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ABSTRACT

Intrinsic camera calibration using a single image is possible provided that certain geometric objects such as orthogonal vanishing
points and metric homographies can be estimated from the image and give rise to adequate constraints on the sought calibration
parameters. In doing so, however, any additional metric information that might be available for the imaged scene is not always
straightforward to accommodate. This paper puts forward a method for incorporating into the calibration procedure metric scene
information expressed in the form of known segment 3D angles, equal but unknown 3D angles and known 3D length ratios.
Assuming the availability of an initial calibration estimate, the proposed method refines the former by numerically minimizing
an error term corresponding to the discrepancy between the scene’s known metric properties and the values measured with the
aid of the calibration estimate. Sample experimental results demonstrate the improvements in the intrinsic calibration estimates

that are achieved by the proposed method.
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1 INTRODUCTION

Deriving the geometry and appearance of a scene di-
rectly from photographs is an attractive paradigm that
has generated strong interest in image-based model-
ing techniques during recent years. A particular class
of such techniques consists of those dealing with Sin-
gle View Reconstruction (SVR) [LCZ99]. Their aim
is to create a 3D graphical model corresponding to a
scene for which only a single image is available. De-
termining the intrinsic calibration parameters (i.e. inte-
rior orientation) of the employed camera is an important
step towards SVR. This is because intrinsic calibration
upgrades a camera to a metric measuring device and,
given information related to vanishing points and lines,
facilitates computations such as the estimation of line
segment angles and length ratios, the metric rectifica-
tion of planes, the determination of a plane’s orientation
relative to the camera, the estimation of the dihedral an-
gle between two planes, etc.

In contrast to standard photogrammetric methods for
camera calibration where known 3D points in a world
coordinate system are required, single view camera
calibration relies on constraints provided by the par-
allelism and orthogonality of observed 3D lines and
planes. For instance, Caprile and Torre [CT90] have
shown that three vanishing points corresponding to or-
thogonal directions allow partial calibration of a cam-
era from a single view. Their method follows a con-
struction showing that the principal point of the camera
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is at the orthocentre of the triangle having the vanish-
ing points as its vertices and relies on prior knowledge
of the aspect ratio plus the assumption that the image
skew is zero. Liebowitz and Zisserman [LZ98] studied
the properties of a metric planar homography, a trans-
formation that rectifies (i.e. cancels) the projective dis-
tortion of an imaged plane. They proved that metric
rectification of a plane allows the determination of the
images of the circular points and thus partially deter-
mines camera calibration by providing a pair of con-
straints on the intrinsic parameters. Gurdjos and Payris-
sat [GPOO] propose another approach for exploiting the
metric structure of a scene plane, according to which
the triangle employed in [CT90] can be recovered from
a single metric homography combined with additional
camera constraints. In more recent work, Liebowitz and
Zisserman [LZ99] present a technique for calibrating a
camera using a combination of linear constraints aris-
ing from vanishing points corresponding to perpendic-
ular directions, from vanishing lines and the vanishing
points of their perpendicular directions and from metric
rectification homographies. When more than the mini-
mum needed constraints are available, they can be con-
veniently combined in a least squares fashion. Colombo
et al [CBPO5] exploit constraints arising from the sym-
metry of surfaces of revolution to calibrate a camera
with known aspect ratio and skew.

Common to all methods briefly reviewed above is
the shortcoming that their applicability depends upon
whether a minimum number of suitable constraints is
available in a certain scene. Often, the number of avail-
able constraints is insufficient, forcing the employment
of approximate, simplified camera models. An example
of such a simplified model is to approximate the prin-
cipal point by the image center; this assumption, never-

ISBN 978-80-86943-00-8



theless, is not always valid [HKO02]. Furthermore, with
the exception of [LZ98, LZ99], none of the aforemen-
tioned methods allows metric scene information other
than orthogonality and parallelism to be explicitly em-
bedded in the calibration process. Even [LZ98, 1L.Z99],
however, require that the line segments whose metric
properties are to be taken into account for estimating
a metric homography are all coplanar and that the un-
derlying plane has been affinely rectified. This paper
presents a novel approach for refining an existing esti-
mate of the calibration parameters. Starting with an ap-
proximate calibration which may have been computed
with any of the aforementioned methods, our approach
refines it to account for metric constraints expressed in
the form of segment angles and length ratios. The rest
of the paper is organized as follows. Section 2 intro-
duces the notation that is used in the remainder of the
paper and reviews some background material. Section
3 presents the proposed technique for single view cal-
ibration refinement. Some implementation details are
given in section 4. Experimental results from a proto-
type implementation are presented in section 5 and the
paper concludes with a brief discussion in section 6.

2 BACKGROUND
2.1 Elements of Single View Geometry

In the following, vectors and arrays appear in boldface
and are represented using projective (homogeneous) co-
ordinates [HZ00]. An image point with Euclidean co-
ordinates (x,y) is represented by the homogeneous 3-
vector x = (x,y,1)7. Similarly, a line is represented
by a homogeneous 3-vector 1 such that 1”x = 0 for all
points x lying on it. Assuming a pinhole camera model,
camera calibration is specified by the following five pa-

rameter upper triangular matrix K [HZ00]:

Ju s uy
K=|0 f v |- (1)
0O 0 1

The parameters f;, and f,, correspond to the focal length
expressed in pixel units along the two axes of the image,
s is the skew parameter and (u,,,v,) are the coordinates
of the image principal point in pixels. Parameter s is
related to the angle between the two image axes and is
zero for most cameras. Furthermore, the aspect ratio
r= ;V for a certain camera is fixed and equal to one in
most cases. A camera with zero skew and unit aspect
ratio is commonly called a natural camera.
Customarily, single view camera calibration is per-
formed by determining the image of the absolute conic
(IAC). The absolute conic is a special conic lying at the
plane at infinity, having the property that its image pro-
jection depends on the intrinsic parameters only and not
on the camera orientation or position. The IAC is itself
a conic whose equation is defined by a homogeneous
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3 x 3 symmetric matrix @ with five degrees of freedom
given by 0 = (KK”)~!. Working with the IAC is more
convenient than working with K since the constraints
involved in single view calibration are linear in the ele-
ments of @, thus admitting a simple algebraic solution.
The camera calibration matrix K can be computed from
o via Cholesky decomposition, a factorization that is
unique for a symmetric, positive definite matrix.

A concept that will be repeatedly used in the follow-
ing is that of vanishing points and lines. Assuming an
infinite 3D line that is imaged under perspective, a point
on it that is infinitely far away from the camera projects
to a finite point known as the vanishing point that de-
pends only on the 3D line’s direction and not on its po-
sition. Thus, parallel 3D lines share the same vanishing
points. In a similar manner, the vanishing points of a
set of non-parallel, coplanar 3D lines lie on the same
image line, which is known as the vanishing line of the
underlying plane.

2.2 Metric Measurements Using the IAC

Knowing the matrix of the IAC @ allows similarity (i.e.
scaled Euclidean) invariants such as the size of angles
and the ratio of lengths to be computed directly from
images. Assume two 3D lines whose vanishing points
in an image are denoted by the homogeneous vectors
v, and v,. Applying Laguerre’s formula, the acute an-
gle O between the two line directions can be computed
from [HZ00]

1S(v, ,V2)|
VS(V1,v,) S(vy,v,)

where S(a,b) = a’ @b for vectors a and b. In the
case of right angles, Eq. (2) simplifies to S(v,,v,) =0,
which is linear in the elements of @ and hence con-
stitutes the most commonly used type of constraint for
single view calibration. Note also that for parallel lines,
Eq. (2) reduces to the trivial identity 1 = 1. The fact
that angles can be computed from @ using Eq. (2), fa-
cilitates the computation of length ratios. More specif-
ically, consider four non collinear points A, B,C and D
and assume that the length ratio of segments AB and
CD should be computed. Applying the law of sines to
the triangles ABC and BCD, allows the sought ratio to
be specified as a ratio of sine ratios. Using the equality
sin(0) = /1 — cos(0)? to express sines as cosines and
applying Eq. (2) to compute cosines, finally leads to the
following expression for the length ratio:

Aj _ S(Vab,Vab). S(Vamvac)s(vbc Vb() S(Vac, Vb() )
CD Sy Vea)  SOVaps V) S(Vac, Vae) = S(V s Vac)?

)
\/S(Vbd Voa) S(Voas Vo) —
(Vper Vi)

cos(0) = (2)

S(Vpg:Vea)?
—S(Vper Vpa)*'

where v, Vae, V, ., v, ;, and v, denote the vanishing
points of line segments AB, AC, BC, BD and CD respec-
tively.
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3 REFINING AN INTRINSIC CALI-
BRATION ESTIMATE

It is clear that through Eqgs. (2) and (3), known scene
properties such as angles and length ratios impose high-
order polynomial constraints on the elements of @.
However, the difficulties associated with solving (pos-
sibly overdetermined) systems of nonlinear polynomial
equations, hinder the direct employment of such con-
straints for estimating w. The key observation upon
which the proposed method is based is the fact that
those constraints can be used to refine an existing es-
timate of @ so that they are satisfied approximately.
Specifically, assuming that an initial estimate of ® is
available, this can be used to define an error term which
corresponds to the discrepancy between the values mea-
sured from it with Eqgs. (2)-(3) and the known scene
properties. Minimizing this error term over @ with nu-
merical optimization techniques will refine the calibra-
tion estimate. This procedure is explained in more de-
tail in the remainder of this section.

Assume that a set of line segments has been extracted
from an image. Assume further that these line seg-
ments form a set A of pairs with known 3D angles, a set
E of quadruples each defining two unknown but equal
3D angles and a set R of pairs with known 3D length
ratios. For a pair of segments (s;,r;) € A with a pri-
ori known angle ¢,, denote by o(s;,r;®) the cosine
of their angle as estimated from Eq. (2) with the cur-
rent estimate of . Then, the term o(s;,r;; @) —cos(¢,)
amounts to their cosine difference error. Similarly, for
a quadruple of segments (s;,r;,p;,q;) € E, the term
a(s;,r;o) — a(p;,q;; @) amounts to their cosine esti-
mates difference error. For a pair of segments (si,ri) IS
R with a priori known ratio A, denote by p(s;,r;; ®) the
ratio of their lengths as estimated with Eq. (3). The term
p(s;,r;; @) — A, represents their length ratios difference
error. Thus, a cumulative error term can be constructed
by summing up the squares of all available cosine and
length difference errors, as follows:

e(AERw)= )
(spr) EA

Y [a(s;r;3 )*a(pivqi?w)]er

[a(s;,r; @) _COS(¢5)]2+ C))

Z [(p(s;.r;0) _7%']2~

(s;,r;) €R

Note that the above definition does not require that all
line segments involved in it lie on the same plane, con-
cerns quantities directly measurable from the image and
can incorporate as many constraints as desired.

Being a sum of squares, the above error term can be
iteratively minimized over the parameters of @ using
a nonlinear least squares algorithm such as Levenberg-
Marquardt. The initial estimate of @ serves as the start-
ing point for the numerical minimization. A suitable
parametrization for @ can be chosen by recalling that
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the former is a homogeneous matrix, i.e. it can be mul-
tiplied by an arbitrary scalar without any effect on the
angles and ratios computed by Egs. (2) and (3). Since
modern cameras have rectangular pixels, the skew pa-
rameter is assumed to be fixed to zero. Substituting K
from Eq. (1) with s = 0 into the definition of @ and
multiplying by f2 yields the following expression for

2 3.
flo:

r 0 —r2u0
fro= 0 1 v, G
—r2u0 -V rzfu2 + v(z) + rzu(z)

As it is clear from the above expression, @ can be
parametrized with four parameters o;, i = 1...4, di-
rectly corresponding to the parameters of K: o, =
Su, 0, =uy, 03 =v,, o, = r. When more information is
known regarding the camera to be calibrated, less than
four parameters suffice for parametrizing w. For in-
stance, a natural camera has r = 1, thus only the first
three of the above parameters need to be estimated.

4 IMPLEMENTATION DETAILS

The line segments that are required by the proposed
method were defined manually. Alternatively, they
could have been obtained via edge detection, edge link-
ing and orthogonal line fitting to edge lists obtained
by segmentation at points of high curvature. The non-
linear technique suggested in [LZ98] was employed
to compute maximum likelihood estimates (MLE) of
the vanishing points corresponding to parallel line seg-
ments. Vanishing lines of planes were estimated from
pairs of vanishing points corresponding to two sets of
parallel, coplanar lines. Given the vanishing line 1 of
a plane, the vanishing point of an arbitrary line seg-
ment s on the plane is their point of intersection, sim-
ply computed from the cross product 1 x s. Initial esti-
mates for the calibration matrix were obtained by com-
bining linear constraints arising from orthogonal van-
ishing points and metric rectification homographies,
as described in [LZ98, LZ99]. The minimization of
Eq. (4) was achieved using the Levenberg-Marquardt
algorithm as implemented by the freely available 1ev-
mar library [Lou0O4]. If necessary, convergence can be
improved by employing the box-constrained L-M vari-
ant from levmar, which allows the imposition on the
minimization parameters of constraints regarding their
minimum and maximum permissible values. The Jaco-
bian of Eq. (4) with respect to the calibration param-
eters that is necessary for the non-linear minimization
has been computed analytically with the aid of MAPLE’s
symbolic differentiation facilities. Finally, it is worth
mentioning that the analysis of section 3 has assumed
that the radial lens distortion in the image is negligible.
If this is not the case, the effects of distortion can be
corrected by applying a technique such as [DF95].
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Figure 1: (a) An image of a calibration object with the
lines employed to detect orthogonal vanishing points
shown superimposed and (b) the line segments form-
ing equal angles and known length ratios that were
used for refining single view calibration; see text for
explanation.

S EXPERIMENTAL RESULTS

This section provides experimental results from a proto-
type C implementation of the proposed method, devel-
oped along the guidelines set forth in section 4. Quan-
tifying the accuracy of an intrinsic calibration matrix
estimate is only indirectly possible, through the 3D re-
construction recovered using it. This approach, how-
ever, is susceptible to errors of various sources, which
are not related to the calibration procedure itself. The
situation is further complicated by the fact that differ-
ent calibration estimates can lead to very similar 3D
reconstructions. For these reasons, all conducted ex-
periments were designed so that an estimate of the cal-
ibration matrix could be obtained by an established, in-
dependent means. This estimate, which should be in-
terpreted as being indicative of the unknown true cali-
bration, is used for comparison against the refined cali-
bration computed by the proposed method.

The first experiment was carried out with the aid
of the high resolution 1280 x 960 image shown in
Fig. 1(a) that depicts a calibration object consisting of
two checkerboard planes. This image is part of a 27

Journal of WSCG ISSN 1213-6972

frames sequence imaging the calibration object from
different viewpoints. Knowledge of the calibration
object’s shape, allowed the calibration matrix to be
estimated from all 27 frames using Bouguet’s MATLAB
calibration toolkit [Bou04] as

1565.7 0 800.9
0 1565.5 642.44
0 0 1

Fig. 1(a) has plenty of lines for computing vanishing

points and metric rectification homographies. The
vertical and horizontal lines shown in Fig. 1(a) were
employed for estimating two orthogonal vanishing
points. Assuming a natural camera and using the three
constraints provided by the pair of vanishing points
and the metric homography corresponding to the left
checkerboard plane, the initial calibration estimate
from a single view was computed as

1552.0 0 816
0 1552.0 612
0 0 |

Following this, known scene properties were used
to refine the single view calibration estimate. More
precisely, the refinement was based on the known,
equal to 45°, angles between line segment pairs 0-4,
2-4, 0-5 and 2-5 that are illustrated in Fig. 1(b) as well
as the unit length ratios corresponding to segments 0-1,
2-3, and 0-2. The refined calibration estimate using the
proposed method was

1553.52 0 805.293
0 1553.52  638.787
0 0 1

Since the initial calibration estimate was close to that
obtained via grid-based calibration, the refinement did
not change the calibration matrix much. Nevertheless,
it has improved slightly the estimate of the principal
point.

The second experiment employed one frame from
the well-known Valbonne church sequence, shown in
Fig. 2(a). This sequence consists of several 512 x 768
images depicting the church from different viewpoints.
True camera calibration parameters for the Valbonne
sequence are unavailable. However, calibration of
the employed camera has been possible using self-
calibration techniques applied to the whole sequence.
As reported in [LDO00], assuming unit aspect ratio and
a principal point coinciding with the image center, the
intrinsic calibration matrix was estimated as

682.84 0 256
0 682.84 384
0 0 1

Single view calibration was performed assuming a nat-
ural camera with its principal point fixed at the im-
age center. The two orthogonal vanishing points corre-
sponding to vertical and horizontal directions from the
church’s front wall and bell-tower (see Fig. 2(a)) pro-
vided one constraint on the IAC. Notice that these van-
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(b)

Figure 2: (a) A frame from the Valbonne church se-
quence (courtesy of the INRIA Robotvis Group) with
the two sets of lines that were used to estimate a pair of
orthogonal vanishing points shown superimposed and
(b) the line segments defining a priori known scene
properties that were used for refining single view cali-
bration.
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ishing points are located far outside the image, there-
fore their accurate localization is difficult. Two more
constraints were provided by the metric rectification ho-
mography of the front wall that was estimated from the
known length ratios of segments 10-11 and 8-9 shown
in Fig. 2(b). The calibration matrix was estimated as

529.6 0 256
0 529.6 384 |.
0 0 1

Clearly, the discrepancy between the above estimate
and that obtained via self-calibration is considerable.
The proposed method was then employed to refine this
single view calibration estimate using a few line seg-
ments with equal 3D angles and lengths. Specifically,
the a priori information that was employed concerned
the equality of the angles formed by segments 0-1 and
2-3 shown in Fig. 2(b) and the equality of the lengths
of segment pairs 4-5, 6-7, 8-9 and 10-11. The refined
calibration estimate was

672.0 0 256
0 672.0 384 |,
0 0 1

which can be verified to be very similar to that obtained
with multiple image self-calibration.

The third experiment refers to the first frame of
another well-known sequence, shown in Fig. 3(a). This
sequence consists of 11 512 x 512 frames acquired as
the camera approached the scene. Accordingto http:
//www.robots.ox.ac.uk/~vgg/data.html,
the intrinsic calibration matrix computed by Oxford’s
Visual Geometry Group (VGG) structure and motion
recovery system [FZ98] for this sequence is

{496.9 0 273.5—|
0 496.9 280.0 |.
Lo o 1]

Single view calibration was carried out by employ-
ing the two orthogonal vanishing points corresponding
to the vertical and horizontal directions illustrated in
Fig. 3(a) and the metric homography corresponding to
the floor plane that was estimated using the line seg-
ments of Fig. 3(b). Single view calibration with a vari-
able principal point failed due to the estimated @ not
being positive definite. Therefore, calibration was per-
formed assuming a natural camera with the principal
point fixed on the image center. The calibration matrix
estimated in this case was

312.1 0.0 256.0
0.0 312.1 256.0 |,
0.0 0.0 1.0

which differs significantly from that estimated as a
byproduct of multiple view reconstruction. The sin-
gle view estimate was next refined with the proposed
method, assuming a natural camera and using the three
pairs of equal in length line segments 0-1, 2-3 and 4-5
that are shown in Fig. 3(b). The refined estimate was

527.5 0 254.8
0 527.5 303.7
0 0 1
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Figure 3: (a) The first image of the “basement” se-
quence (courtesy of Oxford's VGG) with the two sets
of lines employed to detect orthogonal vanishing points
and (b) the line segments of equal lengths that were
used for refining single view calibration.

and compares favorably with that computed during
multiple view reconstruction.

6 CONCLUSION

This paper has presented a technique for refining cam-
era calibration from a single image that relies on a priori
knowledge of certain metric scene properties expressed
in the form of line segment angles and length ratios.
As it was demonstrated experimentally, the proposed
technique is capable of significantly improving the ac-
curacy of intrinsic calibration estimates with low com-
putational overhead.
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