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Abstract

We present a method to rapidly build an irradiance cache based on a local illumination environment approach. This cache
is obtained by a stream simplification of a photon map. The photons are K-Means clustered per voxel into sets of virtual
directional light. These lights are stored into an irradiance texture to provide a real-time rendering of a global illuminated
scene. This method can be integrated into an existing GPU shader to obtain complex material rendering and can be accelerated
by texture atlases.
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1 INTRODUCTION
The overall quality of computer rendered scene can
be greatly enhanced by taking into account the indi-
rect illumination [TL04]. In one hand, the classical
OpenGL direct lighting pipeline can be improved by
multipass techniques for real time effects as shadows,
specular reflections, refractions [SKALP05] and splat
based caustics. On the other hand, the rendering of a
lower frequency lighting is provided by precalculated
light maps based on radiance transfers. These maps
are often computationally expensive to generate and
limited to diffuse radiosity.

We develop a method to generate these maps rapidly
from photon maps by a simple and parallelizable al-
gorithm. Our simplification relies on local illumina-
tion environment (LIE [FBG02]) approach. The scene
space is divided into voxels filled with a compact rep-
resentation (Virtual Directional Light) of the irradi-
ance. Since the process is done locally, the simplifi-
cation error is minimized compared to a global scene
scheme.
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Our representation of illumination could be used as
an irradiance cache for ray tracing. However, such ex-
pensive rendering must be reprocessed at every view-
point change. Since we would like a real-time ren-
dering of global illumination solution, we develop a
viewpoint independent rendering method, based on a
GPU rendered octree. The sets of VDLs are directly
stored in the GPU memory and can be integrated with
advanced material shaders. Eventually, we propose
a render-to-atlas procedure to improve the framerate
and enable rendering on legacy OpenGL hardware.

Our contribution is :

• a fast and stream simplification of a photon map;

• a real-time rendering of indirect illumination on a
GPU without scene remeshing

– integrable in existing shader pipelines for ad-
vanced material rendering

– running on legacy OpenGL hardware (requires
a scene parametrization)

2 PREVIOUS WORKS
2.1 Creating an illumination cache
A global illumination solution can be provided in
screen space, using path tracing [Kaj86, LW93] or bet-
ter, in scene space, by radiosity [GTGB84] or pho-
ton mapping [Jen96, Jen01]. Contrary to the former
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screen space method, a scene space solution can be
reused when the scene viewpoint change. We choose
the photon map approach since it takes into account
not only caustics but also directional diffuse and spec-
ular indirect irradiances.

2.1.1 Cache sample representation
A radiance cache is a scalar field of a reflectance func-
tion values. Such function links the incoming irradi-
ances to the radiance. For both flexibility and effi-
ciency, the irradiance is preferred to the radiance. The
convolution between irradiance and the 5 dimension
reflectance function can produce a high memory con-
suming vector field. Such field must then be com-
pactly stored in a continuous or a discrete way.

A continuous representation consists in fitting a dis-
crete set of photons into a set of coefficients bound
to a function basis, such as spherical harmonics (SH)
or wavelets. SHs were the first used for precomputed
radiance transfer (PRT) [SKS02], for diffuse [RH01]
and glossy [LSSS04, KGPB05] materials. Contrary
to wavelets, SHs are not directly applicable to high
frequency materials. Recently, wavelet coded BRDFs
have been rendered on GPU [WTL06]. However, both
of these continuous representations require heavy pre-
computations, for instance a clustered PCA analysis
[SHHS03] for SHs.

In a discrete representation, the photon map can be
considered as a set of discrete lights: point light (Vir-
tual Point Light [Kel97]) or directional light (Light
Vector) [ZSP98]. Such discrete representations of
lights are grouped by clusters which similarity dis-
tances are based on density [CLSS97], visibility, power,
position [SWZ96, PPD98] or perception values [FBG02,
WFA+05]. Even if discrete representations are more
prone to aliasing than their continuous counterparts,
their simplicity is well suited with a stream process-
ing of the photon map.

2.1.2 Global and local cache
The transformation of a set of photons into an irradi-
ance representation can be done on the whole scene,
resulting in aglobal cache. The simplification bias
can be reduced by working locally in limited regions
of space, leading to alocal cache. These space par-
titions can be constructed on a per scene object basis
and more generally, with a regular grid, or a less mem-
ory consuming octree. Such structure has been used
for renders with massive number of lights , assuming
that such lights have only a local influence on the envi-
ronment [FBG02]. The octree can be built on geomet-
ric criterion or subdivided using an irradiance thresh-
old, to create an irradiance volume [GSHG98, PH04].

2.2 Rendering an illumination cache
A fast reconstruction of a global illumination solution
is an open problem. Rendering directly the photon
map needs a huge number of photons to be casted.
Hybrid methods can reduce the number of casted pho-
tons: high frequency effects like shadows or specular

reflections/refractions are processed by GPU rasteri-
sation whereas photon mapping is reserved for lower
frequency irradiances [LC04].

2.2.1 Global cache rendering
The reconstruction of a photon map can be done in
screen, texture or object space.

The screen space reconstruction always offers the
highest lighting quality since it is a per pixel com-
putation. Thefinal gathering passis the most time
consuming part of rendering [Jen96]. It has been par-
allelized on CPU [WKB+02] and GPU [Hac05], but
must be reprocessed on each camera move.

On the contrary, an object space reconstruction is
viewpoint independent: the cache samples are bound
to the mesh vertices. PRT renderings are often applied
on high tessellated, static and single object scenes
[SHHS03]. On the other hand, the scene could be dy-
namically re-meshed to match the illumination distri-
bution with its geometry [WHSG97]. Such per ver-
tex lighting could increase dramatically the geometric
complexity of the scene.

A texture space reconstruction is also independent
from the camera position [Arv86, Shi90]. For in-
stance, a static or dynamic [Nie00, NC02] precom-
puted radiosity can be bound into a simple 2D tex-
ture. Otherwise, hybrid object/texture space recon-
struction of the photon map has been done on a hybrid
CPU/GPU hemicube final gathering but still require a
well tessellated scene [LC04].

The photon splatting method can be affected to this
texture space reconstruction category. This method
is an application of point based rendering. The fi-
nal gathering is replaced by its dual operation: in-
stead of fetching the contribution of the neighbour-
ing photons to estimate a photon density, this den-
sity is summarized by a radial function. Practically,
a gaussian centered on photon is directly splatted on
screen. It has been applied to diffuse [LP03] and
glossy materials [GKBP05]. Since photon splatting
adds geometry and fillrate overheads to the scene, real
time framerates are only reached for low frequency
indirect lighting [DS05] or space constrained caustics
[SKALP05, KBW06, WD06].

2.2.2 Local cache rendering
The previous methods can also be applied to local irra-
diance caches, bound to localized regions. Like their
global counterparts, such caches can be generally used
by screen space rendering [CB04] to accelerate the
final gathering stage. Otherwise, GPU rasterisation
techniques are combined to render such caches in real-
time. Precalculated radiosity can be linked to a sphere
map [WTP00] or a cube map [NPG03]. These meth-
ods are limited by cube map constraints (convex ob-
jects and concave environment).

Eventually, the rendering can also be done per voxel.
The first approach used a multi-pipe SGI GPU with
well known clustered OpenGL lights [UH99]. The oc-
tree texture is a more affordable solution, running on
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Geometric preprocess
(LSCM atlas parametrisation)
Octree creation

Photon map preprocess
KNN Prefiltering 
VDL Clustering

Octree rendering
Trilinear filtering
(Atlas render-to-texture)

CPU

GPU

Figure 1: Rendering pipeline Atlas LSCM
parametrisation and render-to-texture stages are
only required for atlas rendering on OpenGL legacy
hardware

commodity hardware. Such octree textures were pro-
posed for a multiresolution and intuitive object volu-
metric painting. They do not require any texture sur-
face parametrization [gDGPR02, BD02] and can be
run on GPU [LHN05, KLS+05]. Such methods can
also be derivated for animated lights. The light source
clouds are clustered and compressed into SH to be fi-
nally bound to voxels [KAMJ05]. However, such pro-
cess requires hours of precomputations.

3 GENERAL ARCHITECTURE
The architecture of our rendering pipeline is based
on a hybrid renderer, assuming that the illumination
can be separated into direct and indirect components.
Stochastic indirect illumination methods can hardly
represent high frequency signals even with a large
amount of photons. Practically, shadows, specular re-
flections or refractions are less detailed. Thus, these
high frequency effects must be rendered by a different
pipeline.

In this paper we focus on indirect illumination ren-
dering pipeline. This pipeline is composed of 3 main
stages (figure1). The geometric preprocessing stage
contains the octree creation. The photon map cluster-
ing stage, processed on the CPU, is a highly stream-
able process, described on the section3.1. Finally, the
GPU rendering provides a real-time rendering of in-
direct illumination, detailed in the rendering section
3.2.

3.1 Photon map clustering
3.1.1 Prefiltering
A photon map with less than one millon photons is of-
ten too much biased to be directly used. To reduce this
bias, the photon map is clustered per voxel. However,
such a histogram approach assumes estimation areas
are equivalent [Jen01]. This is roughly true for a high
resolution octree and a very tesselated geometry. In

practice, this is false for coarse octree or for a geom-
etry made of large planes. In such configuration, the
photon density can be underestimated since the proba-
bility to hit the voxel/polygon section can be very low.
Visually, it is translated into bands of different colors
artefacts (see figure16-a). Therefore, a KNN filtering
is compulsory to smooth the photon density across the
voxels.

KNN parametrisation
Such filtering requires two parameters,k, the number
of nearest neighboors andr, the radius of region of
gathering. In our case, these parameters are set arbi-
trary 5. The optimal(k, r) values are found experi-
mentally to reach an acceptable visual aspect in a re-
duced preprocessing time. Concerning the gathering
region, we have chosen an ellipsoid aligned on voxel
normal. This could induce some artefacts explained in
5.3.1.

3.1.2 Clustering
In order to provide a GPU friendly representation of
the photon map, the illumination cache sample must
be compacted in order to fit in a tiny GPU memory.
We conceived a simple method to cluster the photons
into virtual directional lights.

Choice of clustering method
The principal component analysis (PCA) and its deriva-
tive (Clustered PCA [SHHS03]) can be very time con-
suming. Hierarchical clustering (HClust) produces a
clustering at all levels and returns an unique solution,
but is in O(n2), where n is the number of samples.
KMeans [Mac67] cannot produce a unique solution
but requires a lower memory footprint. Its theorical
worst-case complexity is polynomial [HPS05, AV06];
however, in practice the number of Kmeans iterations
required to obtain a solution, is low. In our case, for
a given population of 50 to 500 photons per voxel,
with the simplifications described below, the total time
spent to create up to 8 clusters is below 1 second to 1
minutes depending on number of voxels.

KMeans parametrisation
As automatic a classification algorithm could be, we
need to define at least two parameters: the sample to
cluster-centroid distance function and the resulting en-
tity after the fusion of cluster samples.

An accurate definition of a similarity between two
photons would consider the 5 dimensions of the irra-
diance. This would be too computationally expensive,
so we assume the voxel volume is little enough to dis-
card the photons position. Consequently, the distance
is defined as the cord length formed by the two photon
incoming directions.

The first fusion entity considered was an accumu-
lation of the irradiance. However, this simplification
has a great visual impact on the rendering (see fig-
ure 2). That is why we introduce the virtual direc-
tional light (VDL), a (irradiance; incident direction)
pair. The VDL can be compared with the light vector
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photon map

clusteringaccumulation

OpenGL

color octree light octree

Figure 2: Color and light octree photon map sim-
plifications. In the left picture, the color seems to be
foggy, due to the trilinear filtering and to the loss of irra-
diance directional information. In the right picture, the
ball is clearly illuminated by two distinct lights, thanks
to the VDLs. OpenGL rendering is provided for com-
parison.

[ZSP98]. The light vector represents a directional ra-
diance whereas the VDL contains only an irradiance
and lets the GPU processes the radiance. Contrary to
HClust, KMeans works on a given number of clusters.
Since we are limited by the GPU memory and shader
sizes, we fixed the maximum number of VDLs to 8.

3.2 Photon map rendering
Our clusterized photon cache could be used in a clas-
sical screen space rendering, but we applied it to GPU
for real time rendering. The octree rendering with di-
rectional light rendering, contrary to photon splatting,
is less sensitive to local geometric variation, since the
irradiance is implicitly bound to the surfaces intersect-
ing the voxel (figure2).

The set of directional lights is bound to each voxel
and can be integrated by shaders as classical OpenGL
directional lights to process illumination locally. It
takes into account the variation of the surface and
thus, enables the rendering of surface dependant ma-
terial. Therefore, our irradiance texture can be eas-
ily integrated to an existing shader to render surface-
dependant complex material (figures2,11).

The voxel volume is assumed to be little enough to
ignore occlusions. Pratically, VDLs do not cast any
shadows. However, parallax occlusion mapping algo-
rithms [PO06, Tat06] could be integrated to our ren-

Octree

Irradiance texture

  
 VDLs

clustering

KNN gathering

for each octree leaf

Figure 3: Octree clustering

octree.build(scene.geometry);
KDTree.build(scene.photonMap);

foreach octree.leaves {
    photons=gather(nbPhotons,radius,KDtree);
    VDLs=cluster(nbVDL, photons);
}

Figure 4: Photon map preprocessing on CPU

dering pipeline to improve the quality of surface de-
pendant shaders (figure12).

4 IMPLEMENTATION
Our pipeline is running on a dual bi-core 2Ghz AMD64
Opteron 270’s with NVidia GeForce 4500 GPU. It is
compiled under Linux with gcc 4.0.2 and shaders are
implemented in Cg under a fp40 profile.

4.1 Photon casting and clustering
The photon map is loaded from a modified version
of Yafray [WEdG+06], a modular global illumination
renderer. It has been chosen for its fast photon cast-
ing1 and its tight integration with Blender, the well
known powerful 3D modeler and renderer.

The octree is built on the whole scene, using a ge-
ometric subdivision criterion. An octree built on light
irradiance density must be rebuilt at each new photon
arrival and prevents any octree GPU filtering.

We attempt obtaining an efficient KNN filtering. We
replaced the photon gathering by a scattering, imple-
mented by screen and space octree splattings. For
screen space splatting, we got a blurred rendering with
low performances, induced by some fillrate overheads.
For space splatting, we suffered from memory short-
age due to a compulsory storage of the splatted pho-
tons. We also tried a GPGPU implementation but such
scatteringalgorithm does not suit to existing GPU ar-
chitectures. We fetched photons directly using the oc-
tree. Unfortunately, compared to a KD-tree, it almost
doubled the photon gathering time. Finally, we came
back to a classical KD-tree KNN gathering.

1 few minutes for a 1 million photon map
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Figure 5: Octree rendering

// reach the leaf stored in the octree texture 
@root=float3(0,0,0);
node=Tex3D(octreeTex,@root);
for (int depth=0;depth<MAX_DEPTH;depth++) {
   @child=getChildAddress(node.rgb,octreePos); 
   node=Tex3D(octreeTex,@child);
}

if (node.a!=OCTREE_LEAF_TYPE)
    discard;
leaf=node;

// get VDL array location within the irradiance texture
@VDLarray=getIrradianceTexAddress(leaf.rgb);

// set leaf color using VDL array 
leafColor=float4(0,0,0,0);
for (int iVDL=0;iVDL<MAX_VDL;iVDL++) {
     VDL=TexRect(irradianceTex,@VDLarray+iVDL);
     leafColor+=baseColor*brdf(VDL.direction,

VDL.intensity,
surfaceNormal);

}

Figure 6: Photon map rendering on GPU

Our photon map clustering is fully streamable. Pho-
ton octree compressors are run on 4 threads, reducing
by preprocessing time by a factor 3 to 4 (figure3).

4.2 Photon rendering
4.2.1 Enhanced GPU octree
The light octree is an extension of the GPU octree
texture provided by [LHN05]. The octree is entirely
coded in a texture stack implemented by a 3D texture.
A flag in the texel alpha channel indicates if the RGB
field is an address to the next octree sub-node or a leaf.
For an octree of depthd , a maximum ofd texel ac-

Figure 7: Irradiance address representation

Figure 8: VDL representation

cesses is done. The octree texel are in 8 bit integer for-
mat because float 3D textures are not available on our
hardware configuration. Since we do need a float stor-
age, we introduce a secondary texture containing irra-
diance data (figure5). The octree leaves contains the
addresses to the data texels. Since actual textures are
limited to a 4096x4096 resolution, a 24bit coding for
these addresses is sufficient (see figure7). A texture
memory manager reduces the original memory foot-
print from 64MiB to 512KiB(octree)+4MiB(VDLs),
for 100k leaves of ad = 6 octree withk = 4 VDLs.

Since the color is constant per voxel, the result has a
blocky aspect. This can be alleviate with an interpola-
tion. This per pixel smoothing is done by a brute force
trilinear interpolation between 8 neighboor voxels2.

4.2.2 VDL rendering
We consider a virtual directional lightVDL(c,d) where
c is the irradiance converted in RGB color andd, its
direction. Storing the color and direction of the virtual
lights in two texels wastes the two alpha channels and
lowers the performances due to the additional texel ac-
cess. The virtual light is packed into one unique texel
by compressing the direction into a single float in the
alpha channel. The direction is converted from a carte-
sian(x,y,z) to a spherical(q ,f) frame3 and the angles
are discretized into 8+8 bits values (figure8).

Once retrieved from the irradiance texture, the VDLs
can be integrated easily within any illumination shader.

cVDLs =
nVDLs

∑
i=1

brfd(di ,v,n).ci

whereci ,di are resp. the irradiance and the direction
of the ith VLD, nVDLs is the number of VDLs,v the
view direction andn is the surface normal.

2 A bicubic filter would require 24 samples which is too expensive.
3 Within a normalized frame,r = 1
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// CPU : atlas parametrization
foreach meshes {
    mesh.buildCharts(charts);
    foreach charts
        chart.buildAtlas(); 
    charts.pack();
}

// GPU : atlas rendering
//render to atlas texture (if lighting is updated)
foreach meshes {
    octreeTexture.shader.bind(); 
    //draw atlas using (u,v) as atlas vertices
    foreach charts
       chart.drawAtlas(); 
    //capture framebuffer into atlas texture
    charts.captureFramebuffer();
}

//apply atlas texture as a simple texture   
foreach meshes {
     charts.bind();
     //draw mesh using (u,v) as mesh texcoord 
     mesh.draw();
}

Render to atlas Apply as tex2D

Figure 9: Render to atlas process

4.2.3 Render to atlas
For a light octree, a single fragment requiresnVDL +
d + 1 texture accesses. The trilinear filtering can
worsen the performances by multipling accesses by
8. The number of texture fetch can be drastically re-
duced to a single access using an atlas light map. Such
process has been done for radiosity [RUCL03], we ex-
tended it to our light octree.

The scene objects must be parametrised into at-
lases before any rendering. This can be done manu-
ally with Blender or automatically using our geomet-
ric preprocessor. The charts are built using a Voronoï
construction method [SWG+03]. Each chart is then
parametrised into atlas using the Least Square Confor-
mance Map [LPRM02] algorithm and is finally tightly
packed into a 2D texture (figure9).

Once the scene is parametrized, the render to atlas is
done on the fly by rendering the 3D octree in the atlas,
capturing it and applying the resulting texture on the
model (figure10).

5 RESULTS
5.1 Visual aspect
The light octree can be integrated to surface bound
shaders to simulate complex material. For instance,
some specular materials have been simulated using

Figure 10: Scenes before & after render to atlas
texture

Figure 11: Caustics rendering

Figure 12: Integration with cube map and parallax
bump map shaders

simple cube map and parallax bump shaders. Noth-
ing but the shader complexity, would prevent to inte-
grate the irradiance texture into more realistic shaders
(figure12).

The visual differences between texture atlas render-
ing and its light octree counterpart mainly come from
the more of less visible atlas seams. An integer tex-
ture format could also clamp down the color dynamic
(figure10).

Contrary to PRT techniques based vertex sampling,
the surface irradiance distribution is split per voxel.
The octree is therefore more robust to the high varia-
tions of the irradiance, which can be seen on caustics
close up of the figure11).

5.2 Timing results
The CPU preprocessing time is linear in term of vox-
els (table13). The geometry complexity has a lesser
importance. The compression time spent for cluster-
ing is low (few seconds) regarding the KNN gathering
(figure 17). The less photons are gathered, the faster
the computation is processed (table14). This stage
is the most expensive part of the compression scheme
but cannot be skipped, as explained in the subsection
3.1.1.

A progressive updating process allows the user to
rapidly preview a globally illuminated scene. The oc-
tree is updated progressively from coarse to fine depth
octree. A rough visualisation (d = 4) is available in
less than 10 seconds and an acceptable result (d = 5)
is achieved in less than 1 minute (on figure13).
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octree depth Boxes Bunny Dragon f355 Megane

4 5s 8s 6s 1s 15s

5 37s 40s 37s 10s 1m16s

6 2m45s 2m41s 3m47s 1m20s 5m37s

Figure 13: Compression preprocessing time:
600,000 photon map on boxes (50 polys), Bunny (70k),
Dragon (200k), f355 (50k), Renault Megane (700k)
scenes. Timing differences are caused by different pho-
ton map density distributions.

KNN/photons 150k 300k 600k 1,2M

50 4 5 6 6

100 6 7 10 14

250 16 21 20 29

500 33 44 44 47

Figure 14: KNN gathering & compression times (in
seconds on the Dragon scene with ad = 5 octree).
Lowest and highest quality renders.

The GPU rendering framerate is more tied to the
amount of fragments than to the vertices. Once pre-
processed, the light octree is rendered by GPU at an
average framerate from 40 fps for a 800x600 to 10fps
for 1280x1024 resolution. In addition to the shader
complexity, the framerate is limited by the great num-
ber of texture fetches needed per pixel. An atlas ren-
dering could reach from 700 to 200 fps depending on
the viewport size.

5.3 Discussion on accuracy
On one hand, we cannot compete qualitatively with
Yafray offline global illumination renders. The screen
space approach gives visually better results because
the underlying coarse irradiance cache is compensated
by a per pixelfinal gathering. On the other hand, our
solution provides a real time navigation in a roughly
equivalent scene (figure15).

In our method, a compression error is directly trans-
lated into visual artifacts. The purpose of this subsec-
tion is to provide some solutions for such rendering
errors.

5.3.1 Octree aliasing
Our method may suffer from three sampling artefacts
that should be resolved by additional per voxel com-
putations.

First, the density underestimation, visible on large
planes (figure16-a), can be alleviated using KNN fil-
tering (subsection3.1.1).

However, this filtering is also the cause a second
artefact, the energy bleeding on object edges and cor-
ners (figure16-b). In a screen based final gathering,

Figure 15: Offline global illumination reference
renders and their light octree counterparts

color  overbleeding (b)

interpolation holes  (c)

density understimation (a)

The number of photon impacts contained in 
a voxel can be very small, inducing a density 
understimation. Such problem can be 
alleviated by a KNN gathering.

The KNN gathering is done within an 
ellipsoid oriented by a per voxel normal. 
However, for sharp corners, it is difficult to 
define such normal.  

For a given interpolation window (here 2x2), 
samples may not exist.  

Figure 16: Octree aliasing consequences
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k CPU preprocess spread error (deg) GPU (fps)

1 58s 30 25

2 1m25s 25 20

3 1m37s 22.5 17

4 1m48s 20 14

6 2m12s 15 12

8 2m30s 10 10

Figure 17: Number of light clusters & quality
(KNN=300, d = 6, 600k photon map)

the gathering space is constrained by a cone built us-
ing the photon impact normal. In our gathering, we
define an ellipsoid oriented along a voxel normal. Per
definition, a voxel has no normal. In the current ver-
sion, it is approximated as an average amongst the in-
tersecting geometry.

Third, visual banding artifacts (figure16-c) can be
produced by the void voxels fetched by the trilinear
interpolation. This may be prevented by virtually ex-
tending the voxel bounds. Unfortunately, a too large
overlapping zone can produce visible defects.

Artificially expanding the voxel boundaries can also
impede the photon density estimation: the photon
gathering is more time consuming and less accurate.
In summary, a careful balance must be set between a
blurred picture and a better but slower result.

5.3.2 Number of VDLs
The second source of error is bound to the clustering
itself. The more the clusters are, the better the re-
sults would be, even if the framerate would slightly
decrease. The intra cluster error is measured in term
of standard deviation between the direction of clus-
ter centroid and the directions of the clustered pho-
tons, expressed in cord length unit. This angular error
is easily explained by the low number of clusters: a
hemisphere (180◦) is partitioned between onlyk clus-
ters.

For k = 4, the standard deviation around its cluster
centroid (±20 degrees) seems to be high but the over-
all quality of picture is preserved. For lowers k, the
higher error rate induces visible artefacts (figure17).

5.3.3 Voxel size
The voxel size often matters. If it is too large, the pho-
ton clustering is a low-pass filter and the irradiance is
blurred. Otherwise, if it is too little, too few photons
are intersected, leading to a lighting underestimation.
Experimentally, the quality improves ford = [4,6]. A
depthd = 6 brings the octree resolution to 64x64x64.
For a given scene contained in 1m3, a voxel has a vol-
ume of 1/64' 1,5cm3,which could be low in term

Figure 18: Ferrari 355:OpenGL & light octree

Figure 19: Renault Megane:OpenGL & light octree

of accuracy but rather sufficient to improve the vi-
sual aspect against a classic OpenGL rendering. For
d = [7,8], the effort spent to smooth the density does
not provide significant improvements.

6 CONCLUSION AND FUTURE WORKS
The photon map clustering is an efficient technique
to rapidly produce an irradiance cache. Compared to
radiosity maps, the light octree provides more visu-
ally appealing scenes thanks to a photon map. Our
sets of directional lights localized per voxel reduces
the global compression error and is highly integrable
to existing GPU shaders.

Techniques to incrementally update our octree should
be examined. Many Kmeans algorithm incremental
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versions have been proposed. Eventually, a continu-
ous representation, with SH or wavelets should be also
compared with our discrete VDL representation.
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and Sumanta Pattanaik. Radiance cache splatting: A
GPU-friendly global illumination algorithm. InRen-
dering Techniques, pages 55–64, 2005.2

[GSHG98] Gene Greger, Peter Shirley, Philip M. Hubbard, and
Donald P. Greenberg. The irradiance volume.IEEE
Computer Graphics and Applications, 18(2):32–43,
1998. 2

[GTGB84] Cindy M. Goral, Kenneth E. Torrance, Donald P.
Greenberg, and Bennett Battaile. Modeling the in-
teraction of light between diffuse surfaces. InSIG-
GRAPH ’84: Proceedings of the 11th annual con-
ference on Computer graphics and interactive tech-
niques, pages 213–222, New York, NY, USA, 1984.
ACM Press. 1

[Hac05] Toshiya Hachisuka.High-quality global illumination
rendering using rasterization, GPU Gems 2 - Pro-
gramming Techniques for High-Performance Graph-
ics and General-Purpose Computation. Addison-
Wesley, 2005.2

[HPS05] Sariel Har-Peled and Bardia Sadri. How fast is the k-
means method ?Algorithmica, 41(3):185–202, 2005.
3

[Jen96] Henrik Wann Jensen. Global Illumination Using Pho-
ton Maps. InRendering Techniques ’96 (Proceedings
of the Seventh Eurographics Workshop on Render-
ing), pages 21–30, New York, NY, 1996. Springer-
Verlag/Wien. 1, 2

[Jen01] Henrik Wann Jensen.Realistic image synthesis using
photon mapping. A. K. Peters, Ltd., 2001.1, 3

[Kaj86] James T. Kajiya. The rendering equation. InSIG-
GRAPH ’86: Proceedings of the 13th annual con-
ference on Computer graphics and interactive tech-
niques, pages 143–150, New York, NY, USA, 1986.
ACM Press. 1

[KAMJ05] Anders Wang Kristensen, Tomas Akenine-Möller,
and Henrik Wann Jensen. Precomputed local ra-
diance transfer for real-time lighting design.ACM
Trans. Graph., 24(3):1208–1215, 2005.3

[KBW06] Jens Krüger, Kai Bürger, and Rüdiger Westermann.
Interactive screen-space accurate photon tracing on
GPUs. InRendering Techniques (Eurographics Sym-
posium on Rendering - EGSR), pages 319–329, June
2006. 2

[Kel97] Alexander Keller. Instant radiosity. InSIGGRAPH
’97: Proceedings of the 24th annual conference
on Computer graphics and interactive techniques,
pages 49–56, New York, NY, USA, 1997. ACM
Press/Addison-Wesley Publishing Co.2
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