications, 4, 2
(Summer 1990), 37-47.

[LINO9S] Lin, M. C. and Manocha, D. Fast
Interference Detection — Between Geometric
Models. The Visual Computer, 11, (c) Springer-
Verlag 1995, 542-561.

[MOO88] Moore, M. and Wilhelms, J. Collision
Detection and Response for Computer Animation.
Computer Graphics, 22, 4 (August 1988), 289-
298.

[SCHI1] Schroeder, W. J., Volpe, C. R., and
Lorensen, W. E. The Stream Polygon: A
Technique for 3D Vector Field Visualization. In
Visualization '91. (October 1991), IEEE
Computer Society Press.

[SHI90] Shirayama, S. and Kuwahara, K. Flow
Visualization in Computational Fluid Dynamics.
The International Journal of Supercomputer
Applications, 4, 2 (Summer 1990), 66-80.

[STE91] Stewart, J. Multivariable Calculus
(Second Edition). Brooks/Cole, Pacific Grove,
CA, 1991.

[WEJ91] Wejchert, J. and Haumann, D.
Animation Aerodynamics. Computer Graphics,
25, 4 (July 1991), 19-22.

[WIL90] Wilhelmson, R. B., et al. A Study of
the Evolution of a Numerically Modeled Severe
Storm. The International Journal of
Supercomputer Applications, 4, 2 (Summer
1990), 20-36.

