A GEOMETRIC CONSTRAINT SOLVER WITH DECOMPOSABLE
CONSTRAINT SET

David Podgorelec, Borut Zalik

Faculty of Electrical Engineering and Computer Science
University of Maribor, Smetanova 17
S1-2000 Maribor
Slovenia
e-mails: david.podgorelec@uni-mb.si, zalik@uni-mb.si

ABSTRACT

Abstract: In the paper, a new constructive approach to solving geometric constraints in 2D space is
presented. The main step of the algorithm is pre-processing, which transforms both, geometric elements
and geometric constraints, into simpler forms, and adds redundant constraints of distances and angles by
solving triangles and determining sums and differences of adjacent angles. A wide variety of well-
constrained problems can then be solved by a simple technique of local propagation, and over-constrained
scenes and input data contradictory to some well-known mathematical theorems can also be detected in
the same phase. Only with under-constrained problems and some special well-constrained cases, an
additional step of merging clusters and/or geometrical relaxation is required.

Keywords: CAD, constraint-based design, geometric constraints, geometric modelling.

1. INTRODUCTION

A geometric constraint is a relation among geometric
objects that should be satisfied [Freem90]. The
geometry can be described by defining relations
(constraints) among particular geometric elements.
Automatic solving of geometric constraints
represents an interface between a declarative and a
procedural description of the geometry. The user
only specifies object’s shape and size in a declarative
way, and the system takes care of making the
drawing in accordance to the specification. The user
specifies what to draw not how to draw it [Sunde87].

Various methods of constraint-based geometric
design were presented in literature. They can be
classified into three main groups: the numerical
approach, the symbolic approach and the
constructive approach [Gao98a]. In the numerical
approach, constraints are translated into algebraic
equations, and various numerical techniques as
Newton-Raphson iteration are used to solve these
equations. The symbolic approach is similar to the
numerical approach, but the algebraic equations are
transformed in the symbolic form by employing
general symbolic methods as Wu-Ritt’s
characteristic method [Kapur88, Gao98b] or the

Grobner basis method [Ajwa95] first. After this, the
transformed system is solved numerically. In the
comstructive approach, a pre-processing is
performed to transform the constraint problem into a
new form that is easy to draw. If a graph is employed
for this task, so-called cycles have to be broken. The
basic idea is to split the configuration into
components such that each component has no cycles
and all the components can be merged together in
some way [Gao98a]. Efficient method of breaking
the cycles was presented by Fudos and Hoffman
[Fudos97], for example. Besides graphs, techniques
of artificial intelligence as searching and rule-based
systems can be employed [Gao98a]. In this short
paper, we cannot mention all the algorithms that we
have studied, but with all of them, some of the
following drawbacks were noticed:

— The set of geometric elements is not rich enough
for various geometric tasks. The algorithms
usually employ and constrain points and, in the
best case, lines or line segments and circles.

— The constraint set should describe geometry in a
natural way and enable designers to use their own
design styles.

— In some cases, a system does not find a solution
although it exists.

— The majority of systems are not able to handle
eventual multiple solutions.

— The solution should not depend on order of
adding and solving constraints. Such a constraint
solver is called variational [Bouma95].

Our new algorithm, presented in this paper, tries to
fit all these criteria. Besides this, we intend to
provide consistency of all levels of geometric data
presentation. The algorithm is a representative of the
constructive approach. We shall see in the
continuation that the most of the work is done in an
extensive pre-processing phase. The pre-processing
is therefore the main subject of this paper. The “real”
constraint solver which positions geometric elements
to required mutual and/or absolute positions actually
operates in a few simple steps at the end of the
process. In the last part of the paper, both, the pre-
processing and the constraint solving can be traced
through a practical example.

2. THE METHOD

The algorithm operates in 2D space. It was
developed as a successor of two constraint-based
drawing systems, implemented by our group in the
past — FLEXI and BFoFD (see [Zalik96]). They
both were employing a local propagation as the
basic, the oldest and the most natural graph-based
method. The local propagation mostly fails when
cycles are present in the configuration, and therefore
requires the pre-processing. Namely, in a cycle, a
group of variables cannot be determined because
each of them requires that some other variable from
the group is determined first [Bouma95]. Therefore,
the main goal of our new algorithm is to “clean” a
graph from cycles before employing the local
propagation. To satisfy all distinct goals mentioned
in the introduction, the algorithm was designed in
several phases:

I. PREPROCESSING:
I.1. mapping the visible geometry onto the
auxiliary geometry,
1.2. decomposition of complex constraints,
[.3. adding redundant constraints of distances
and angles
II. CONSTRAINT SOLVING:
II.1. creation of clusters,
I1.2. solving constraints in particular clusters by
local propagation,
I1.3. merging the clusters,
I1.4. absolute positioning.
III. PREPARING THE RESULTS:
III.1. establishing the visible geometry from the
invisible geometry.

In this paper, we deal only with constraint problems

where a single cluster is obtained. Therefore, the
steps of creating (II.1.) and merging the clusters
(I1.3.) are not described in the paper.

2.1. Visible and auxiliary geometry

With BFoFD already, a two-level organisation of
geometric objects was introduced, and it is adopted
in our new system as well: Bézier curves, ellipses,
circles, circular arcs, and line segments form the
visible geometry, and they are mapped onto control
points and lines forming the auxiliary geometry.
Each entity of the visible geometry has its equivalent
(or more of them) in the auxiliary part, and the
opposite is not necessary. The two-level organisation
is important because of the following facts:

— It suffices to employ constraints that operate on
elements of auxiliary geometry only. When the
auxiliary geometry is constrained, the visible part
is constrained, too.

— Less complex constraints can be employed, and
implementation is also simplified in this way.

— The majority of the auxiliary geometry and all
self-understandable constraints are created
automatically by the system [Zalik96].

— New types of elements of the visible geometry
can be defined in an easy way. Only the correct
transformation into the auxiliary geometry has to
be provided.

A Bézier curve and its auxiliary geometry
Figure 1

In Figure 1, a Bézier curve and its control polyline is
presented. The auxiliary geometry consists of four
points p; — p, and three lines 1; — 5. Besides this, six
constraints establishing the topology are added
automatically: On(p;, 1;), On(p,, 1;), On(py, L),
On(ps, 1), On(ps, l3), and On(py, 13).

2.2. The constraint set

After introducing the auxiliary geometry, only points
and lines have to be constrained. In consequence of

this, the number of necessary constraint types has
also been considerably reduced. We have
implemented 25 constraint types, and they can be
classified into four groups:

1. Topological constraints establish topology of the
scene. The constraint On(p, 1) that requires that
the point p lies on the line 1 is the only
representative of this group.

2. Dimensional constraints determine distances and
angles between pairs of geometric elements. This
group include constraints Distance(p;, pa, d),
Angle(ly, 1, @), Parallel(l;, 1), Perpendicular(l;,
1), RelPos(p;, p2, x, y), Coincidence(p;, p»),
Coincidence(l;, 1,), and Distance(l;, 15, d).

3. Positioning constraints determine absolute
positions of geometric elements i.e. point
coordinates and line slopes. This group contains
the constraints: Point(p, x, y), AngleValue(l,),
HLine(1), and VLine(l).

4. Structural constraints define relations between
dimensions. In this group, we can find the
constraints Symmetric(py, p2, ps), Symmetric(l;,
l,, 15) and different constraints which establish
sums and ratios of distances or angles.

Each constraint is described by its predicate
(AngleValue, for example), the list of comprised
points, the list of comprised lines, and the list of
numerical parameters. The length of a particular list
depends on the constraint predicate. Some of the lists
can be empty, but not all three of them.

2.3. A constraint problem

While our constraint solver operates with auxiliary
points and lines only, a constraint problem is
defined as CP = (P, L, CS), where

— P is the set of points pi,....p»- A point p;
i=1,...,m, is presented by its absolute coordinates
(x5, 1)

— L is the set of auxiliary lines 1y,...,1,. For each line
1;, i=1,...,n, its slope ¢; € [0,) and the absolute
coordinates (/x;, ly;) of a point lying on the line
are given. The slope 0 corresponds to a horizontal
line, and angles are measured in mathematical
positive (counter-clockwise) direction.

— CS is the set of constraints cy,...,c, defining
relations between elements of P and L.

The method takes a constraint problem as input, and
tries to calculate values of attributes of points and
lines from the sets P and L. Initial values are
obtained from the user’s sketch. After solving the
constraints, the solution of the constraint problem is
also returned in the sets P and L. This solution is
then employed to establish the visible geometry.

It is usually difficult for human designers to specify
exactly geometric constraints needed to define an
object unambiguously. A well-constrained problem
has a finite number of solutions. If an infinitive
number of solutions exist, a problem is wunder-
constrained, and if there are not solutions, it is over-
constrained. To define the topology, shape and
dimensions of a planar scene consisting of »
characteristic points, 2n — 3 independent constraints
are necessary [Latha96].

3. CONSTRAINT DECOMPOSITION

In the second step of pre-processing, the constraint
set CS is transformed into a form consisting only of
any number of topological predicates On(p, 1),
dimensional predicates Distance(p;, p,, d), and
Angle(l;, I, @), no more than one positioning
predicate Point(p, x,), and also a single (or none)
positioning predicate AngleValue(l, «). These
predicates are directly copied from the CS into the
transformed constraint set. All other predicates are
defined as a conjunction of the predicates mentioned
above. The transformed constraint set will be named
the minimal constraint set CSyyy in the continuation.
Constraints from the set CSyp will be called
explicitely defined constraints (just to distinguish
between them and the redundant constraints inserted
in the next step), and constraints from the set CS are
original or user-defined constraints.

Some original constraints cannot be presented by
employing the predicates from the set CSyy on
existing elements of the auxiliary geometry only.
They require additional geometric elements which
play the same role as the elements of the auxiliary
geometry, but a user need not be aware of their
existence. They present so-called invisible geometry.
They cannot be modified separately, but only by
constraints that have created them. In this way, the
consistency of the constraint problem is provided.

Coincidence(l P 12) p

>

The dimensional predicate Coincidence(l;, 1,)
Figure 2

Let us describe decomposition of the predicate

Coincidence(ly, 1,). It requires that the lines 1; and 1,
coincide. Additional point p,,.; is added first, and the
following constraints are inserted into the set CSyy
instead of the original predicate: On(pu+1, 1),
On(pu+1, 1), Angle(l;, 1,, 0). Of course, the number
of points m has to be incremented by one after this
substitution. The situation is shown in Figure 2.

Transformation into the minimal constraint set
results in the following advantages:

1. Employing only five constraint types simplifies
design and implementation of the system.

2. Both the positioning predicates Point and
AngleValue can be ignored during the solving
process, and performed at the end by simple
geometric transformatitions of the whole scene.

3. Constraint dependencies and behaviour of the
constraint solver are much more predictable.

4. Adding new constraint types into the original
constraint set is also importantly simplified. No
matter how complex a new constraint is, it does
not require writing and testing methods for its
solving, because correct transformation already
assures the desired behaviour.

Let us close this section by an example presenting
the mechanism that assures that only a single
predicate Point and a single predicate AngleValue
can be present in the set Cyy. This mechanism is
implemented by the following two functions.

function TransformAngleValue(l, alpha);
begin
if (num_of fixed lines = 0) then begin
AddPredicate(AngleValue(l, alpha));
num_of fixed lines = 1;
end
else AddPredicate(Angle(ly, 1, alpha — alphay));
(* alphay is the slope of the already fixed line I, *)
end;

function TransformPoint(p, X, y);
begin
if (num_of fixed points = 0) then begin
AddPredicate(Point(p, x, y));
num_of fixed points = 1;
end
else begin
(* we already have a fixed point py(x,, yo) *)

d=y(x=x) +(y=v,)" (* distance |p po|*)
AddPredicate(Distance(po, p, d));
if (d <> 0) then begin
add line 1, into the invisible geometry;
AddPredicate(On(p, 1,:1));
AddPredicate(On(po, 1 4:1));
alpha = Arctg Y% ;

X—X,

(* the slope of the line I,,.; through p and p, *)
TransformAngleValue(l,+;, alpha);
n=n+1;
end
end
end

Let us have three points p;, p, p;, and three
predicates: Point(p;, x;, y1), Point(ps, X2, »2),
Point(ps, x3, ¥3). The situation is handled as shown in
Figure 3:

oP; oP;
1
Illn+2
I
1
1
d_ i
— 4 -
1 ’
o [o
p2 ’V\dl g p2
I b
) OL/ /(XOE
[
(o] (o8
p1 7 pl

Transformation of three predicates Point
Figure 3

—

Point(py, x1, 1) is directly copied into CSy.

2. Point(p,, x5, ¥») cannot be added because CSyn
already contains a predicate Point. The line
l+1(p1, o) is added, and its slope and the distance
between both points are calculated. We obtain
CSyiv = {Point(py, x1, y1), On(py, L1), On(p,,
1,+1), AngleValue(l,.1,), Distance(py, pa, d1)}-

3. Similarly, the Point(p;, X3, y3) cannot be added

into CSyn. The line 1,,.5(py, p3) is added into the

invisible geometry, and its slope angle and the
distance between the points p; and p; are
calculated. But we cannot use another predicate

AngleValue while one is already present in the

CSyn- Instead of this, we add the predicate Angle

defining the angle between the lines 1,.; and 1.

We obtain CSy = {Point(py, x1, ¥1), On(py, L:+1),

On(py, 1,+1), AngleValue(l,.1, o), Distance(pi, pa,

dy), On(py, l+2), On(ps, l,2), Angle(l+1, Lo, @),

Distance(py, ps, ¢2)}-

4. ADDING REDUNDANT CONSTRAINTS
OF DISTANCES AND ANGLES

We have discussed several advantages of previous
steps of pre-processing, but the main problem still
remains unsolved: cycles of constraints have not
been removed yet. The idea of our algorithm is to
add redundant constraints of distances and angles
and then to choose such a combination of constraints

which does not contain cycles. The last step of the
pre-processing introduces two matrices:

The matrix of distances Mp stores the distances
between all pairs of point from P. The element in
the i™ row and the j™ column of the matrix is marked
d;; and presents the distance between the points p;
and p,. The size of the matrix is m x m where m is
the total number of points of the auxiliary and
invisible geometry. While the distance is unsigned,
the matrix is symmetric, and therefore, it suffices to
use only the elements below the main diagonal.
Beside the numerical value of the distance, each
element d;; stores its priority and a pointer to the
line passing through the points p;, and p; The
priority denotes a way how the value was obtained.
It contains one of the following values:

0 — the lowest priority: the value was initialised by
the approximate value from the users’s sketch;

1 — high priority: the value was calculated by using
already determined values, and cannot be
changed any more.

2 — the highest priority: the value presents the
numerical attribute of an explicitely defined
predicate Distance.

Similarly, all the angles between pairs of lines are
stored in the matrix of angles M,. The element in
the i™ row and the j"™ column of the matrix is marked
a;; and presents the angle between the lines I; and L.
The size of the matrix is #n x n where # is the total
number of lines of the auxiliary and the invisible
geometry. Angles are oriented, and therefore, the
matrix is not symmetric. But diagonally symmetric
elements are still strongly correlated: a;; = 21 — a; ;.
Elements of the matrix M, also contain priorities.

The idea is to fill the matrices as much as possible.
Basic operations for filling the matrices are solving
triangles and determining the sums and the
differences of angles sharing common edges. The
matrix is full if it contains only the elements with the
high or the highest priority. The elements with the
high priority represent numerical parameters of
redundant dimensional constraints. The redundant
constraints play an important role because they can
be employed to determine other values in both
matrices, and they can be chosen for constraint
solving instead of explicitly defined constraints. In
this way, cycles can be avoided.

4.1. Solving the triangles

The shape and the size of a triangle are described by
six dimensions: three sides a, b and ¢, and three
interior angles «, £ and y. The angle « lies against
the side a, £ against the side b, and y against the side
¢. We shall use the same labels a, b, ¢ for the sides

and their lengths, and ¢, S, y for the angles and their
values. Only three of these six dimensions are
independent, and they are enough to define a
triangle. Other three dimensions are calculated by
using the following well-known relations:

a) the cosine statement:
@ =b+c*—2bccos a;
B'=a’+c—2accos B;
¢ =a’+b*—2abcos y;
b) the sine statement:
a b c

sina sinf siny ’
c¢) the sum of interior angles is m:
at+ pf+y=m.

In this phase of the algorithm, when the absolute
coordinates are not important yet, a triangle can be
defined in five different ways:

1) a side and both neighbouring angles are known;

2) a side, the angle against it and one of the
neighbouring angles are known;

3) two sides and the angle between them are known;

4) all three sides are known;

5) two sides and the angle against one of them are
known. Note that this case can produce two
different solutions

The step of solving the triangles tests all possible
triangles defined by arbitrary three points, and solves
those triangles where at least three dimensions are
known. A distance or an angle is known if its priority
is high or the highest. If more than three dimensions
are known then they have to fit some required
relation (for example the cosine statement) already,
otherwise the constraint problem is recognised as
over-constrained. ~ This step also detects
configurations that are contradictory to some well-
known mathematical theorems. This problem reflects
in one of the following errors:

1. A side of a triangle is longer than the sum of other
two sides.

2. In the sine or cosine statement, the attribute of a
trigonometrical function is not in the range [-1, 1].

Sides of triangles are directly stored into the matrix
of distances Mp, but angles require some additional
consideration before being written into the matrix of
angles M, or read from it. Namely, the angle
between the carrier lines of two sides of a triangle
usually does not present an interior angle (for
example @) of the triangle. It can also present one of
the following three angles:

— the exterior angle of a triangle (1 — @),
— the difference between the full angle and the

interior angle 27 — @),
— the difference between the full angle and the
exterior angle (1 + a).

Whenever an angle from the matrix My is
transformed to an internal angle of a triangle or the
inverse transformation is done, all four angles are
compared with the corresponding angle from the
user’s sketch, and the closest one is selected. Of
course, this is correct and reasonable only if the user
designs strictly enough.

4.2. Determining the sums and the differences of
angles sharing common edges

Usually, a big amount of distances and angles is
calculated by solving the triangles, but this operation
is not always sufficient to completely fill the
matrices Mp and My. For this reason, it is assisted by
a simple operation of determining the sums and the
differences of angles sharing common edges. This
trivial operation is based on the following rule:

If the angle between lines 1, and 1, is a, and the
angle between lines 1, and 13 is [, then the angle
between the lines 1| and 1; is a+ .

The rule establishes relation between three elements
of the matrix of angles: a,; + a; = a;;. Of course, it
can be also employed to calculate the difference of
two known angles sharing a common edge. Beside to
the trivial situation when all three lines intersect in a
common point, the rule handles alternate and
corresponding angles to some known angles,
provides transitivity of parallelism, or fits the
relation that an external angle of a triangle is equal to
the sum of both opposite internal angles.

4.3. Order of solving the triangles

To visit all the triangles, the matrix Mp has to be
passed, and after that the sums and differences of
angles are calculated during passing the matrix M.
Calculated dimensions are employed to solve other
triangles and calculate the sums or the differences of
other pairs of angles. Some triangle that was
previously recognised as unsolvable, can become
solvable after determining some dimensions. For this
reason, more passes of matrices are performed, and
if there are not any changes in a particular pass, the
step of adding redundant dimensions is terminated.

The main disadvantage of the method is its time

complexity while it calculates much more redundant

constraints than it is necessary to solve the cycles.
n(n - 1)(n - 2)

. n 3
Between » points, (5 j =76 O(n)

different triangles are possible, and the algorithm

tries to solve them all. Similarly, all combinations of
three lines are tested to calculate the sums and
differences of angles sharing common edges. Other
steps of the algorithm are much faster.

To speed up the process and improve the
interactivity, some parts of the algorithm are
designed incrementally. An incremental constraint
solver is able to take advantages of previous steps
and does not calculate all the values after each user’s
interaction [Freem90]. For example, the majority of
values from the matrices Mp and M, determined
after a particular designer’s interaction need not be
calculated again after the next operation.

5. CONSTRAINT SOLVING BY LOCAL
PROPAGATION

After the preprocessing, the algorithm splits the sets
of lines L and points P into the clusters, solvable
with local propagation. Each cluster contains lines
with known mutual angles and all the points lying on
them. In this paper, we only discuss configurations
where a single cluster is obtained. While the angles
between all pairs of lines in a cluster are known, this
situation appears exactly when the matrix M, is full.
On the other hand, the distances between pairs of
points need not be determined. Regarding the
priorities of distances, a cluster consists of one or
more subsets of points. We name them the connected
subsets of points. With well-constrained problems,
the matrix Mp, is also full, and the cluster contains a
single connected subset.

The subset of the constraint set CSyy belonging to a
particular cluster contains the predicates On, Angle
and Distance only. These constraints are solved in
the following way.

1. The predicates Angle are treated first. The slope
of the first line remains unchanged, and all other
lines are rotated to establish required angles with
the first line. Besides this, the lines are translated
to pass through the origin, and all the points are
also moved to the origin.

2. One of the points (the reference point pg) is left in
the origin and each other point p; is moved along
the line (pr, p;) to the prescribed distance.
Together with the point, all the lines passing
through it and not being moved yet, are
translated. If the observed point and pg belong to
different connected subsets, a distance with the
lowest priority is employed, and the translated
point is chosen as the reference point for all the
points of the same connected subset. In this way,
a three-level hierarchical structure is obtained.
The structure does not contain cycles, and a
cluster is solvable for sure.

The last step of the algorithm solves eventual
positioning predicates AngleValue and Point. The
predicate AngleValue requires rotation of the whole
scene around the origin, and the predicate Point is
satisfied by translation of the desired point into the
required position, and then translation of all other
points and lines for the same offset.

6. AN EXAMPLE: CONSTRAINING A
PARALLELOGRAM

Let us highlight the described algorithm and explain
some additional details by the following example. A
designer wants to construct a parallelogram shown in
Figure 4. He/she inserts four line segments where
each pair is sharing a common end point to form a
polygon. The original constraint set is initialised by
topological constraints, and the user inserts the
dimensional constraints. All the constraints are
directly copied into the CSyy, and we obtain: CSyy
= {On(p1, 1), On(p, 11), On(p, L), On(ps, L), On(ps,
5), On(ps, li), On(p:;, 1), Distance(pi, pa, 5),
Distance(p,, ps, 5), Distance(ps, p4, 5), Angle(l,, 1,
120°), Angle(ly, 15, 120°)}. The matrices Mp and My
are initialised from the initial sketch and from the set
CSu- The situation is presented in Tables 1 and 2.
For the elements determined during the initialisation,
the normal font style is employed.

The well-constrained parallelogram

Figure 4
Mp P |9 Ps P4
P1 0 0
p2 5 o 0 0
Ps 8.6 1 5 0 0 0
P4 5 3 5 6 5 0 0

Filling the matrix of distances Mp
Table 1

MA 11 12 13 l4 15 16

! 0 o 240 o 0 5 240 5 210 4 300 4
L, 120 ¢ 0 4 120 5 0 5330 ;| 60 -
L 0 5240 5§ 0 ¢ 240 4 210 5 300 4
14 120 5§ 0 5 120 ¢ 0 | 330 5 60 4
Is 150 ;| 30 4 150 5 30 5§ 0 4 90 ¢
lg 60 ¢ 300 5 60 7 300 4270 g O (]

Filling the matrix of angles My
Table 2

Values calculated after particular steps of adding
redundant constraints are written bold. The numbers
in the the right bottom corners correspond to
numbering of the below steps:

1. The triangle p;p,ps is solved. Two sides pip,, pap;
and the angle between them are known.

2. The triangle p;p,p4 cannot be solved yet.

3. The triangle p;psp, is solved while two sides p;ps,
psps are known. Note that the side p,p; calculated
in the step 1 is used now.

4. The triangle p,ps;p4 cannot be solved yet.

5. The whole My, except the last row and column, is
filled in the first iteration of determining sums
and differences of adjacent angles.

6. The triangle p;p.p4 is solved. Two sides pip,, pips
and the angle between them are known.

7. The triangle p,pspy4 is solved while all three sides
(and one angle also) are known.

8. The matrix My is full after the second iteration of
determining sums and differences.

Both the matrices are full, and the problem is well-
defined. A single cluster is obtained. The next step
of solving the constraints first groups all the lines
and the points in the coordinate origin. The situation
is shown in Figure 5a. The slope of the line I, is kept,
and all other lines are rotated regarding the values
from the matrix M,. In Figure Sb, the point p, is
translated along the line 1, = (p;, p2). Together with
the point, the lines 1, and ls are moved. Figure 5c
shows the situation after moving the point p; and the
line 15. All the lines are positioned already, but the
point p, is still in the origin. It is moved to the
required position in the last step shown in Figure 5d.

7. CONCLUSIONS

In the paper, a part of our new geometric constraint
solver operating in 2D space is presented. The
described steps transform a constraint problem into a
form that can be solved by employing local
propagation. We believe that this pre-processing
presents an original and efficient contribution in the
field of geometric constraint solving.

Determining relative positions of points and lines by local propagation
Figure 5

Various well-constrained problems can be described
and solved with rich, natural and understandable
constraint set. Over-constrained problems and
configurations contradictory to some well-known
mathematical theorems are detected in the pre-
processing phase already, and many under-
constrained problems are treated successfully by the
algorithm as well. Besides this, the pre-processing
facilitates defining new types of geometric elements
and geometric constraints. Our future work will be
oriented in improving incrementality, solving
particular groups of conditional constraints (not
mentioned in the paper) that define a triangle in an
unique way, and improving the step of merging the
clusters. While the problem consists of solving the
system of equations presenting distances only, we
are studing different geometric relaxation methods.

ACKNOWLEDGEMENTS

This research has been supported by the Ministry of
Science and Technology of Republic of Slovenia and
by the British Council Slovenia inside the
Valvazor/ALIS project (ALIS 63).

REFERENCES

[Ajwa95] Ajwa,lA, Liu,Z, Wang,PS: Grobner Bases
Algorithm, ICM Technical Reports Series,
1995.

[Bouma96] Bouma,W, Fudos,lI, Hoffmann,C, Cai,J,
Paige,R: Geometric Constraint Solver,
Computer-Aided Design, Vol27, No.6,
pp-487-501, 1995.

[Freem90] Freeman—Benson,BN, Maloney,J,
Borning,A: An Incremental Constraint
Solver. Communications of the ACM, Vol.33,
No.1, pp.54-63, 1990.

[Fudos97] Fudos,I, Hoffmann,CM: A Graph-
constructive Approach to Solving Systems of
Geometric Constraints, ACM Transactions on
Graphics, Vol.16, No.2, pp.179-216, 1997.

[Gao98a] Gao,X-S, Chou,S—C: Solving geometric
constraint systems. I. A global propagation
approach, Computer-Aided Design, Vol.30,
No.1, pp.47-54, 1998.

[Gao98b] Gao,X-S, Chou,S-C. Solving geometric
constraint systems. II. A symbolic approach
and decision of Rc-constructibility,
Computer-Aided Design, Vol.30, No.2,
pp-115-122, 1998.

[Kapur88] Kapur,D, Mundy,JL: Wu’s Method and
Its Application to Perspective Viewing,
Kapur,D, Mundy,JL (eds.), Geometric
Reasoning, Elsevier Science, 1988.

[Latha96] Latham,RS, Middletich, AE: Connectivity
analysis: a tool for processing geometric
constraints, Computer-Aided Design, Vol.28,
No.11,pp.917-928, 1996.

[Sunde87] Sunde,G: A CAD System with Declarative
Specification of Shape, Eurographics
workshop on Intelligent CAD Systems,
Noordwijkerhout, The Nederlands, 1987.

[Zalik96] Zalik,B, Guid,N, Clapworthy,G:
Constraint-based Object Modelling. Journal
of Engineering Design Vol.7, No.2, pp.209—
232, 1996.

