3.3 Results

We implemented a specialization of the gen-
eral algorithms in §3.1 and §3.2 for the ex-
ample cases of §2.3, which are the cases
of most practical use. Figures 7 to 9
show some pictures made with our imple-
mentation in the public-domain raytracer
rayshade.

Figure 7 shows a variation of the famous
Barnsley fern [1], a prototype of a hierarchi-
cal IFS, in this case with 6 transformations
in 3 levels. Figure 8 shows a temple-like
construction and is described by a CIFS-
code with 4 transformations and a compos-
ite condensation set. The scene in figure
9 is described by a hierarchical code with
also 3 levels and in total 4 transformations
with a geometry for a branch in the low-
est level and an alternative geometry for a
leaf, as proposed in §3.1 for drawing trees
i la [11). Al these scenes are composed
of several hundreds of tousands of primitive
objects, making it impossible to compute a
list of primitive objects and raytrace these
using e.g. space partitioning to improve ef-
ficiency.

The raytracing of these images takes
about 15 minutes and 100 Kbytes of mem-
ory on an IBM RS/6000-320 system. The
examples were chosen to show that quite
complex pictures can be made from an ex-

tremely short description, a property of &

fractal-like objects. The raytracing can be
done in reasonable time and with almost
negligible memory usage.

4 Conclusion

In §2 we presented a formalism that can de-
scribe arbitrary linear graftals. IFS-codes,
CIFS-codes, HIFS-codes emerge as simple
examples. In §3 we presented an algorithm
for raytracing objects described by this for-
malism, which is very general. We imple-
mented a specialized version, suitable for
the interesting cases of multilevel HIFS and

Figure 8: Temple: a CIFS with 4 transfor-
mations and composite condensation set.

Figure 9: Trees: described by a code with
4 transformations in 3 hierarchical levels, a
condensation set and alternative geometry.

54

iy 4

[

Coherence in scan-line algorithms for CSG

Eduard Groller, Peter Brunner

Technical University Vienna
Institute for Computergraphics
Karlsplatz 13/186/2
A-1040 Vienna, Austria
Tel.: +43(1)58801-4582
FAX: +43(1)5874932
e-mail: groeller@eigvs4.mwien.ac.at

Abstract

Scan-line algorithms for visibility calculation exploit various types of coherence propertes.
Several scan-line algorithms for Constructive Solid Geometry (CSG) are discussed. In one
approach CSG primitives are represented by polygonal approximations. Another technigue
processes CSG primitives as general quadric surfaces. We investigate the handling of
frequently occurring quadric surfaces (cube, cone, sphere, cylinder) as distinct cases. Thus the
differing properties of such objects can be used more efficiently than a uniform approach would
aliow. A so called eBRep (extended Boundary Representation) is defined for the frequently
occurring quadric surfaces. An eBRep is an exact representation of a quadric object and
contains curved edges and faces. For each of the above mentioned quadric surfaces a different,
geometry dependent eBRep is specified. A comparison between the polygon-based scan-line
algorithm for CSG and our eBRep based approach is done. eBRep is a storage efficient exact
representation of quadric surfaces, well suited for scan-line visibility determination.

Keywords: CSG, quadrics, scan line algorithm, extended BRep, curved edges

1. Introduction

Scan-line algorithms for visible surface determination have been one of the earliest exangples
that extensively use coherence properties ([Athe83), [Bron90}, [FoDa90], [Gr6193], [K1ei90],
{Kiei92], [PuMe87], [SuSp74]). Originally scan-line algorithms have been designed for hidden
line/hidden surface removal of polygonal objects. Objects are specified in a 3D world-
coordinate system. The position of the viewer and the image plane are defined in a camera-
coordinate system whereby the eye point of the viewer is assumned to lic on the negative z-axis
(z") and the image plane coincides with the xy-plane of the camera-coordinate system. The 3D
object scene is then mansformed into the camera-coordinate system and is processed
sequentially according to descending y-coordinates.) . .

The 3D objects are intersected with scan planes spj (planes with constant y—coo;dmatc in the
camera-coordinate system) that correspond to scan lines si. A scan line sj itself is agsoczatcd
with a row of pixels in the final raster image. The endpoints of the 2D segments, resulting from
the intersection of 3D objects with scan plane spj introduce a subdivision of scan line sj into so
called spans. Spans are processed from left to right in order of decreasing x-coordinates. For an
illustration of scan planes, scan lines, segments and spans see Figure 1. By reducing the 3D
visibility problem to 2D problems (segments in scan planes spj), 1D problems (spans on scan
line s;) and OD problems (visibility on span endpoints) the scan-line algorithm uses the principle
of locality to artain coherent regions that can be processed easily. .

The surface of objects is defined through faces, edges and vertices. In a preprocessing step
the edges are sorted according to their highest y-value and are placed in y-buckets, one y-bucket
for each scan line. The y-bucket of scan line sj consists of ali those edges that start betwe;n
scan plane spj and spj+]. During the algorithm two lists are maintained: The active-edge pst
(AEL) contains all edges that intersect the current scan line . The AEL is sorted on decreasing
x-coordinates of the intersection points between edges and scan plane spi. The active-face list
(AFL) contains all those faces that cover the current span and therefore might be visible. Both

55

lists are modified incrementally. The AEL of scan line sj is determined by updating the AEL of
scan line sj+]. Edges that do not intersect the current scan line sj anymore are removed from the
AEL whereas the entries of the y-bucket of s; (edges starting at sj) are added to the AEL. The
active-face list AFL is modified analogously between adjacent span: on the current scan line.
Faces that did cover the previous span but are not covering the current span are eliminated from
the AFL, newly covering faces are added to the AFL. Visibility at the current span is
determined by sorting the faces of the AFL of the current span on z-depth (distance to the
viewer) and drawing the pixels covered by the current span with the color of the face closest o
the viewer. More elaborate shading models, e.g., Phong shading [FoDa%0], can be used to
determine the color value of a pixel. In case of non-penetrating objects sorting has to be done
only once for a span. In case of intersecting objects or faces, sorting has to be done on both
ends of the span. If the nearest faces on both ends are different the span is split at the
intersection point of the corresponding segments, and the two resulting spans are processed
recursively [Bron90].

4
g
7
o f | eme- segment AY"
Y %
o~
[5
L Ll
span

Figure 1: scan planc sp;, scan lines si+1, sj. Si-1, Segments, spans (figure similar to figure 3.2 in [Bron90])

The efficiency of the scan-line algorithm is due o the exploitation of various types of
coherence:

Scan-line coherence; edges that intersect scan line sj+1 will also, with high probability,
intersect scan line sj. Additionally the (x-coordinate) order of intersection points of edges with a
scan plane will change only slightly from scan plane spj+1 to spj. Scan-line coherence is taken
advantage of by maintaining and incrementally updating the active-edge list (AEL), by
incrementally calculating the intersection points between edges and scan planes and by sorting
the AEL with bubble sort (bubble sort is, despite its quadratic worst case behavior, well suited
for almost sorted data sets)

: active faces and their depth ordering will almost be the same berween
adjacent spans on a scan line. Efficient processing is achieved by an incremental update of the
active-face list AFL and by sorting the entries of the AFL with bubble sort. Moreover the
visible face usually remains the same on the entire span, so depth sorting of the AFL needs to
be done only at the span boundaries. The color values of pixels covered by a single span can be
calculated incrementally, e.g., with Phong shading.

herence: the ordexing of active faces and active e3ges changes, as already pointed
out above, gradually. This depth coherence property reduces the cost of sorting substantially
(bubble sort).

: The intersection points between an edge and a scan plane spj can be easily
calculated incrementally from the intersection point of the same edge with the previous scan
plane spj+1. The visibility on a span can be usually determined by just processing the endpoints
of the span.

Although scan-line algorithms can not account for complex global lighting effects as
shadowing, reflection, transparency they are suited for fast visualization during the interactive
modeling and design process of objects. After the specification is completed a non-interactve
rendering technique that supports a more complex and more realistic shading model, e.g., ray
wacing, may be used. CSG (Constructive Solid Geometry) is a powerful and versatile
technique for modeling complex mechanical parts. Thereby an object is represented as a binary
ree. Leaf nodes correspond tc geometrical primitives (cube, sphere, cylinder, cone, ...)

56

vt

whereas in the intermediate nodes set operations (union, intersection, difference) define how
the objects represented by the two child nodes are combined. The CSG data structure does not
contain any explicit surface information of the object represented by the root node of the CSG

tree.

There are different possibilities for visualization CSG objects with scan-line algorithms. In
one approach an approximate polygonal boundary representation (BRep) is derived from the
CSG data structure. Visibility calculations are then done on the BRep structure. The drawbacks
of this technique are: costly generation of the BRep structure, and the BRep is only an
approximation to the original object. In section 2 a scan-line algorithm is presented that requires
only the calculation of the polygonal BRep for the primitives (leaf nodes of the CSG tree). In
section 3 a scan-line algorithm is described where an exact representation of the primitives
through quadrics is used. Primitives are either treated as general quadrics [Klei92] or specific
properties of frequent quadrics (cube, cone, sphere, cylinder) are exploited as was done in our
approach. Algorithms of section 2 and 3 require a more elaborate handling of individual spans
during visibility calculation.

2. A polygon based scan-line algorithm for CSG (method 1)

In this section a scan-line algorithm for CSG is presented, that works with polygonal
approximations of the CSG primitives [Athe83}, {Bron90]. This algorithm is (in the context of
this paper) denominated method 1 as opposed to the quadrics based approach of section 3
which is denominated method 2. As no BRep of the composite object, represented by the entire
CSG tree, is determined, the handling of individual spans during visibility calculation is more
complicated. Penetrating primitives and intersecting faces have 1o be dealt with. Faces of
primitives may not lie on the boundary of the composite object, so processing of the active-face
list AFL at span boundaries must find the first visible face of the composite object vsjhxch may
not be the first entry of the AFL. This task is accomplished by Boolean classification of the
faces in the AFL using the set operations in the intermediate nodes of the CSG tree. If at both
endpoints of a span the AFL does have the same entries (same faces, same _ordcrmg) S1arting
from the nearest face up to the first face on the composite object, i.c., the visible faqc, the span
can be drawn with the color of the visible face. Otherwise the span is subdivided at the
intersection point of those segments that correspond 1o the first two different faces, and the two
subspans are handled recursively. .

Top-down classification of the faces in the AFL performs a recursive traversal which starts
at the oot node of the entire CSG tree. Considering the specific situation (processing entries of
the AFL according to their depth ordering) a much more efficient bottom-up classificadon can
be done [Bron90). Stepping from one face of the AFL to the next, the status of being 1_ns:dq or
outside of the entire CSG object is changing for only one primitive. Bottom-up classification
exploits depth coherence and Boolean combination coherence and from the respective
leaf node upwards until the oot node is reached or the status of an intermediate node is not
affected by the changed status of the primitive. Progression up the CSG tree is enabled by
adding to each CSG node a pointer to its parent node. .

Classification is not only simplified by using coherence properties between successive
entries of the active-face list AFL. Classification similarities between adjacent span endpoints
are exploited as well. In [Bron90) some further techniques for reducing the classification cost
are discussed: The size of the CSG tree can be reduced by eliminating those leaf nodes that do
not have any effect on the current scan line. Partial back-face culling reduces the number of
classifications. The unchanged order of active faces at span boundaries can be exploited. Often
it is sufficient to classify the AFL only at one of the two span boundaries. For more details see
[Bron90].

3. A quadrics based scan-line algorithm for CSG (method 2)

3.1. Introduction o

In this section a scan-line algorithm for CSG is described where the CSG primitives are not
represented by a polygonal approximation but are handled analytically as quadrics (see secuon
3.2). Primitives as quadric surfaces are represented through an extended Boundary
represeniation (éBRep) that contains curved edges and faces. An ¢BRep is made up of

57

considerably fewer vertices, edges and faces as a polygonal BRep and is chosen so that the
basic structure of the scan-line algorithm of section 2 (method 1) has to be modified only
slightly (different handling of individual spans). Compared to method 1 such an approach has
several advantages: exact representation and shading of objects, low storage requirements,
faster processing because of a small data base.

3.2. Quadrics
Quadric surfaces, or quadrics, are sets of all points in 3D space that satisfy a second-degree
polynomial equation
F(x,yz) =0)]

Quadrics represent surfaces that include planes, spheres, cones, cylinders, ellipsoids,
paraboloids and hyperboloids ([Kiei%0], {Klei%2], [Mili87], [Mill88]). Natural quadrics are a
subset of the quadrics and comprise planes, spheres, cylinders and cones. As pointed out in
{HaHi80] 90-95% of mechanical parts can be defined through natural quadrics. Natural
quadrics are also the most commonly used primitives in CSG modeling. The second-degree
polynomial of a quadric is given as follows:

Ax? +By? + Cz* + 2Dxy + 2Eyz + 2Fxz + 2Gx + 2Hy +2Jz+ K =0 @)
Equation (2) can be written in matrix form as
pQF" =0 3
with
A DVFG
_ D B EH
=(x,y,21 d =
p=(xy.z1) and Q FEC]J
G H J K

If the surface of a quadric Q is transformed by a matrix R the transformed surface is again a

quadric and is defined by Q' with
Q=RQR™Y @

Primitives of 2 CSG model are typically defined in a local-coordinate system. An additional
matrix specifies the position of the locally defined object in the world coordinate system
[Roth82]. The algorithm presented in this chapter requires quadrics to be specified in the
camera-coordinate system. Equation (4) is used to derive the transformed quadric Q' in the
camera-coordinate system from quadric Q in the local-coordinate system. Quadrics can be
handled in two ways: In the first approach quadrics are processed uniformly without regard of
their specific shape [Klei92}. In the second approach, which we investigated in more detail,
characteristics of the shape of a given quadric, e.g., of a cylinder, are exploited for speeding up
processing. The first approach leads to short, somewhat inefficient program code. The second
approach is more efficient, but produces longer program code as different cases have to be
treated separately. The second technique is better suited to handle numerical instabilities as well.
We implemented the second approach and give comparisons to method 1 of section 2.

3.3. Algorithm

The usage of quadrics to define primitives in the £SG model requires some modifications of
method 1, i.e., the handling of spans has to be adapted to curved surfaces [K1ei92]. To keep
the modifications as small as possible quadric surfaces are partitioned to get an extended BRep
(eBRep) with curved edges and curved faces. Method 1 assumes edges to be monotonous with
respect to the y-axis, i.e., there is at most one intersection of an edge with a scan line and the
endpoints are extremal with respect to the y-axis. With this assumption an edge is added to the
active-edge list AEL when the endpoint with higher y-value is reached during the scan process
and the edge is deleted from the AEL when the endpoint with Jower y-value is passed (edge

5€

coherence). To maintain this property with quadrics the y-extremes (points with minimal and
maximal y-values) are introduced as vertices in the eBRep of quadrics.

Furthermore in method 1 segments, i.c., intersections of a scan plane with a BRep, are also
monotonous with respect 1o the x- and z-axis. Monotony along the x-axis is important to decide
when a face becomes active. Monotony along the z-axis is important for easy depth sorting of
faces at span boundaries. (Curved) edges are added to the ¢eBRep to assure monotony of
segments along the x- and z-axis. In general edge cohcrence can be exploited for sorting
monotonic edges by sorting the endpoints of these edges.

As the monotony of edges is not invariant under affine wansformations the eBRep has to be
constructed in the camera-coordinate system. The quadrics of CSG primitives are therefore
transformed from the local-coordinate system into the camera-coordinate system using equation
(4) of section 3.2. The incremental update of curved edges from one scan line to the next is a
Tittle bit more complicated than with linear edges and will be explained later on.

A further modification of method 2 is due to the fact that two curved segments might
intersect twice within one span, This situation may occur if the bounding boxes of two curve
segments overlap which is called depth-overlap [Klei92].

Depth-overlap may cause different faces to be visibie within one span although the active-
face list AFL is the same at both span boundaries. In this case spans are recursively subdivided « -
until no depth-overlap occurs or spans are shorter than the width of a pixel. In [Kl1ei92] span
subdivisior is done only if there are in fact intersection points within a span, which might be
somewhat more efficient.

The intersection calculation between segments belonging to two faces with different depth-
order on both ends of a span has to be extended to handle curved segments as well. Three cases
may occur: straight segment - straight segment intersection, straight scgment - curved scgment
intersection, curved segment - curved segment intersection, Intersecting two straight segments
is trivial. Intersecting a straight segment and a curved segment is done by substituting the
formula of the straight line into the quadratic equation of the curved segment. The resulting
second-degree equation is solved to give two values. Only one of these solutions is the desired
intersection point. Intersection of two curved segments is done with Newton iteration. The
middle of the span is taken as starting point for the iteration process. The iteration is stopped as
soon as subpixel precision is achieved.

Finally shading is done by calculating the exact normal vector i = (9F/9x,0F/dy,dF/oz)
for each pixel. No approximate normal vector interpolation as in method 1 is done. .
3.4. Extended BRep for Quadrics (eBRep)

{K1ei92] presents 2 quadrics based scan-line algorithm for CSG where primitives are
processed as general quadric surfaces. In our approach we also use quadrics based primitives
but we handle frequently occurring quadrics (cube, cone, sphere, cylinder) separately.

v, 5 V7
e fi1' &
°12
v 15 4 1
PR

i € 2 e
Figure 2: (¢)BRep of a cube

In this section extended BReps (¢BReps) of the CSG primitives cube, sphere, cylinder and
cone are discussed. The formulas for the incremental update of curved edges are given. The

eBRep of the cube is the usual BRep and consists of 8 vertices, 12 straight edges and 6 planar
faces (see Figure 2).

The eBRep of a sphere (or cllipsoid that results from wransforming a sphere) consists of two
vertices (v1,v2), four curved edges {(c1, €2, 3, c4) and four curved faces (f1, f2, f3, f4) (sce
Figure 3). v] (v2) is the point on the quadric surface with maximal (minimal y-value) and is
calculated by using the normal vector fi of the quadric F(x,y,z)=0 which is given as
#i = (9F/9x,0F/dy,0F/dz). Vertices v and v2 are then the solutions of the system of
equations F(x,y,z)=0, dF/ox =0 and JF/dz =0. Edges ¢i, €2, €3 and ¢4 are chosen so that
their intersection points with a scan plane partition the resulting 2D quadratic curve (circle,
ellipse) into four monotonic segments. The incremental update of these intersection points is
explained later on. Edges e}, ¢ (silhouette edges in z-direction) are defined by F(x,y,z)=0 and
OF/0z=0. Edges €3 , ¢4 (silhouette edges in x-direction) are defined by F(x,y,z)=0 and
doF/ox =0.

v

7

faces f3, ..., fg are on the curved cylinder boundary
Figure 4: eBRep of a cylinder

The eBRep of a cylinder consists of 12 vertices, 12 curved edges, 6 straight edges, 2 planar
faces and 6 curved faces (see Figure 4). A cylinder is defined by a quadric surface F(x,y,z):()
(curved boundary), a top plane prop and a bottom plane pbot- Vertices v] and vg are the points
on face f] (contained in pyop) with 'maximal and minimal y-coordinates. They are calculated as
follows: The equation of pyop is used to climinate the z-coordinate in F(x,y,z)=0. The resulting

60

LU

-t

expression is solved for x giving an equation of the type ,x, = u(y) £4/v(y). Vertices v1 and
vg are then determined by v(y)=0. Vertices v7 and v12 on face f2 (contained in pbot) are
calculated analogously. The silhouette edges €14, €15, €16, €17 are calculated the same way as
silhouette edges of the sphere. Vertices v2, v3, v4, v§ (v8, v9, v10, v11) arc the intersection
points of the silhouette edges with piop (pbot). Edge €13 (¢18) is the connecnon_betwecn
vertices vi (v6) and v7 (v12).The remaining curved edges ¢l.,....66 (e7,..-€12) lic-on the
intersection of quadric F(x,y,z)=0 and piop (Pbot) and connect the vertices on face {1 £2).
Faces f3,...,f§ make up the curved cylindcr%oundary. Special cases arise if prop and pbot are
parallel or perpendicular to the xz-plane. In these cases a simplified ¢BRep can be used.

The eBRep of a cone consists of 7 verticgs, 6 straight edges, 6 curved edges, 1 planar face
and 6 curved faces (see Figure 5). A cone is bSinded by a quadric F(x,y,2)=0 and a bottom
plane ppot. Vertices vi and v¢ (points with imal and minimal y-value) on face f7 (contained
in phot) are calculated the same way as vi, v of the eBRep of a cylinder. Edgese7 and e]2 are
connecting v] and vg to the apex v7 of the cone. Edges eg, €9, €10, €11 arc again sxlhoue:ttc
edges. They are calculated the same way as silhouette edges on a sphere. Their intersection
points with ppot define the vertices v2, v3, v4, v5. The remaining curved edges el,....e6
connect vertices on the intersection curve between quadric F(x,y,z)=0 and plane pbot- There are
some special cases that simplify the eBRep of cones: If pbot is parallel to the scan planes spj
(xz-plane) then vertices vi, v6 and edges el, .., €6, €7, €12 are omitted. Depending on the
position of a cone there might be fewer than four silhouette edges. The number of sithouette
edges (one, two or four) can be deduced from the type of intersection between scan plane spi
and the conic quadric, which is given as equation (2): .

AB<D2 liipse 4 silhouetie edges
AB=D2 parabola 1 or 2 silhouette edges
AB>D2 hyperbola 1 or2silhouette edges

Y6
Figure 5: eBRep of a cone

Monotony does not change along edges €13, €18 in Figure 4 and €7, €12 10 Figure 5, so
these edges could even be omitted (although thus compromising on the topological validity of
the model). As silhouette edges are not transformation invariant quadric surfaces have to be
transformed into the camera-coordinate system before the eBRep can be calculated.

3.5. Incremental update of curved edges)

Scan-line coherence can be exploited by incrementally updating edges from scan line si t0 sj-
1. The incremental update of a swraight edge can be easily accomplished. If the x-co_ordmatc ofa
point Pj on scan line sj is given, the x-coordinate of the Point Pj-1 on the following scan line
5i-1 can be determined with only one subtraction (see Figure 6). The incremental update of a
quadric curve is more complicated and requires four subtractions and one square root evaluation
(see Figure 6). Pi=(xi.yi) is a point on the quadric edge q: Ax2+By2+Cxy+Dx+Ey+F=0 on

61

scan line sj. The x-coordinate of the point Pi-1=(xj-1,yi-1=yi-Ay) on the next scan line is
incrementally calculated as follows:

OxBy =k k4, with

C
k., =k, - Ak, Ak =———A
i-1 i 2A Y
La=1-4L
2-

Ak and A2 are calculated for each curved edge only once. If sp is the first scan line that
intersects the curved edge q then the values kp, In, Alp are initialized with:

g =-S5 *D
. 2A \
C?-4AB CD—-2AE, D"—4AF
PR 3
ln_Yn(4Az)+Yn(2A2)+(4A2)
C?-4AB CD-2AE
Al, =2y, = AY)AY () + 8y 5—)
Ay Ay
Pi=(xi.yj
i §
Si-1 §i-1
g
x X
g Ax+By+C=0 - q: Ax24+By24+Cxy+Dx+Ey+F=0
Yi =Y, — 8y Yia =Y~ Ay

Ox® =k, iﬁ

Figure 6: Incremental update of straight and curved edges

X;y =X; — AX with Ax = -%Ay

4. Implementation and results

A test system was implemented [Brun92] on a VAX-cluster (Micro VAX 2000, 3100, 3200)
under the VMS operating system in VAX Pascal. Tests show that method 2 requires
significantly less storage than method 1 (see Figure 7). This holds although an edge or face of
method 2 requires about two to three times as much storage space as an edge or face of
method 1.

Comparisons of the calculation times show that method 2 is slower than method 1 for small
CSG models but is more efficient for larger object scenes. For small scenes the overhead of
setting up and manipulating curved edges is not made up by a significantly smaller dara base.

Only with larger CSG models method 1 has to handle (e.g., sort) large lists of faces and
edges. In this case the small data base due to the usage of eBReps in m;thod 2 allows an image
generation faster by about a factor of two compared to method 1 (see Figure 8).

62

e

method 1 method 2
image #pnm | resolunon | #edges #taces #edges #aces
‘sphere’ 1 200x200 480 320 4 4
‘m-sphere’ 3 400x400 972 646 20 14
‘h-virus' 19 400x800 1488 850 266 128
‘atomium’ 26 400x400 5120 3185 314 164
‘molecule’ | 104 400x400 20480 12740 1344 684
Figure 7: number of edges and faces of method 1 compared to method 2
method] method 2
image BRep |scan total e¢BRep |scan total o B
'sphere’ 0:01 0:06 0:27 0:00 0:09 037 0.6 10.7
‘m-sphere’ 0:03 0:27 0:41 0:00 0:44 1:10 0.6 |0.7
'h-virus' 0:04 0:30 0:53 0:00 0:19 0:42 0.8 |1.2
‘atomium’ ’ 0:14 0:46 1:13 0:00 0:23 0:35 1.3 21
‘molecule’ 0:56 4:02 6:38 0:01 2:31 2:59 1.5 2.2

BRep, eBRep: time for constructing the boundary representation
scan : time used for the scanning process

total : BRep+scan+shading time

o : ratio: scan of method 1 / scan of method 2

B: ratio: total of method 1 / 1otal of method 2

Figure 8: time requirements of method 1 compared to method 2 (in min:sec)

Method 1 is characterized by an approximation of CSG primitives that are handled in 2
general uniform way. With method 2 primitives are represented exactly, each type of primitive
(cube, sphere, cone, cylinder) is handled separately. Therefore the program code of method 2 is
a little bit more complicated than the program code of method 1. As natural quadrics occur
frequently in CSG models the special treatment of these primitives is worth the additional
programming effort. Comparisons with a ray tracer developed at our department [GePu88]
show that the scan line algorithms for CSG presented in this section are, on the average, faster
by a factor of 40. This is an immediate consequence of the fact that the scan-line algorithms
make extensive use of given coherence properties.

References

[Athe83] Peter R. Atherton, "A Scanline Hidden Surface Removal Procedure For
Constructive Solid Geometry”, Computer Graphics 17(3), July 83, pp. 73-82.

[Bron90] Bronsvoort, W.F., "Direct Display Algorithms For Solid Modelling”, PhD thesis,
Delft University Press, 1990.

[Brun92] Brunner, P., "Scanline Algorithmen fiir CSG-Objekte”, master's thesis, Institute
for Computergraphics, Technical University Vienna, September 1992.

[FoDa%0] Foley, J., van Dam, A., Feiner, St., Hughes, J., "Computer Graphics Principles
and Practice”, Addison-Wesley, 1990.

[Gr8193] Groller, E., "Coherence in Computer Graphics”, PhD dissertation, VWGO
Verband der wissenschaftlichen Geselischaften Osterreichs, September 1993.

{HaHi80] Hakala, D.G., Hillyard, R.C., Nourse, B.E., Malraison, P.J., "Natural quadrics
in mechanical design”, Proceedings of Autofact West, 1980, pp. 363-378.

[GePu88] Gervautz, M., Purgathofer, W., "RISS-Ein Entwicklungssystem zur Generierung
realistischer Bilder”, Informatik Fachberichte 182, 1988, pp. 61-79.

[Klei90] van Kieij, R., "Implementation of a solid modelling system with quadratic
surfaces”, Reports of the Faculty of Technical Mathematics and Informatics no.
90-41, Technical Universit» Delft, 1990.

63

[Klei92}
[Mill87]
[Mill88)

{PuMe87}

{Roth82]

[SuSP74]

van Kleij, R., "Efficient display of quadric CSG models”, Computers in
Industry 19, Elsevier Science Publishers, 1992, pp. 201-211.

Miller, J.R., "Geometric Approaches to Nonplanar Quadric Surface Intersection
Curves”, ACM Transactions on Graphics 6(4), October 1987, pp. 274-307.

Miller, L.R., "Analysis of Quadric Surface Based Solid Models", IEEE Computer
Graphics & Applications, 8(1), January 1988, Pages 28-42.

Pueyo, X., Mendoza, J.C., "A new scan line algorithm for the rendering of CSG
trecs34 Prsocccdm gs of EUROGRAPHICS ‘87, North-Holland, Amsterdam 1987,
pp. 347-361.

Roth, S.D., "Ray Casting for Modeling Solids", Computer Graphics and Image
Processing, Vol. 18, 1982, pp. 109-144.

Sutherland, LE., Sproull, R.F., Schuhmacher, R.A., "A Characterization of Ten
Hidden-Surface Algorithms." ACM Computing Surveys 6(1), March 1974, pp.
1-55

64

“"

St

Figure 9: image 'm-sphere’

‘-

Figure 10: image "h-virus’

Figure 11: image "atomium’

65

Figure 12: image 'molecule’

