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ABSTRACT

In geographical information systems (GIS) vector data has important applications in the analysis and management

of virtual landscapes. Therefore, methods that allow combined visualization of terrain and geo-spatial vector data

are required. Such methods have to adapt the vector data to the terrain surface and to ensure a precise and efficient

mapping. In this paper, we present a method that is based on the stencil shadow volume algorithm and allows

high-quality real-time overlay of vector data on virtual landscapes. Since the method is a screen-space algorithm

it is per-pixel exact and does not suffer from aliasing artifacts like texture-based techniques. In addition, since the

method is independent of the underlying terrain geometry, its performance does not depend on the complexity of

the data set but only on the complexity of the vector data.
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1 Introduction
Vector data is one of the fundamental information rep-

resentation stored and managed in current GIS. It usu-

ally consists of points, lines, polygons, etc., encod-

ing geographic entities, e.g. road networks, buildings,

vegetation and soil types. Typically, vector data is ei-

ther derived (semi-)automatically from measurements

(e.g. satellite imagery or GPS) or is created manually

through user input. Once generated, vector data can be

examined and modified by the user, serving as a valu-

able resource for various kinds of further investiga-

tions. Methods for the visualization of vector data on a

virtual landscape can broadly be divided into two dif-

ferent classes: texture-based and geometry-based tech-

niques. The first group of methods rasterizes the vector

data into a texture and projects it onto the terrain ge-

ometry by applying texture mapping techniques. The
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Figure 1: Visualization of roads in the Wetter-

steingebirge (Germany).

main drawback of this kind of methods is that the accu-

racy of the mapping is limited by texture resolution re-

sulting in aliasing artifacts. An especially critical sce-

nario for these methods are large environments with

vector data of considerable spatial extent. Increasing

texture resolution alleviates the aliasing problems but

at the expense of occupying equally increasingly large

amounts of valuable texture memory.
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Methods belonging to the second class create geome-

try from the vector data by adapting it to the terrain

surface. Most terrain representations are based on a

level-of-detail (LOD) terrain model whose geometry

is refined according to the current viewpoint. There-

fore, geometry from the vector data has to be created

and adapted to each LOD. This results in a drastically

increased primitive count, if precomputed and stored,

or enormous additional computational costs, if per-

formed at run-time. Furthermore, a suitable offset has

to be determined and added to the generated coplanar

primitives in order to avoid z-buffer stitching artifacts.

The basic idea of our approach is to extrude the vector

data to polyhedra and use them to create a mask in the

stencil buffer. The generated mask corresponds to the

projection of the vector data onto the terrain surface. It

is applied to the scene by rasterizing geometry cover-

ing at least the entire mask with the appropriate sten-

cil test enabled. An advantage of our method is that it

works in screen-space and can therefore be performed

per-pixel exact. At the same time, it is independent of

the underlying terrain geometry and utilized rendering

engine offering high performance even for very high

resolution data sets and a wide applicability.

The remaining part of the paper is structured as fol-

lows. First, we briefly review related work. Then, in

Section 3 we formulate the problem of projecting vec-

tor data onto the terrain surface as a point-in-polyhedra

problem and establish a connection to the shadow

determination problem. We describe our approach in

Section 4, discuss it and show results in Section 5 and

draw conclusions in Section 6.

2 Previous Work
Real-time terrain rendering techniques have been ex-

tensively studied for a long time but methods for pro-

jecting additional vector data on a virtual landscape

have gained less attention. The few methods existing

so far can basically be divided into texture-based and

geometry-based approaches.

A texture-based approach to visualize vector data was

proposed by Kersting et al. in [KD02]. Textures con-

taining the vector data are generated on-the-fly using

p-buffers. An on-demand texture pyramid that asso-

ciates equally sized textures with each quadtree node

is used to improve visual quality when zooming in.

However, many expensive p-buffer switches have to be

performed, which leads to decreased rendering perfor-

mance. Even with more recent and efficient extensions

(e.g. framebuffer objects) each switch still requires a

complete pipeline flush. In [SGK05] a texture-based

approach is presented that also creates textures on-the-

fly in an offscreen buffer. A perspective reparameter-

ization adopted from perspective shadow mapping is

applied taking into account the current point-of-view.

The reparameterization allows a drastically improved

utilization of the available texture resolution, which re-

sults in reduced aliasing artifacts.

Wartell et al. [WKW+03] presented an algorithm and

an associated data structure that allows rendering of

polylines on multiresolution terrain geometry. Since

their system is based upon a continuous level-of-detail

terrain rendering engine, an adaption of the polyline

to the current state of geometry is required at run-

time resulting in additional computational costs. In ad-

dition to the previously mentioned texture-based ap-

proach, Schneider et al. also presented in [SGK05] a

geometry-based approach for rendering engines based

on static level-of-details. The vector data geometry is

mapped to each LOD in a preprocessing step and inte-

grated in the used quadtree ensuring rendering of cor-

responding terrain and vector data LODs. Since the

number of geometric primitives that have to be cre-

ated grows with the terrain complexity, this method is

not suited for very high resolution data sets, especially

for vector data covering large areas.

3 Problem Formulation
Rendering vector data on virtual landscapes requires

the determination of its projection along the nadir onto

the terrain geometry. This area is equivalent to the

parts of the terrain that are inside the infinite projection

pyramid defined by the vector data extruded towards

the geocenter and in the opposite direction. Thus, by

restricting the projection volume appropriately at both

ends, i.e. above and below the terrain surface, the prob-

lem of determining the projection area can be inter-

preted as a point-in-polyhedra problem.

3.1 Point-In-Polyhedra Algorithm

A general algorithm for performing a point-in-

polyhedra test can be formulated as follows: Assume

a point O that is outside all polyhedra is given. For

a point P in question we consider the line segment

PO. The objective is then to find all intersections

of this line segment and the polyhedra. At each

intersection a counter is incremented if the line enters

and decremented if the line exits the polyhedron.

After all intersection tests have been performed the

counter corresponds to the number of polyhedra

containing P . For our purposes, it is sufficient to

note that the counter is zero when P is outside all

polyhedra which corresponds to the absence of vector

data. If the counter is non-zero, P is inside at least

one polyhedron denoting the presence of vector data.

Note the relation to the problem of shadow determina-

tion that can also be expressed as a point-in-polyhedra

problem [Cro77]. Crow defined a shadow volume as

a region of space that is in the shadow of a particular
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Figure 2: A 2d diagram of the point-in-polyhedra

problem.

occluder given a particular ideal light source. The

shadow test determines if a given point is inside the

shadow volume of any occluder. Heidmann [Hei91]

adapted Crow’s algorithm to hardware acceleration by

exploiting the stencil buffer to evaluate the per-pixel

count for the point-in-polyhedra test.

By rendering the polyhedra’s front- and back-faces

to the stencil buffer the test can be performed si-

multaneously for all visible points of a scene. Each

pixel is interpreted as a point P and the ray from

the viewpoint through the pixel is considered. There

are two possible choices for a point O along the

ray outside any polyhedron (see Figure 2). The first

choice is the intersection Onear of the ray and the near

clipping plane. This point is known to be outside all

polyhedra if the near clipping plane does not intersect

any polyhedra. The other choice is the point Oinf at

infinity at the far end of the ray. This point is always

outside all polyhedra because it is infinitely far away

from the scene.

Note that entering intersections must correspond to

polyhedra front-faces and exiting intersections must

correspond to polyhedra back-faces. Thus, counting

intersections can be performed by rasterizing the

polyhedra faces in the stencil buffer. The stencil

operation must be configured to increment the stencil

value when a front-face is rasterized and to decrement

the count when a back-face is rasterized. Intersection

counting is actually performed only along POnear or

POinf respectively and not along the entire ray. Since

P is a visible point, these two kinds of intersections

can be discriminated by a depth test. If Onear at

the near clipping plane is used, only polyhedra

faces passing the depth test are counted, if Oinf at

infinity is chosen, only the polyhedra faces failing

the depth test are considered. Counting towards the

near clipping plane is thus called the z-pass method

whereas counting towards infinity the z-fail method

[EK02, MFT+03]. After rendering, a stencil value

of zero indicates that the same number of front- and

back-faces were rendered and thus the corresponding

pixel is outside all polyhedra otherwise the pixel is

inside at least one polyhedron.

In the shadow volume algorithm the z-pass method

fails when the shadow volume intersects the near

clipping plane. This near clipping problem was the

reason for the development of the z-fail technique

which processes shadow volume fragments that fail

(instead of pass) the depth test. This approach moves

the problems from the near to the far clipping plane

which can be handled robustly by moving the far

plane to infinity. However, this robustness comes at

the expense of performance since in the z-fail case the

shadow volumes must be closed at both ends.

4 Our Approach
In our method we take up the idea to utilize the stencil

buffer to perform an efficient point-in-polyhedra test

originally used for shadow determination. Our tech-

nique consists of three parts: constructing the polyhe-

dra from the vector data, rendering the polyhedra to the

stencil buffer to create a mask and applying the mask

to the scene.

4.1 Vector Data Extrusion

In the first step we need to extrude the vector data

geometry into polyhedra that are afterwards rendered

into the stencil buffer to generate an appropriate mask.

Construction is started by duplicating each vertex of

the vector data. One vertex of each of the created pairs

is translated towards the geocenter, the remaining ver-

tices are moved into the opposite direction. The group

of upper and lower vertices constitute the polyhedron’s

top and bottom cap. The amount of translation has to

be chosen such that the top and bottom cap are located

Figure 3: A 2d diagram of the extrusion of a

linestrip. The original vector data points (blue)

are duplicated and moved to the upper and lower

bounds of the line segments bounding box consti-

tuting the top and bottom caps (red).
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Figure 4: Flow chart of the rendering process.

completely above and below the terrain surface respec-

tively. Applying the described construction the result-

ing polyhedron encloses the part of the terrain surface

that is supposed to contain the vector data.

In order to minimize the high rasterization workload

potentially caused by large polyhedra (usually the bot-

tleneck when using shadow volumes) we reduce the

size of the polyhedra. To accomplish this, we move

the top and bottom caps towards the terrain surface

from both sides as far as possible but without inter-

secting it. In our implementation we utilize the bound-

ing boxes of the quadtree cells inherent in the terrain

rendering engine. In particular, the bounding boxes en-

code an upper and lower bound of the enclosed terrain

and therefore provide conservative but reasonable up-

per and lower bounds for the polyhedra caps as well.

In the case of linestrips as vector data primitives we

consider each line segment separately. The height val-

ues of the corresponding vertices of the top and bottom

cap are the minimum and maximum height values of

the bounding boxes containing the projection of the

line segment (see Figure 3). In the case of polygons

we use the minimum and the maximum height value

of the bounding boxes enclosing the projection of the

whole polygon.

The constructed polyhedra are tesselated ensuring a

consistent winding order with all face normals point-

ing outwards. The resulting geometry of each object is

stored in its own vertex buffer object remaining valid

as long as the vector data is not modified.

4.2 Vector Volume Rendering

The creation of the mask and its application to the

scene has to be performed for each object separately.

This is necessary because each object is allowed to

have a different color. Therefore, first rendering all ob-

jects to the stencil buffer and applying the generated

mask afterwards at once by rendering a screen sized

quad would prevent us from distinguishing the sepa-

rate objects. If there are only objects with few different

colors in the scene, sorting by color and then render-

ing each color group at once can help to reduce the

required fill rate and state changes.

4.2.1 Generate Mask in the Stencil Buffer

Now that we have created the polyhedra from the

vector data they can be rendered into the stencil buffer.

It is common practice when using shadow volumes to

decide on a per frame and volume basis if the z-pass

or the z-fail technique is used. The z-pass method

is preferred because it does not need capping, i.e.

top and bottom caps need not to be rendered, and is

therefore generally faster than z-fail. However, since

the z-pass technique does not produce correct results

when the near plane intersects a shadow volume, the

robust z-fail technique is applied in these cases. We

follow this approach and decide conservatively which

method to use by checking if the current viewpoint is

inside the bounding box of the considered polyhedron.

Note that in contrast to shadow volumes we need a

top cap in the z-pass method because in our case there

is no occluder that covers the top end making a cap

unecessary.

First, color, depth and stencil buffer are cleared and

the terrain is rendered initializing the depth buffer with

the required depth values. Next, depth buffer writing

is disabled, but the depth test still remains active. Ren-

dering is then restricted to the stencil buffer only. The
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polyhedron’s faces are rendered using different stencil

operations depending on whether they face towards

or away from the camera. To this end, face culling

is enabled and the polyhedron is rendered twice, one

time with back-face culling enabled, the other time

with front-face culling enabled. If the z-pass method

is used, because the polyhedron does not intersect the

near clipping plane, the values in the stencil buffer are

modified when the depth test passes. The stencil value

is incremented for fragments belonging to front-facing

polygons and decremented for fragments belonging

to back-facing polygons. If the z-fail technique is

applied, values in the stencil buffer are modified when

the depth test fails. The stencil value is incremented

for fragments belonging to back-facing polygons and

decremented for fragments belonging to front-facing

polygons.

We make use of the OpenGL extensions

EXT stencil wrap and EXT stencil two side, if

supported, that aim at simplifying the mask creation

in the stencil buffer. The EXT stencil wrap extension

specifies two additional stencil operations. These new

operations are similiar to the existing increment and

decrement operations, but wrap their result instead

of saturating it, which leads to a reduction of the

likelihood of incorrect shadow results due to limited

stencil buffer resolution. The EXT stencil two side

extension provides two-sided stencil testing where

the stencil-related state can be configured differently

for front- and back-facing polygons. With two-sided

stencil testing front- and back-faces can be rendered

in a single pass instead of two separate passes which

may improve performance.

A simple triangle fan can be used to draw the top

and bottom caps, without needing to triangulate it in

advance, even if they are non-convex or contain holes.

The fan itself may be convex but the pattern of front-

and back-faces will produce the correct non-convex

shape in the stencil buffer. The process is identical

to that of computing the signed area of a polygon by

constructing a fan. An example is shown in Figure

5. The concave polygon on the left is tessellated into

a fan. In the middle the decrements caused by front-

facing polygons (top) and the increments caused by

back-facing polygons (bottom) are shown. Combining

them results in the original concave polygon (right).

This technique has previously been used for rendering

filled silhouettes in the stencil buffer from possible

silhouette edges for Silhouette Clipping [SGG+00].

Another issue we have to deal with in the z-fail case

is to avoid far plane clipping. To accomplish this, we

move the far plane to infinity by using the following

projection matrix to transform from eye-space to

Figure 5: Tesselation of a concave polygon into a

convex fan creating a concave mask in the stencil

buffer.

clip-space:









2n
r−l

0 r+l
r−l

0

0 2n
t−b

t+b
t−b

0

0 0 −1 −2n

0 0 −1 0









where n and f are the respective distances from the

viewer to the near and far clipping plane. (l, b,−n)
and (r, t,−n) specify the (x, y, z) coordinates of the

lower-left and upper-right corners of the near clipping

plane. Positioning the far plane at infinity typically re-

duces the depth buffer precision only slightly. How-

ever, if the OpenGL NV depth clamp extension is sup-

ported and enabled during rendering of the polyhedra,

the conventional projection matrix can be kept.

4.2.2 Apply Mask to the Scene

Now that we have created the mask in the stencil

buffer we apply it to the scene. Therefore, we reacti-

vate writing to the color buffer and activate additive

blending. The stencil test is configured to pass only

when the value in the stencil buffer does not equal

zero. Instead of drawing a screen-sized quad to apply

the mask to the scene, we rasterize the bounding

box of the respective polyhedron in order to save

rasterization bandwith. This is performed with depth

test enabled and drawing only front-faces in the

z-pass case and with depth test disabled and drawing

only back-faces in the z-fail case. In order to avoid

a complete stencil clear per object we configure the

stencil function to set the value in the stencil buffer to

zero for each fragment that passes the stencil test. As

a consequence, the entire stencil buffer is zero again

when rendering is finished and does not need to be

cleared.
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5 Results and Discussion
The presented algorithm allows high-quality vector

data visualizaton as provided by other geometry-based

methods. However, it does not suffer from their short-

comings, namely the expensive adaption process and

the increased primitive count coupled with the terrain

complexity. In our method we actually render a multi-

ple of the amount of primitives present in the original

vector data but it is a small constant factor independent

of the underlying terrain. Considering the fast evolv-

ing acquisition devices resulting in ever higher sam-

pled terrain data sets this fact will become even more

important in the future.

In comparison to texture-based techniques that imme-

diately render the vector data into a texture our method

demands slightly more primitives to be rendered but

provides superior quality. Interactive editing and ma-

nipulation of the vector data is also possible with our

method. It only requires updating the polyhedra of the

modified vector data object allowing interactive re-

sponse.

In Figure 6 some results obtained with our method are

shown. It is capable of visualizing thin features, like

roads, as well as large and complex polygons (that

may be concave and contain holes) accurately and effi-

ciently. Note that the small deviations visible in some

places of the vector data, e.g. the roads, from their

counterparts in the terrain data are due to inaccuracies

in the definition of the given vector data (which orig-

inate from a different source than the terrain data and

were created at a diferent time) and are by no means

due to deficiencies of our method.

We currently implement vector data extrusion on the

CPU. There also exist techniques for purely hardware

accelerated stencil shadow volumes [BS03] that per-

form silhouette detection and shadow volume extru-

sion on the GPU. However, there is no need for sil-

houtte detection in our case because silhouettes cor-

respond to the vector data and are therefore explic-

itly given. Moreover, available vector data is static and

consequently the advantage of a GPU implementation,

to be able to easily extrude geometry that is animated

by a vertex program, is currently of no use. This may

become an issue in the future when time-varying vec-

tor data, e.g. for modelling processes, will be available.

Another issue are the problems appearing in steep

slopes which are not a special problem of our method

but a general one. When rendering objects that should

retain a constant width on steep slopes, e.g. roads or

contour lines, their projection is distorted.

6 Conclusions
We have presented an algorithm that is capable of visu-

alizing vector data on virtual landscapes offering high-

quality at real-time. The algorithm is robust, straight-

forward and requires no special hardware extensions

that are not ubiquitous today. The fact that it is in-

dependent of the underlying terrain rendering engine

allows an easy integration in any terrain visualization

system. Since our method is not affected by changes

in the terrain geometry it is especially suited to work

with view-dependent LOD representations.

The presented technique has been implemented as a

part of the Scarped [WMD+04] visualization engine.
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(a) Forest (red) and debris (yellow) (b) A geomorphological map

(c) The Turtmann glacier (d) Roads and trails

(e) Trails (f) Roads, villages and a nearby lake

Figure 6: Images (a)-(c) are located in the Turtmann valley (Switzerland) showing complex polygonal vector

data rendered semi-transparently on the landscape. In (d)-(e) polygonal and polyline vector data in the

Wettersteingebirge (Germany) representing roads, trails, villages and a lake are overlayed on the terrain.
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