
Label Layout for Interactive 3D Illustrations

Kamran Ali, Knut Hartmann, and Thomas Strothotte

Department of Simulation and Graphics

Otto-von-Guericke University of Magdeburg

Universitätsplatz 2, D-39106 Magdeburg / Germany

{kamran, knut, tstr}@isg.cs.uni-magdeburg.de

ABSTRACT
Hand-made illustrations in scientific and technical textbooks commonly use internal and external labels or legends

to establish co-referential relation between pictorial elements and textual expressions. By analyzing the most

complex examples, we extracted several label layout styles and classified them. We propose a variety of real-time

label layout algorithms that aim to produce nice and clean layouts. In order to achieve a frame-coherent label

layout during user interactions, the algorithms consider layout decisions from previous frame. Moreover, several

evaluation criteria to measure the quality of static as well as dynamic label layouts are presented.

Keywords
Label-Layout, External Labeling, Text-Image Integration, Multi-Modal Presentations

1 INTRODUCTION
Interactive tutoring systems aim at presenting informa-

tion in the most effective way. The dual coding the-

ory [CP86] suggests that humans posses two indepen-

dent processing systems—one for visual and the other

for verbal elements. Hence, using two channels, more

material can be conveyed, but their content has to be

integrated mentally.

Human illustrators employ a number of techniques

to establish co-referential relation between visual and

verbal elements. Labels, legends, and figure captions

provide denotations, technical terms, and descriptions

for visual elements. However, their automated inte-

gration within an interactive 3D environment remains

a big challenge.

Text labels either overlay visual objects or placed out-

side (internal vs. external labels). Connecting lines

reveal co-referring external labels and visual objects,

whereas anchor points ease the identification of visual

objects. In this work, the term label layout refers to

the determination of the positions of anchor points and

external labels, which are linked with connecting lines

Permission to make digital or hard copies of all or part of

this work for personal or classroom use is granted without

fee provided that copies are not made or distributed for profit

or commercial advantage and that copies bear this notice

and the full citation on the first page. To copy otherwise,

or republish, to post on servers or to redistribute to lists,

requires prior specific permission and/or a fee.

The Journal of WSCG, Vol. 13, ISSN 1213-6964

WSCG’2005, January 31-February 4, 2005

Plzen, Czech Republic.

Copyright UNION Agency–Science Press

using a specific line style. Moreover, the term graphi-

cal model refers to a complex visual object with sepa-

rate individual visual objects.

We extracted requirements for several layout styles

which are prevalent in hand-made illustrations and

present techniques towards an automated generation

of label layouts in real-time. In order to achieve a

frame-coherent label layout during user interactions,

these algorithms consider layout decisions from the

previous frame. Moreover, the system facilitates auto-

matically generated legends for graphical models and

textual explanations for visual objects. The mental in-

tegration of information presented in 3D and legend

viewer is aided through a synchronized object selec-

tion and highlighting mechanism.

The paper starts by giving a review of related work

in Section 2. Section 3 states the requirements for

dynamic labeling system. In Section 4 several label

layout styles are classified. Section 5 presents the ar-

chitecture of our label layout system and provides the

algorithms to generate several layouts. Moreover, co-

herency aspects and the application of labels in leg-

ends are described. Section 6 states the evaluation cri-

teria to measure the quality of layouts. Finally, Sec-

tion 7 discusses directions of future research.

1

Fornix
 Thalamus

Body of corpum callosum

Septum pellucidum

Cingulate sulcus

Pingeal gland

Parieto-occipital sulcus

Posterior calcarine sulcus

Splenium of corpum callosum

Cuneaus

Cerebral aqueduct

Cerebellum

Choroid plexus

Medulla

Mamillary body
Pituitary gland
Optic chiasma

Hypothalamus

Genu of corpus callosum

Thalamic interconnexus

Interventricular foramen

Hypothalamic sulcus

Lamina terminalis

Lunula of semilunar cusp

Aortic valve, left semilunar cusp

Left coronary a.

Left coronary a.

ant. Interventricular br.

Interventricular septum,

membranous part

Myocardium

Chordae tendineae

Ant. papillary m.

Post.

papillary m.

Chordae

tendineae

Left ventricle

Left atrioventricular orifice

Left atrioventricular (mitral) valve, ant. cusp

Aortic valve, post. semilunar cusp

Aortic valve, right semilunar cusp

Right auricle

Left semilunar cusp

Nodulus of semilunar cusp

Right coronary a.

Pulmonary trunk

Sinus of aorta

Bulb of aorta

Figure 1: Variety in the layout styles (Source: [Rog92, p. 317] and [SPP97, p. 81]).

2 RELATED WORK
The label layout problem has received much attention

in non-interactive cartographic applications [CMS95]

where the labels have to be placed for point, line, and

area features. However, the label placement is inde-

pendent of the shape of graphical features and can be

unified for all kinds of features [KT98]. Finding the

optimal solution of the labeling problem (i.e., without

overlapping labels) is proven to be NP-hard [MS91].

Therefore, several approximation methods have been

developed to reduce the computational complexity.

A number of interactive multi-modal systems integrate

external labels into the visualization of geometric ob-

jects. But most of them rely on fixed regions for visual

and textual elements (e.g., [PRS97]) or a manual label

layout (e.g., [RSHS03]). Only a few solutions have

been proposed to integrate internal and/or external la-

bels into interactive 3D applications (e.g., [BFH01]),

but they lack the ability to generate a variety of lay-

outs which are often seen in hand-made illustrations.

3 REQUIREMENTS
In dynamic environments an effective layout must ful-

fill a number of requirements ([Imh75, FP99]):

Readability: Labels must not overlap,

Unambiguity: Labels clearly refer to their objects,

Pleasing: Prevent visual clutter,

Real-Time: Compute layouts at interactive rates,

Frame-Coherency: Prevent visual discontinuities,

Compaction: Reduce the layout area.

These requirements may conflict with each other and

with another demand: label as many visual objects as

possible. Some of these requirements can be evaluated

easily, whereas the extraction of criteria for the second

and third aspect is less obvious. We use several heuris-

tics to achieve a pleasant and unambiguous layout:

(i) Place anchor points over salient positions,

(ii) Place labels near to their corresponding objects,

(iii) Align labels mutually and with respect to the

graphical objects, and

(iv) Eliminate line crossings.

The label layout algorithms are incorporated into an

interactive application where visual discontinuities be-

tween subsequent frames must be avoided. Moreover,

the layouts should be as compact as possible to fit on

the limited screen space. Finally, the layout algorithms

have to cope with situations where some labels do not

fit into the given screen space. As the computation of

an optimal solution is NP-hard, several simple yet ef-

fective methods are proposed that can be carried out in

real-time.

4 LAYOUT STYLES
The material in this section is based on a manual anal-

ysis of label layouts in hand-drawn illustrations. For

this purpose, we chose anatomic atlases, anatomic

textbooks, and visual dictionaries because of their

making extensive use of external labels and due to the

extraordinary quality of their label layouts.

The manual analysis reveals that human illustrators

use a number of different label layout styles with style-

specific illustration techniques and properties (see Fig-

ure 1). Therefore, we classified them according to

their common properties (see Figure 2):

Straight-Line: Labels and anchor points are con-

nected with straight lines (see Figure 1-Right).

Orthogonal: Connecting lines are axis-aligned and

the bends are made at orthogonal angles (see Figure 1-

Left).

Flush Layout: Labels are assigned to distinct spatial

areas (see Figure 3-a):

• Flush Left-Right: Labels are placed on the left

and/or right side of the graphical model.

• Flush Top-Bottom: Labels are placed on the top

and/or bottom of the graphical model.

Circular Layout: Labels are aligned on the silhou-

ette of the graphical model in a circular fashion (see

Figure 3-b):

• Ring: Labels are placed at regular intervals on a

ring which encircles the graphical model.

• Radial : Labels are placed in radial form with re-

spect to a common origin.

• Silhouette-Based : Labels are placed near the sil-

houette of graphical model at positions closest to

their anchor points.

2

OrthogonalStraight-Line

Layout

Circular LayoutFlush Layout

Ring Radial
Silhouette-

Based
Left-Right Top-Bottom

OrthogonalOrthogonalStraight-LineStraight-Line

LayoutLayout

Circular LayoutFlush Layout

Ring Radial
Silhouette-

Based
Left-RightLeft-Right Top-BottomTop-Bottom

Figure 2: Layout Classification.

These styles are adopted in order to meet space re-

quirements, to bring conformity in different illustra-

tions, to maintain visual balance, and to ease reading.

The most interesting observation is that there are some

general but also several style-specific requirements.

5 AUTOMATED LABEL LAYOUT
In this section, the properties and constraints of labels,

anchor points, and connecting lines are defined. More-

over, we describe our approach towards the dynamic

layout of label in interactive systems.

5.1 Object Properties and Constraints
The amount of text displayed in labels can range from

one- or two-letter symbols to multi-line paragraphs.

However, most often labels comprise few words on a

single line. We classify labels into the following cate-

gories:

(a) Flush layouts combined with straight-line or orthogonal

styles.

(b) Ring, radial and silhouette-based layouts.

Figure 3: Examples of various layout styles.

(i) single-line (max. 50 characters),

(ii) multi-line labels, or

(iii) legend keys (max. 2 characters).

For labels of different sizes, more constraints are

needed to avoid label overlaps and line intersections.

Thus, achieving a balanced layout becomes more

problematic. Therefore, our layout strategy is re-

stricted to single-line labels and legend keys which

both have a fixed height and width. This constraint

enables us to represent labels as zero-sized points and

to maintain a minimal vertical and horizontal gap be-

tween them. Multi-line descriptions and legend text

are provided on request. They do not alter their po-

sitions and have a semi-transparent background. User

can pin them anywhere on the screen. The positions of

all kinds of labels, anchor points, and connecting lines

are specified in view-plane coordinates.

All objects are assigned display priorities (that con-

sider projection size) and user priorities. For complex

models, the labels can be filtered according to their de-

gree of interest. If there is not enough place to display

all label, objects with the smallest priorities are chosen

and their labels are ignored.

5.2 System Architecture
Figure 4 presents an overview of our approach. The

content presented in labels is provided by an exter-

nal domain expert. The system works internally on

2D projection of 3D scene where individual visual

objects are color-coded uniquely (color-code image).

The rendered image is analyzed to determine visible

objects and anchor points. Layout-specific algorithms

determine initial positions for labels. Then label over-

laps are eliminated and line intersections are resolved.

If required, layout compaction is performed. Finally,

the labels are rendered with chosen decoration style on

top of the scene.

5.2.1 Domain Expert Initialization

The co-referential relation between textual annotations

and visual objects is established by using an external

knowledge base. When the system loads a 3D model,

the domain expert defines a color-coding scheme for

visual objects and provides textual descriptions.

5.2.2 Image Analysis

This module segments color-code images. For every

rendered frame, it creates a list of all segments, their

sizes, extents, and colors (to identify the visual ob-

jects). For each visible object, it determines one an-

chor point. Since an anchor point is intended to sup-

port the identification of visual object and its distinc-

tion from the remaining objects, its position is cru-

cial to prevent co-referential mismatch. From observa-

3

Frame-

coherent
presentation

Label
Layout

Image
Analysis

Color-Code Rendering

Domain-Expert Initialization

Object Visibility

Anchor Point Calculation

Layout Compaction

Label Overlap &

Line Intersection Elimination

Initial Label Layout

Decoration

Annotation Rendering

Figure 4: System architecture.

tions, we define the following heuristics to determine

anchor points:

(a) They must overlay their corresponding objects.

(b) Place anchor points inside the biggest segments.

(c) Place them at the most internal locations of these

segments.

(d) Avoid clusters of anchor points.

Anchor Point Calculation: If the objects have ‘L’ or

‘U’ shape, neither the center of the bounding box nor

the centroid guarantee to fulfill the first condition. To

compute the most internal pixel in a segment, we apply

distance function on color-coded images. For every

pixel this function computes its distance to the closest

segment boundary and stores these values in a distance

image (see Figure 5-Right).

There are several variants of this function which em-

ploy different metrics: Euclidean, Manhattan, and

Chessboard.

The last two metrics are faster but less accurate. In

order to reduce the computational expense of the eu-

clidean metric, we adopt the pseudo euclidean met-

ric d34 [AdB88]1. The d34 metric assigns distance

value 3 to horizontal and vertical neighboring pixels;

the value 4 is assigned to diagonally connected pix-

els. We implemented a 2-pass algorithm to compute

distance image [RP68] using the d34 metric. For each

visual object a mask is placed over the distance image

and the highest distance value is returned as anchor

point.

Elimination of Anchor Point Clusters: In order to

avoid referential mismatches or ambiguities, anchor

points should not form clusters. Therefore, repulsive

1An approximation which purely uses integer operations and

avoids square roots.

Figure 5: Color-code image (left) and distance image

(right) with overlaid anchor points.

forces aim at separating anchor points by modifying

the distance image D. An anchor point at position c

adds a subtractive function which is centered at c and

is applied to all pixels p of its influence region R:

Dp = Dp − f (||p− c||)∗ k ; for p ∈ R

where f is a non-negative decreasing function, ||p−c||
is the distance between p and c, and k is a scaling fac-

tor. The algorithm now determines the distance im-

age D in a first phase. The second phase subsequently

computes anchor points for visual objects by selecting

the maximal distance values on their segments. After

selecting each anchor point, the values in the distance

image around the anchor are modified by the subtrac-

tive function.

In Figure 6, the green and red curves denote distances

of two distinct visual objects to their segment bound-

aries. After placing an anchor point for the green ob-

ject, the subtractive function (in blue dotted line) digs a

valley into D and forms a new peaks for the red object

(Peak 2 and 3). Finally, Peak 3 is selected as anchor

position since it now has the highest quality.

5.2.3 Label Layout

All style-specific algorithms instantiate a generalized

algorithm. In the following, we describe only the

layout specific realizations of generalized tasks. All

layout-specific algorithms strictly prevent label over-

laps and intersections of connecting lines. Moreover,

layouts can be made more compact. Our extensions to

achieve a frame-coherent label layout are presented in

the next section.

1

2

3

Subtractive
function

Figure 6: Separation of anchor points.

4

Generalized Algorithm: For a single frame,

1. Determine the positions of anchor points,

2. Determine the extents of empty space regions,

3. Allocate spatial regions for labels,

4. Compute an initial label layout,

5. Stack labels to eliminate overlap,

6. Resolve line intersections, and

7. Perform layout compaction.

All layout algorithms rely on the positions of anchor

points. In Task 2, the extent and locations of the four

biggest empty axis-aligned rectangles (left, right, top,

bottom) around the graphical model are computed, as

the flush layouts place labels solely in these regions.

The Tasks 3, 4, and 7 are style specific.

Flush-Left-Right Layout: Modifies Tasks 3, 4, and 5.

Allocate spatial regions for labels (Task 3):

(a) Sort anchor points according to the x direction,

(b) Choose a pivot point (e.g., mean or median of an-

chor points), and

(c) Assign labels to the left and right region by com-

paring their anchors with the pivot point.

Compute an initial label layout (Task 4):

(a) Assign the y position of anchor points to y position

of associated labels.

(b) Justify the labels on the bounding box of the

graphical model.

Stack labels to eliminate overlap (Task 5):

(a) A recursive algorithm assigns new positions to the

labels to eliminate label overlaps and minimize the

average vertical length of connecting lines.

For flush left and flush right layout, we assign to the

pivot element a minimal or maximal value. For flush

top and flush bottom layout, the previous algorithm

works by exchanging horizontal and vertical direc-

tions. Later on, in top and bottom regions, labels are

stacked in vertical direction.

Radial Layout: Modifies Tasks 4 and 5.

Compute an initial label layout (Task 4):

(a) Select a center position o (e.g., mean or median

of anchor points) and an appropriate radius r for a

circle C which encloses the graphical model.

(b) Compute the radial projection of the anchor points

on C.

(c) Align the corresponding label on this position. La-

bels on left-half of C are right-justified and labels

on right-half of C are left-justified.

Stack labels up- or downwards to eliminate mutual la-

bel overlaps (Task 5).

The radial projection of anchor points produces no in-

tersections of connecting lines. However, labels can

overlap or lie very close to each other which is re-

solved by label stacking. An unbalanced distribution

of labels might cause huge label stacks and increase

the lengths of connecting lines. The spring embedding

approach, which is described after the discussion of

the individual layout styles, improves the layout con-

siderably.

Ring Layout: Modifies only Task 4.

Compute an initial label layout (Task 4):

(a) Select a center position o (e.g., mean or median

of anchor points) and an appropriate radius r for a

circle C which encloses the graphical model.

(b) Choose n evenly spaced positions P on the circle.

(c) Determine a bijective mapping from the label set

to P which minimizes the distance between labels

and their anchor points.

Since the labels are already evenly spaced, there is no

need to check for label overlaps for small n and big r.

Silhouette-Based Layout: Modifies Tasks 4 and 5.

Compute an initial label layout (Task 4):

(a) Compute the convex hull of the geometric model

and enlarge it (pre-processing step)

(b) Project the anchor points on the edges of the con-

vex hull silhouette boundary S. Choose the closest

projection position to the anchor as label position.

Stack labels up- or downwards to eliminate mutual la-

bel overlaps (Task 5).

In our application the approximation of the silhouette

boundary with convex hulls achieved a better quality

compared to other bounding objects (e.g., circles or

bounding boxes). But also this approach suffers from

uneven label distribution. Again, the spring embed-

ding approach is used to improve this layout.

Spring Embedding Approach

To balance uneven label distribution in radial and

silhouette-based layouts, we use a force directed ap-

proach [FR91] developed in graph drawing. We de-

fine a repulsive force between labels aiming to sepa-

rate the labels, and an attractive force that moves the

labels close to their anchor points. The configuration

is done in a circular fashion. Hence, it is based on an-

gles between the labels rather than on distances. For

two labels v and u, ∆r refers to an interior angle formed

by them with respect to circle center o. The repulsive

force fr is inverse proportional to ∆r:

fr(∆r) = −k2/∆r

where k is an ideal angle (e.g., 0.2 rad.) between v

and u. Moreover, we establish an attractive force fa

between the labels v and associated anchors av. Let

position pv be the radial projection of av in radial lay-

out. The position pv on the circular ring attracts the

label v. ∆a refers to the interior angle between v and

pv with respect to o.

fa(∆a) = ∆

2
a/k

5

1

6

2

3

5

4

1

6

2

3

5

4

Figure 7: Using spring embedding to spread labels in

the circle. Before (left) and after configuration (right).

where k is a tolerable angle (e.g., 0.2 rad.) between v

and pv. The algorithm configures the layout in many

iterations. The amount of temperature t constrains the

label displacement. The higher t, the bigger the dis-

placement. The algorithm starts at high t and cools

gradually. In each iteration, displacement angles for

each label are computed by summing repulsive and at-

tractive forces. After configuration, label overlaps are

resolved. In our system, spring embedding approach

can be performed in real-time as nearly 30 objects

are labeled. We found 20 to 30 iterations enough to

achieve an acceptable layout.

Figure 7 illustrates the spring embedding configura-

tion. Filled enumerated circles represent labels which

are arranged on a circle, whereas tiny filled circles

represent anchor points. Solid blue lines indicate re-

pulsive forces and dashed red lines indicate attractive

forces between labels and their ideal positions.

5.2.4 Line Intersection Elimination

To resolve intersections of connecting lines, the re-

striction on fixed size labels is a big advantage. For

any two intersecting lines, we can interchange their la-

bel positions without introducing new label overlaps:

Do until there are no intersections left

if any two connecting lines intersect

interchange their label positions

Orthogonal Layout

This style requires axis-aligned connecting lines with

bend at orthogonal angles. It can be combined with all

flush or circular layouts:

1. Compute label positions using any layout method,

2. Draw the connecting lines in orthogonal style.

3. Resolve intersections of orthogonal lines, and

The current implementation imposes two restrictions:

(i) only one bend is allowed (i.e., connecting lines can

employ a vertical and a horizontal segment) and (ii)

vertical segments connect anchor points and bends,

while horizontal segments connect bends and labels.

In order to detect line intersections in the orthogonal

layout, each horizontal segment is tested for intersec-

tion with all vertical segments. Every time an intersec-

Figure 8: Layout Compaction.

tion is found, the label positions are exchanged. This

procedure is continued until no intersections remain.

5.2.5 Layout Compaction

In order to keep the connecting lines short, this step

aims at moving the labels towards their anchor points.

We implemented two methods based upon the kind of

silhouette they use. The first method approximates the

silhouette of graphical model by a convex hull. It com-

putes intersections between connecting lines and the

edges of the convex hull and re-targets the labels on

the intersection points. Furthermore, label overlaps are

resolved analogue to Task 5 in silhouette-based layout

(see Figure 3-b).

The second compaction method uses the original sil-

houette boundary, and is preferred only for flush left-

right layout as the height of labels is much smaller

than the width. Each label in the left region is shifted

horizontally towards the right until it hits some fore-

ground pixel, or the horizontal distance between the

label and the anchor point becomes zero. This test is

performed using the color-code image. The labels are

placed with some margin to the final position. Simi-

larly, the labels in the right region are moved in. New

line intersections may arise which are again resolved.

After compaction, the labels in both sides closely fol-

low the boundary of the model, and the layout looks

more pleasing (see Figure 8).

5.2.6 Frame Coherent Presentation

Our discussion so far was restricted to static aspects.

In interactive systems the label layout has to be re-

computed after the user interacts. An independent lay-

out for individual frames without considering continu-

ity aspects results in layout flickering. Jumping labels

and anchor points are both irritating and distracting.

In order to achieve a frame coherent label layout, our

algorithms are revised to consider the outcomes from

previous frames.

Stabilizing Anchor Points: All of the layout algo-

rithms rely heavily on the positions of anchor points.

Therefore, movements of anchor points might induce

a global change in the layout. To enhance the frame

coherency, a new heuristic for placing anchor points

6

A(t)

A(t+1)

B(t)

B(t+1)

movekeep

Figure 9: Stabilizing anchor points.

is added: If possible, keep the anchor points at their

previous locations. However, anchor points must not

leave the region of its corresponding visual object and

might now reside at a very poor position. In both cases,

the anchor points should shift.

In order to implement this new heuristics, we add an

attractive force which aims at keeping anchor points

close to their previous positions. For each anchor point

at position c and its associated visual object Oi an ad-

ditive function is applied on the distance image D. It

affects the distance values for all pixels p of the corre-

sponding object within an influence region R:

Dp = Dp + f (||p− c||)∗ k ; p ∈ Oi

where f is a non-negative decreasing function, ||p−
c|| is the distance between p and c; and k is a scaling

factor.

This function creates high peaks on previous anchor

positions and increases their probability for being se-

lected as new anchor points. In Figure 9, the A(t) and

B(t) refer to the anchor points of the green and red ob-

ject in frame t. In the next frame t + 1 the additive

function (in blue dotted line) modifies D and creates

new peaks. The global maxima A(t) and A(t + 1) for

the green object are identical, so that its anchor point

remains stable. However, there is now a new global

maximum B(t + 1) for the red object, so that its an-

chor point moves to another location. This illustrates

how we try to retain old positions as long as they are

acceptable and jump to better candidates otherwise.

Stabilizing Label Layout: The assignment of labels

to spatial regions is a very crucial for the appearance

of a layout. In order to prevent frequent label jumps

between different regions, the pivot point of flush lay-

outs should also be stabilized. However, if it remains

steady for a long time while the user interaction con-

tinues, the numbers of labels per region can get very

unbalanced. To handle this problem, a pivot element

is nailed as long as it provides an acceptable ratio of

anchor points in two regions, otherwise it is set to new

location.

Label Animation: In order to prevent visual discon-

tinuities, changes of anchor points and label positions

are animated. We prefer a slow-in slow-out interpo-

lation. To avoid a distraction by floating labels within

Figure 10: An orthogonal layout with NPR rendering.

user interactions, layouts can be frozen until a new sta-

ble point-of-view is chosen.

5.2.7 Decoration

By default, we use white as background color and

black as text color. For legends, different colors for

indices help to find the associated elements. We sug-

gest (i) to use dotted instead of solid lines (otherwise

strips between lines show up), (ii) to use line shadows,

and (iii) to decrease the color intensity of labels and

connecting lines during animations. The system facil-

itates the user to change the color, size, and style for

anchor points and connecting lines.

For creating abstract versions of illustrations, we inte-

grated a non-photorealistic rendering system [HIR+03].

Figure 10 shows the results with orthogonal layout

style. Long textual descriptions can be presented in

both 3D and in a separate legend viewer. Object se-

lection and highlighting is synchronized in both views

(see Figure 11).

5.3 Selection of Layout Style
No layout is ideal under all circumstances, however,

the knowledge of their specific advantages and con-

straints helps to select an appropriate one. The choice

of a layout for external labeling depends largely on the

shape and orientation of visual object, the spatial dis-

tribution of anchor points, the amount and distribution

of free space available to insert labels, and personal

preference for a particular layout.

Determining a suitable layout automatically can be

very difficult. Therefore, layout selection is performed

Figure 11: Synchronized legend and 3D viewer.

7

by the user via real-time previews. It also gives the

user more freedom in choosing from a variety of avail-

able layouts if one layout does not look promising.

6 EVALUATION
An automatic evaluation of the label layouts can be

made on the basis of the following parameters (mainly

taken from the field of graph drawing [DBET+99]):

• Number of unlabeled visual objects,

• Number of line intersections,

• Number of label-label overlaps,

• Number of line-label overlap,

• Average length of connecting lines,

• Number of bends in connecting lines,

• Average number of labels which change positions

between frames,

• Average label displacement between frames,

• Illustration size and aspect ratio (1 is the best), and

• Frame rate.

Our system measures the values of evaluation param-

eters to help us in comparing the layouts at runtime.

Moreover, a user evaluation should consider the fol-

lowing parameters:

• Contrastive comparison of different layouts,

• Personal layout score (pleasing, symmetry),

• Distinguish automatically generated layouts from

hand-made ones,

• Time taken to match the co-referring labels and

visual objects, and

• Error rates in the matching process.

7 DISCUSSION AND FUTURE WORK
The layout compaction is currently performed in local

regions. Improved versions should consider the global

distribution of empty space and reduce the amount of

label stacking. In our approach, a single anchor point

is used for each object. Long, thin, and branched ob-

jects are often marked with multiple anchor points,

which are connected with branching connecting lines

(see Figure 1-Right). For bigger objects (area fea-

tures) internal labels should be used. Moreover, the

system should support the integration of multiple lay-

out style within an illustration. Finally, common se-

mantic classifications of visual objects should be visu-

alized through labeling grouping A full-fledged label-

ing system has to integrate all these aspect, and should

be based on the notion of relevance to select an appro-

priate label number and content dynamically.

REFERENCES
[AdB88] C. Arcelli and G.S. di Baja. Finding Local

Maxima in a Pseudo-Euclidean Distance Transform.

Computer Vision, Graphics, and Image Processing,

43(3):361–367, 1988.

[BFH01] B. Bell, S. Feiner, and T. Höllerer. View

Management for Virtual and Augmented Reality. In

Proc. of Symposium on User Interface Software and

Technology, pages 101–110, 2001.

[CMS95] J. Christensen, J. Marks, and S. Shieber. An

Empirical Study of Algorithms for Point-Feature Label

Placement. ACM Transactions on Graphics,

14(3):203–232, 1995.

[CP86] J.M. Clark and A. Paivio. Dual Coding Theory and

Education. Educational Psychology Review,

3(3):149–210, 1986.

[DBET+99] G. Di Battista, P. Eades, R. Tamassia, , and

I.G. Tollis. Graph Drawing: Algorithms for the

Visualization of Graphs. Prentice Hall, Upper Saddle

River, NJ, 1999.

[FP99] J.-D. Fekete and C. Plaisant. Excentric Labeling:

Dynamic Neighborhood Labeling for Data

Visualization. In Proc. of SIGCHI, pages 512–519,

1999.

[FR91] T.M.J. Fruchterman and E.M. Reingold. Graph

Drawing by Force-Directed Placement. Software-

Practice and Experience, 21(11):1129–1164, 1991.

[HIR+03] N. Halper, T. Isenberg, F. Ritter,

B. Freudenberg, O. Meruvia, S. Schlechtweg, and Th.

Strothotte. OpenNPAR: A System for Developing,

Programming, and Designing Non-Photorealistic

Animation and Rendering. In Proc. of Pacific

Graphics, pages 424–428, 2003.

[Imh75] E. Imhof. Positioning Names on Maps. The

American Cartographer, 2(2):128–144, 1975.

[KT98] K.G. Kakoulis and I.G. Tollis. A Unified

Approach to Labeling Graphical Features. In Proc. of

the 14th Annual Symposium on Computational

Geometry, pages 347–356, 1998.

[MS91] J. Marks and S. Shieber. The Computational

Complexity of Cartographic Label Placement.

Technical Report TR-05-91, Center for Research in

Computing Technology, Harvard University, 1991.

[PRS97] B. Preim, A. Raab, and Th. Strothotte. Coherent

Zooming of Illustrations with 3D-Graphics and Text.

In Proc. of Graphics Interface, pages 105–113, 1997.

[Rog92] A.W. Rogers. Textbook of Anatomy. Churchill

Livingstone, Edinburgh, 1992.

[RP68] A. Rosenfeld and J. Pfaltz. Distance Functions in

Digital Pictures. Pattern Recognition, 1(1):33–61,

1968.

[RSHS03] F. Ritter, H. Sonnet, K. Hartmann, and Th.

Strothotte. Illustrative Shadows: Integrating 3D and

2D Information Displays. In Proc. of Int. Conf. on

Intelligent User Interfaces, pages 166–173, 2003.

[SPP97] J. Sobotta, R. Putz, and R. Pabst, editors. Sobotta:

Atlas of Human Anatomy. Volume 2: Thorax,

Abdomen, Pelvis, Lower Limb. Williams & Wilkins,

Baltimure, 12. English edition, 1997.

8

	IPC_2005.pdf
	!_J_WSCG_2005_Vol_13_No_1-3_Numbered_Final.pdf
	Local Disk
	StampIt - A Stamping Utility for PDF Documents

	J_WSCG_2005_No_1-3.pdf
	L07-full.pdf
	1 INTRODUCTION
	2 RELATED WORK
	3 REQUIREMENTS
	4 LAYOUT STYLES
	5 AUTOMATED LABEL LAYOUT
	5.1 Object Properties and Constraints
	5.2 System Architecture
	5.2.1 Domain Expert Initialization
	5.2.2 Image Analysis
	5.2.3 Label Layout
	5.2.4 Line Intersection Elimination
	5.2.5 Layout Compaction
	5.2.6 Frame Coherent Presentation
	5.2.7 Decoration

	5.3 Selection of Layout Style

	6 EVALUATION
	7 DISCUSSION AND FUTURE WORK

	D67-full.pdf
	G03-full.pdf
	F53-full.pdf

