On a Fundamental Physical Principle Underlying the Point
Location Algorithm in Computer Graphics

Sumit Ghosh
Department of Computer Science & Engineering
Arizona State University, Tempe, AZ 85287
sumit.ghosh@asu.edu

Abstract

The issue of point location is an important
problem in computer graphics and the study
of efficient data structures and fast algorithms
is an important research area for both com-
puter graphics and computational geometry
disciplines. When filling the interior region of
a planar polygon in computer graphics, it is
necessary to identify all points that lie within
the interior region and those that are outside.
Sutherland and Hodgman are credited for de-
signing the first algorithm to solve the problem.
Their approach utilizes vector construction and
vector cross products, and forms the basis of
the “odd parity” rule. To verify whether a test
point is within or outside a given planar poly-
gon, a ray from the test point is drawn extend-
ing to infinity in any direction without inter-
secting a vertex. If the ray intersects the poly-
gon outline an odd number of times, the region
is considered interior. Otherwise, the point is
outside the region. In 3 dimensional space, Lee
and Preparata propose an algorithm but their
approach is limited to point location relative to
convex polyhedrons with vertices in 3D-space.
Although it is rich on optimal data structures
to reduce the storage requirement and efficient
algorithms for fast execution, a proof of cor-

rectness of the algorithm, applied to the gen-
eral problem of point location relative to any
arbitrary surface in 3D-space, is absent in the
literature. This paper argues that the electro-
magnetic field theory and Gauss's Law consti-
tute a fundamental basis for the “odd parity”
rule and shows that the “odd parity” rule may
be correctly extended to point location relative
to any arbitrary closed surface in 3D-space.
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1. Introduction

In computer graphics [1][2][3][13], to deter-
mine whether a point lies within or outside a
polygon, a ray is drawn starting at the point
and extending to infinity in any direction but
not intersecting any vertex. If the ray inter-
sects the outline of the polygon an odd num-
ber of times, the test point is considered to
be within the polygon. Otherwise, the point is
outside the polygon. The technique is referred
to as the “odd parity” rule. The basic scheme
is due to Sutherland and Hodgman [4]. A key
element — function “INSIDE” [1], determines
whether a point, P, is to the left or right of a



boundary, represented by the directed line seg-
ment from P; to P,. First, the cross product
of P;Pz and PfP is computed. Second, where
the cross product is along the positive z-axis,
the point P is to the left and thus outside. If it
is along the negative z-axis, the point is to the
right or inside. In Figure 1, P; is considered in-
side since the cross product of P;Pz and Png
is along the negative z-axis. Point P; is viewed
as outside since the cross product of PfPQ and
PfP4 is along the positive z-axis.
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Figure 1: The Basic Sutherland and Hodgman

Scheme

The scan-line approach, used in polygon filling,
is an extension of the basic approach described
earlier. Given a point and a closed polygon,
one draws a line through the point extending
to infinity. If the line intersects the polygon
an odd number of times, assuming that the
line does not intersect at any vertex, the point
is considered to lie inside the polygon. Oth-
erwise, it lies outside the polygon. Figure 2
shows a complex polygon with two holes in it
and a number of points P, through P,, some
located within while others are located outside
the polygon. The algorithm correctly deter-
mines that the points P, and P; lie inside the
polygon since the lines P,(); and P,(), inter-
sect the polygon an odd number of times, while

the points P, and P; lie outside the polygon

P2

since the lines P;(); and P3()3 intersect the
polygon an even number of times.
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Figure 2: Planar Point Location Utilizing the “Odd
Parity” Rule

In the discipline of computational geometry,
the problem of point location in a planar subdi-
vision [5] reduces to determining the region of
the subdivision occupied by the point. The ba-
sic approach is to triangulate any subdivision or
a polygon with holes and determine the triangle
in which the point lies. The computational ge-
ometry literature is rich on techniques — choice
of data structures and algorithms, to speed up
the result [6][7][8]. Given a subdivision S with
n vertices, the key performance measures for
the point location algorithm (i) the time for
preprocessing, (ii) the space required to store
the data structure, and (iii) the time required
to search the data structure to locate the point.
Lee and Preparata [6] present an approach to
determine whether a test point P is located
within a convex polyhedron in 3D-space. They
select a vertex with the largest Z coordinate
and then drop a stereographic projection of the
vertex of the polyhedron — a planar graph &,



onto a x-y plane. The test point is also pro-
jected on the same x-y plane as P’. Next, they
apply their planar point location technique to
the projected point and planar graph on the
x-y plane and argue that if P’ is within S’, the
original point in 3D-space is contained within
the convex polyhedron. Edelsbrunner, Guibas,
and Stolfi [8] present a space-optimal approach
for point location and claim that its efficiency
renders it a candidate for rectangular point lo-
cation in higher dimensions.

The literature in both computer graphics
[9][10] and computational geometry [6][[7] fo-
cus on efficient data structures and algorithms
for fast region filling and point location. How-
ever, the literature does not address the un-
derlying principle of the odd parity rule and
is unable to argue why the technique works,
whether it is guaranteed to work for every pla-
nar polygon, and whether it may be extended
to any arbitrary polygon in 3D-space.

This paper presents a fundamental physical
principle from which the “odd parity” rule may
be derived for 3D-space. Thus, given any arbi-
trary closed surface in 3D-space, the location
of any point relative to the closed surface may
be determined. The aim of this paper is to
present the underlying principle for the point
location problem and not to provide an effi-
cient algorithmic implementation.

2. A Physical Principle Underlying the
Point Location Algorithm

According to the electromagnetic field theory,
a point charge gives rise to an electric field
whose flux is measured by the number of lines

of force that cut through a surface. Fur-
thermore, Gauss’ Law [11] states that for any
closed hypothetical surface in 3D-space, the
flux through the surface is related to the net
charge, q, enclosed by the surface through a
surface integral, shown in Equation 1.

€0 7{ E.dS = q, (1)

where ¢€p is the permittivity constant, E is
the vector electric field at a point on the sur-
face, and dS denotes the outward normal vec-
tor to the surface at that point. Where the
net charge enclosed by the volume correspond-
ing to a hypothetical surface is zero, the flux
through the surface is also zero. Otherwise,
the net flux through the surface is non-zero.

The key elements in Gauss’ Law are that it
applies to any arbitrary closed surface in 3D-
space and that the flux through the surface is
related to the net charge enclosed by the sur-
face. Clearly, the net charge enclosed by a sur-
face may be considered a point charge, without
any loss in generality. Assume a positive point
charge located at a point P with respect to
an arbitrary closed surface, S, in 3D-space. P
may be either outside the surface or inside the
surface. Where P lies on the surface, the issue
of point location is easily settled by examining
whether the coordinates of the point satisfy the
mathematical equation of the surface.

First, consider that P is located outside S. Al-
though the arguments in this paper apply to
any arbitrary surface, for simplicity, assume
that S is either a spherical surface or a U-
shaped rectangular cylinder, as shown in Fig-



ure 5. According to Gauss' Law, the net flux
through S due to P must be zero. To satisfy
this requirement, Feynman [12] argues that, for
any line of force, v, emanating at P and termi-
nating at infinity, if it intersects S, the net flux
through S, due to v, must be zero. According
to Feynman [12], any volume can be thought
of as completely made up of infinitesimal trun-
cated cones with the apex at P. For each line of
force, represented by E, the infinitesimal trun-
cated cone may correspond to one continuous
unit as in the case of the sphere in Figure 5
or a set of disconnected truncated cones as in
the case of the U-shaped rectangular cylinder
also shown in Figure 5. Gauss' Law dictates
that the flux of E entering the leading surface
of any infinitesimal truncated cone must equal
the flux of E exiting the corresponding trail-
ing surface of the truncated cone, such that
the net flux is zero. Feynman [12] explains it
clearly by utilizing the argument that the inter-
secting end surfaces are infinitesimally small so
that they subtend an infinitesimal angle from
the source, and that the E field is sufficiently
uniform over the surface such that we can use
just its value at the center. Thus, the flux en-
tering the sphere through the infinitesimal sur-
face “a” must be equal to that exiting through
the infinitesimal surface “b.” Also, the flux
entering the rectangular cylinder through in-
finitesimal surface “a” must be equal to that
exiting through the infinitesimal surface “b”
and that entering through “c” must equal the
flux exiting through “d.” Similarly, the flux
through “a’ " must cancel out that through “
b ".

Therefore, where E intersects the surface S,
there must be an integral number of pairs of

intersecting points, implying a total of an even
number of intersection points. If, on the con-
trary, we assume that the number of intersec-
tion points is odd, then there is one intersec-
tion point through which the flux of E either
enters or exits S and there is the absence of
the corresponding intersection point to force
the net flux through S to equate to zero. This
would violate Gauss’ Law. Therefore, the num-
ber of intersections of E with S must be even,
zero included.

Next, consider that P is located inside S as
shown for the three closed surfaces in Fig-
ure 4. As before, although the arguments in
this paper apply to any arbitrary surface, for
simplicity, assume that S is a closed sphere,
a toroid, or a rectangular dumb-bell. Gauss’
Law requires the net flux out of S to be pos-
itive. Feynman [12] argues that every line of
force, v, emanating at P must intersect S, at
least once. Utilizing similar arguments as be-
fore, namely that any volume can be thought
of as completely made up of infinitesimal trun-
cated cones with the apex at P, for each line
of force, represented by E, the corresponding
infinitesimal truncated cone may either consist
of one continuous unit as in the case of the
sphere in Figure 4 or a set of disconnected
truncated cones as in the case of the toroid
and the rectangular dumb-bell, also shown in
Figure 4. Since the point charge at P lies in-
side the surface, Gauss' Law implies that the
net flux exiting the infinitesimal surface must
be finite. Thus, for the sphere S, the flux exit-
ing the infinitesimal surface “a” of the sphere
For the toroid and the rect-
angular dumb-bell, while the flux entering the
infinitesimal surface “b” equals that exiting the

must be finite.



surface “c,” the flux exiting the surface “a” is
finite, implying that the net flux exiting out of
the surface is non-zero. Therefore, the number
of intersections of any E line of force with the
closed surface must be odd, at least 1, so that
the outward flux through at least one infinites-
imal surface is non-zero, yielding a net positive
outward flux.

Thus, for any arbitrary closed surface in 3D-
space, a straight line, originating at any point
P and extending to infinity, must intersect the
surface an odd number of times, at least 1, if
P is located within the surface. Where P is
located outside the surface, the straight line
from P may either never intersect the surface
or intersect it an even number of times. This
constitutes the definition of “point location”
for any arbitrary closed surface in 3D-space.
Since Gauss' Law may be re-written for 2 di-
mensions using a line integral instead of a sur-
face integral, the “odd parity” rule for planar
point location also derives its basis from the
electromagnetic field theory.

The polygon in Figure 3(a) poses an interesting
challenge to the key thesis in this manuscript.
Although the point P appears to lie within
the polygon, according to the odd parity rule,
any ray emanating at P, except those passing
through the vertices including S, intersects the
polygon twice. Therefore, P should lie outside
the polygon. For a better understanding, con-
sider that there are three polygons — the tri-
angle SGF, the pentagon ASDCB, and the oc-
tagon ASGFSDCB. Figure 3(b) enables a bet-
ter appreciation of the octagon AHGFEDCB,
where H and E are apart by an infinitesi-

mal distance. In truth, the point P lies in-

Figure 3: Point Location in a Complex Polygon in
2D-Space

side the triangle SGF. The point P also lies
within the pentagon ASDCB. In both cases,
any ray drawn from P will intersect the poly-
gon only once. However, the point P lies out-
side the octagon ASGFSDCB in Figure 3(a)
which is apparent more clearly in the octagon
AHGFEDCB in Figure 3(b).

The above findings are corroborated by Gauss’
Law, as follows. Assume, on the contrary, that
the point P lies within the octagon and that it
holds a positive charge. Therefore, the net flux
through the octagon must be non-zero. Now,
an electric field line emanating from P and ter-
minating at infinity will intersect the octagon
twice, except when it passes through S, ex-
actly as in the case of the odd parity rule. The
role of S is anomalous and, for the diagram
in Figure 3(a) to be viewed as an octagon, S
cannot constitute a vertex. Thus, an electric
field line through S is not meaningful and the
representation in Figure 3(b) is more appropri-



ate. Assume that the flux flows relative to the
octagon at these intersecting points are given
by F1 and F2, respectively. Also, assume arbi-
trarily that a positive value implies flux exiting
the octagon, while a negative value implies flux
entering the octagon. Since P is assumed to
lie within the octagon, F1 must be positive,
i.e. the ray emanating from P must first exit
the octagon. The quantity, F2, cannot assume
a positive value since once the ray has exited
the octagon, it cannot exit again without first
entering it. Therefore, F2 must assume a neg-
ative sign. Thus, the signs of F1 and F2 are
opposite, and utilizing Feynman's [12] argu-
ment for an infinitesimal cone of flux, F1 and
F2 will cancel each other, implying that the net
flux through the octagon is zero. This clearly
contradicts Gauss' Law. Since Gauss' Law is
a fundamental physical law that underlies the
electromagnetic field theory, it cannot be vio-
lated. Thus, the point P must lie outside the
octagon and no anomaly is implied between
the odd parity rule and Gauss’ Law.

Although it is not the aim of this paper
to present data structures and algorithms for
point location, the computation required to lo-
cate any given point relative to a hypothetical
surface in 3D-space, is presented as follows.
First the equation of the surface is developed.
Then, the coordinates of the point are substi-
tuted to verify whether they satisfy the equa-
tion of the surface. If affirmative, the point lies
on the surface. Otherwise, the point is located
either within or outside the surface. Since the
fundamental principle applies to any line of
force, emanating at the positive point charge,
a line is constructed to pass through the given
point and the origin and its equation is synthe-

sized. Next, the intersections, if any, between
the line and the surface are obtained by solv-
ing for sets of {x,y,z} values that simultane-
ously satisfy both of the equations. Where the
set of {x,y,z} values is nil, the point is consid-
ered to lie outside the surface. Otherwise, the
magnitude and signs of the distances — P, 1,
P Iy, ..., PI;, from P to all of the intersec-
tion points, {1,2,...,j}, along the straight line
through P, are computed. From this knowl-
edge, it is deduced whether P is located in-
side or outside the closed surface depending
on whether the number of intersections of the
line originating at P and the surface are odd or
even.

3. Conclusions

The literature presents a mechanism for pla-
nar point location relative to a polygon, as
proposed by Sutherland and Hodgman. Al-
though it is rich in optimal data structures and
efficient algorithms for fast execution of the
planar point location problem, a proof of cor-
rectness for the general problem of point lo-
cation relative to any arbitrary surface in 3D-
space is absent in the literature. This paper
has argued that the electromagnetic field the-
ory and Gauss's Law constitute a fundamental
basis for the “odd parity” rule and has cor-
rectly extended the “odd parity” rule to locate
points relative to any arbitrary closed surface
in 3D-space.
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Figure 4: Electromagnetic Flux for a Positive Point
Charge Located Inside a Surface in 3D-space
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Figure 5: Electromagnetic Flux for a Positive Point
Charge Located Outside a Surface in 3D-space



