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Abstract

The paper describes the way how the recently published method of redundant measurements is suitable for reducing

the number of measured parameters. The developed method enables to determine the deformation and the stiffness

of a truss that is equipped with redundant measurements during varying loading which is partially measured. The

paper is focus on ability to help to provide better comfort during measurements.
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1. Introduction

A new promising method was published [1]. Presented method shows how to identify the

structural element stiffness from the redundant measurements. The goal was to apply static

non-destructive loads on framed structures [3] and measure displacements and rotations of the

separate joints. From this measurement can be derived a complete set of the structural element

stiffness parameters.

2. Stiffness Reconstruction of 3D Frame

The fundamental equation [2] is
gKuj = fj , (1)

where fj is a column vector of j-th applied load. K is a stiffness matrix of a solved structure

in the global coordinate system and uj is a column vector of the displacements and rotations of

each joint for j-th applied load.

The particular members of a spatial structure can transfer axial forces and bending moment

too. A network of sensors for measurement of displacements and rotations is considered. The

stiffness matrix of a single member is expressed in the local coordinate system

lKn = kn1An + kn2Bn + kn3Cn, (2)

where kn1 is the unknown stiffness parameter corresponding to the tension or compression of

the member, kn2 is the unknown stiffness parameter corresponding to the bending according

to a bending moment about the neutral axis y of the local coordinate system and kn3 is the

unknown stiffness parameter corresponding to the bending according to a bending moment
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about the neutral axis z of the local coordinate system. Schemes of the matrices An, Bn and Cn

were previously discussed [2]. By the assumption of the linear strength theory it is possible to

transform the stiffness matrix of a member in the local coordinate system into the global one [2]

using the transformation matrix T

gKn = T (lKn)T T ,

gKn = T (kn1An + kn2Bn + kn3Cn)T
T .

(3)

By adoption of this assignment, it is possible to express (assuming a one loading case) the

matrix equation (1) in the form

[k1,1
gxK1,1 + k2,1

gxK2,1 + . . . + kNprutu,1
gxKNprutu,1 +

k1,2
gxK1,2 + k2,2

gxK2,2 + . . . + kNprutu,2
gxKNprutu,2 +

k1,3
gxK1,3 + k2,3

gxK2,3 + . . . + kNprutu,3
gxKNprutu,3]u = f.

(4)

Where gxKn,i, i = 1, 2, 3 are modified stiffness matrices of a particular member expressed in

the global coordinate system. The dimension of this matrix is [5Nuzlu, 5Nuzlu]. Index i = 1
corresponds to the matrices which represents tension or compression in the structure, i = 2, 3
corresponds to the matrices which represents bending moment about the neutral axis y and

about the neutral axis z.

In the equation (1) are all displacements and rotations u known from the measurement. The

unknown parameter is the column vector k of the axial and bending stiffness. It is necessary to

reformulate the equation (4) in a different form

[gxK1,1u, . . . , gxKNprutu,1u, . . . , gxK1,3u, . . . , gxKNprutu,3u]

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎣

k1,1

. . .

kn,1

k1,2

. . .

kn,2

k1,3

. . .

kn,3

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎦

= f. (5)

Equation (5) can be expressed (for j load cases) to a matrix form

⎡

⎣

A1

. . .

Aj

⎤

⎦ k =

⎡

⎣

f1

. . .

fj

⎤

⎦ , (6)

The dimensions of the separate matrices are

�mz−stavu · (5Nuzlu − Nreakci), 3Nprutu	 · �3Nrutu, 1	 = �mz−stavu · (5Nuzlu − Nreakci), 1	 ,

(7)

where mz−stavu is number of load cases, Nreakci is the number of the boundary conditions.

For determination of the unknown stiffness parameters of a particular member the number

of equations, which are represented by the matrix A, must be greater or equal to number of

unknown parameters, which represent a column vector of unknown stiffness k.
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(5Nuzlu − Nreakci)mz−stavu ≥ 3Nprutu. (8)

For the frame structure (Fig. 1) is

(5 · 50 − 3 · 4)mz−stavu ≥ 3 · 176,
mz−stavu ≥ 2.22.

(9)

It is necessary to apply at least 3 different load cases and measure 714 parameters (displace-

ments or rotations) of the construction.

Fig. 1. Solved frame structure

3. Numerical method

System of the linear equations (6) is over-constrained. It can be solved by Singular Value

Decomposition method or Least Square Method.

3.1. Singular Value Decomposition (SVD)

Singular Value Decomposition method decomposes the system matrix A into sub-matrices

A = USV T , (10)

such that

UT U = E, V T V = E, (11)

where E is an identity matrix. Using the substitution

k = V y (12)

the equation (6) can be modified by (7) and (12) to

(

USV T
)

(V y) = f, (13)

Multiplying equations (13) from the left hand side by UT it is achieved

(

UT U
)

S
(

V T V
)

y = UT f, (14)
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Equation (14) can be formally rewritten

Sy = c, (15)

where S is a diagonal matrix of singular values. Provided that SVD not necessarily leads us to

all unknown stiffness parameters (e.g. singular cases), it is useful rewrite (15) into

⎡

⎣

diag (si > ε) 0
0 diag (si ≤ ε)
0 0

⎤

⎦

[

yD

yI

]

=

⎡

⎣

c1

c2

c3

⎤

⎦ , (16)

where ε is a small parameter. The computed parameters are

k = Vd[diag (si > ε)]−1c1. (17)

The main reason for SVD failure is a bad position of the load cases. Load case can generate a

too small or even almost none forces or bending moments in some members of the structure.

Thus a too small or even almost none displacement or rotation can be measured.

The main advantage of SVD method is its speed of the computation (according to least

square method).

3.2. Least Square Method (LSQ)

Let us consider a bunch of inaccurate data (ai, fi). To perform a linear regression to this data

(find the representing straight line) means to find parameters to fit equation

fi = k1ai + k2. (18)

The conditions (18) can be reformulated to a matrix form

Ak = f, (19)

where

A =

⎡

⎢

⎢

⎣

a1 1
a2 1
. . . . . .

aq 1

⎤

⎥

⎥

⎦

, k =

[

k1

k2

]

, f =

⎡

⎢

⎢

⎣

f1

f2

. . .

fq

⎤

⎥

⎥

⎦

. (20)

The over-constrained system (19) can be solved by the Least Square Method (LSQ). The

residuum of the equation (19) must be minimized for finding of the parameters k1, k2

q
∑

i=1

(fi − k1ai − k2)
2. (21)

Due to the physical reason must be the equation (22) valid

k ≥ 0. (22)

The function lsqnonneg from the MATLAB Optimization Toolbox was used for solution

equation (21) and (22)

find min t‖Ak − f‖, k ≥ 0. (23)

The LSQ method is more time consuming than SVD. But in most cases it gives more precise

results.
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4. Reconstruction of the 3D frame

Reconstruction of unknown stiffness parameters was performed on the 3D spatial structure (See

Fig. 1). The SVD method was used. It was possible to determine all stiffness parameters at

781 load case combinations composed by 3 forces (in direction of acceleration due to gravity)

applied to different joints from 15180 possible combinations (Fig. 2).

Fig. 2. Number of determined stiffness parameters

5. Reduced Redundant Measurements

Disadvantage of the presented approach is the necessity to obtain the vector of deformation in

direction of particular degrees of freedom (DOFs). Thus a question rises whether the number of

measuring points on the structure can be reduced. The method of static condensation has been

investigated in order to reduce the number of measuring DOFs of the structure. A column vector

of deformations has been divided into so called master (m) DOFs that should be preserved in

the problem being solved and slave (s) DOFs that should be eliminated from the equation.
[

k1,1
gx

[

Kmm Kms

Ksm Kss

]

1,1

+ . . . + kNprutu,1
gx

[

Kmm Kms

Ksm Kss

]

Nprutu,1

]

[

um

us

]

+

[

k1,2
gx

[

Kmm Kms

Ksm Kss

]

1,2

+ . . . + kNprutu,2
gx

[

Kmm Kms

Ksm Kss

]

Nprutu,2

]

[

um

us

]

+ (24)

[

k1,3
gx

[

Kmm Kms

Ksm Kss

]

1,3

+ . . . + kNprutu,3
gx

[

Kmm Kms

Ksm Kss

]

Nprutu,3

]

[

um

us

]

=

[

fm

0

]

.

From the equation (24) can be derived the system of nonlinear equations

f(kn1, kn2, kn3) = 0. (25)

From the system of nonlinear equations (25) it is possible to compute the required stiff-

ness characteristics of the system being solved. The solution of these equations is a very time

consuming due to the number of equations and number of the unknown parameters.

269
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Therefore it was considered direct iterative evaluation of stiffness parameters. According to

preparations shown at [2] it can be obtained system of linear equations

⎡

⎣

A1,1um1, . . . , ANprvku,1um1, . . . , A1,1um1, . . . , ANprvku,3um1

. . .

A1,1umn, . . . , ANprvku,1umn, . . . , A1,1umn, . . . , ANprvku,3umn

⎤

⎦

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎣

k1,1

. . .

kNprvku,1

k1,2

. . .

kNprvku,2

k1,3

. . .

kNprvku,3

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎦

=

⎡

⎣

fm1

. . .

fmm

⎤

⎦ , (26)

where is assumed 1, . . . , n load cases. The term A can be written

Ai,j = (gxKmm)i,j + (gxKms)i,j Zsm. (27)

Matrix Zsm deals with supposed relations between the stiffness parameters

us = Zsmum. (28)

This method was used in next simulations.

5.1. Elimination of inner nodes

The possibility of elimination of inner nodes has been investigated. It can be supposed the struc-

ture has e.g. some sort of cover and thus we can obtain its geometry from its documentation.

Fig. 3. Inner nodes

But we cannot perform even nondestructive static load to these inner nodes and of course mea-

surements of displacements or rotation. Inner nodes are shown at Fig. 3.

It was used SVD method to obtain results for all possible load cases. This method was

chosen mainly for its speed and due to a large number of combinations that was tested. Only

one inner node was eliminated for each inner node was found only one load case combination

which leads to solution with error rate under 1 %1. Results are shown in Tab. 1. Next the finding

1As we use the known construction with known parameters the results can be easily verified (using the strength

theory). And there is no need for a measurement at this time.
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Fig. 4. First advantageous combination — load case A

of the most advantageous load cases (it means three different loads in direction of acceleration

due to gravity (Fig. 4) were tested. In tests where 2 or more inner nodes were eliminated

(maximum 4) SVD method for two most advantageous load cases combination failed.

On the other hand, with usage of LSQ we were able to eliminate all inner nodes using

previously gained load cases combinations. If we eliminate two neighbor nodes it is not possible

(using previously described reduction method) to compute unknown stiffness parameters of

member between these nodes. All other unknown stiffness parameters were successfully solved.

Table 1. Report of elimination of inned nodes

Number of eliminated Method Load cases Max error rate for

inner nodes unknown parameters

1 SVD, LSQ load case A 0.,002 %1

1 SVD, LSQ load case B 0.002 %1

4 SVD load case A solution not found

load case B

4 LSQ load case A 0.002 %1 for solved

load case B parameters (not all

parameters solved)

5.2. Saving costs for redundant measurements

Another approach is elimination as much DOFs as possible to decrease amount of necessary

measurements. At the same time it is necessary to solve all unknown stiffness parameters. For

system (6) and for bigger spatial structure it is necessary to satisfy (9). If we assume 3 load

cases it is necessary to perform 714 measurements of displacements or rotations. But there is

only 528 unknown parameters. If all equations were linearly independent, it could be possible

to measure only 528 DOFs.

It has been shown than it is possible to reduce number of meassurement from 714 to 582

and still solve all unknown stiffness parameters. The goal was to eliminate as much rotations

measurements as possible. We eliminate in chosen joints both rotation DOFs (Fig. 5).
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Fig. 5. Eliminate as much rotations measurements as possible

6. Conclusion

The previously presented method [2] was validated towards new construction. There was shown

Least Square Method — a way to solve final equations. This method gives in most cases better

results than previously used Singular Value Decomposition. Presented way to eliminate inner

nodes should be further inspect to be able to keep count of all unknown stiffness parameters.
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