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Acoustic emission source modeling
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Abstract

The paper deals with the acoustic emission (AE) source modeling by means of FEM system COMSOL Multi-

physics. The following types of sources are used: the spatially concentrated force and the double forces (dipole).

The pulse excitation is studied in both cases. As a material is used steel. The computed displacements are compared

with the exact analytical solution of point sources under consideration.
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1. Introduction

Growth of cracks is important AE source, and the study of the waves

they generate has played a major role in our understanding of the in-

ner structure of the materials and the nature of the AE source. Energy

release during growth of crack can be simulated by the concentrated

force or concentrated force moment [1, 3, 9, 10]. This work focuses

on modeling a concentrated source located in an infinite domain. The

steel cylinder (radius 50 mm, height 100 mm) is used for the infinite

domain simulation, see fig. 1. To provide a point of comparison for

the finite element models, an analytical solutions for displacements

in unbounded media excited a concentrated sources are also men-

tioned.
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Fig. 1. Geometry

2. Point sources in unbounded homogeneous media

The simplest problem corresponds to a spatially concentrated force (or point source) directed

along one of the coordinate axes. Even in this case, however, solving the elastic wave equation

is a rather complicated task that requires considerable mathematical background. The starting

point is the scalar wave equation with a source term, which is first solved for an impulsive

source, in which case the solution is known as Green’s function for the problem. Then the

Helmholtz decomposition theorem is used to reduce the solution of the elastic wave equation to

the solution of two simpler ones. After this series of steps, and considerable additional work,

the problem of the concentrated force can be solved. Then it is relatively easy to investigate

the problem involving pairs of parallel forces of equal magnitude and opposite directions a

small distance apart. This combination of forces is extremely important because it allows the

introduction of the concept of a moment tensor, which plays a fundamental role in the theory.
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We consider elastic wave equation ρü = (λ + 2µ)∇(∇ ·u)−µ∇× (∇×u) + f , where u

is displacement, ρ is the material density, λ, µ are Lamé elastic constants and f represents the

source force.

2.1. Concentrated force

Initially, we focused on the simplest case – concentrated force in

direction of along one of the coordinate axes.

Using the notation uij to represent the displacement in the i–
direction due to a concentrated point force f (x, t; ξ) applied in the

j–direction at the point ξ (f (x, t; ξ) = f0(t)δ(x−ξ)ej, see fig. 2 for

case j = 3), the displacements over the domain may be determined

by evaluating the following equation [1, 4, 10]:
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Fig. 2. The point force
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where ρ is the material density, R = |x − ξ| is the distance from the source, γi = (xi − ξi)/R
are the direction cosines of vector, δij is the Kronecker delta, α2 = c2

P = (λ + 2µ)/ρ and

β2 = c2

S = µ/ρ represent squares of the speeds of pressure and shear waves, respectively.

In these equations, λ, µ are Lamé elastic constants and f0(t) represents the source force.

2.2. Concentrated couples and dipoles

Pairs of parallel forces of equal magnitude and opposite directions

some distance apart are considered. The forces parallel to the co-

ordinate axes separated by very small distances are represented as

double forces. If the two forces have different lines of action they

constitute a couple; otherwise they constitute a dipole. Let Mij(t)
be the moment of either the dipole in the xi direction (i = j) or the

couple with forces and arm in the xi and xj directions, respectively

(i �= j). For dipole case i = j = 3 see fig. 3. Mij(t) = f0(t)M̄ij ,

where f0(t) is same as in previous section and M̄ij is a component

of tensor that describes the spatial nature of the source. Using the

notation uijk(x, t) to represent the displacement in the k-direction

due to moment Mij(t) applied at the point ξ, the displacements over

the domain may be determined by evaluating the following equa-

tion [1, 4, 10]:
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Fig. 3. The dipole
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where ρ, R, γi, δij , α and β have the same meaning as in previous section.
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The used source force is:

f0(t) = at exp(−bt), (3)

where a and b are parameters controlling duration and amplitude of the source. Examples for

various parameters a and b which are used in following simulations are shown in fig. 4 – top,

the normalized power spectra of used source forces are shown in fig. 4 – bottom, S(f) is power

spectrum.
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Fig. 4. The source force f0(t) = at e−bt (top) and its normalized power spectrum (bottom)

3. Comparison FEM versus analytical solution

FEM calculations are performed in the commercial environment COMSOL Multiphysics with

the Structural Mechanics Module [5]. The finite element discretization of the time-dependent

PDE problem leads to an ODE system. COMSOL Multiphysics uses solver DASPK created

by Linda Petzold at the University of California, Santa Barbara. The DASPK solver is based

on the older code DASSL, which uses variable-order variable-stepsize backward differentiation

formulas (BDF). Thus the solver is an implicit time-stepping scheme, which implies that it must

solve a possibly nonlinear system of equations at each time step. It solves the nonlinear system

using a Newton iteration, and it then solves the resulting system with an arbitrary COMSOL

Multiphysics linear solver. The order of BDF is chosen 5 and as the linear system solver is used

UMFPACK.
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Because of the axial symmetry of the geometry, an axisymmetric 2D application mode is

used. Elements are the Lagrange-Quadratic type. The time dependent analysis is realized. The

time stepping parameters are: times (from 0 to 8 µs with step 0.01 µs), relative tolerance (10−5)

and absolute tolerance (10−10). No damping is used. The prescribed exciting force is given by

a function (see fig. 4 – top).

A mapped quad mesh is created. For acoustic emission applications the max. frequency

is about 1 MHz. The 6 dB bandwidth for the time function of source force A, B, and C is

under this limit, see fig. 4 – bottom. The shortest relevant wavelength is: λ = c/f ≈ 6 mm,

where c = 5 950 m/s is the speed of longitudinal wave in steel and f = 1 MHz is the max.

frequency. FE rules for transients state that: six quadratic elements per wavelength should yield

an accuracy less than a few percent [2, 6]. Therefore the size of one mesh element is chosen

0.5 × 0.5 mm, see fig. 5.

For model of concentrated force, number of elements is 20 000 and number of degree of

freedom is 161 202. For model of dipole force, the half of model is enough due to the symmetry.

Therefore number of elements is 10 000 and number of degree of freedom is 80 802.

The studied material is steel with Young’s modulus E = 200 GPa, Poisson’s ratio ν = 0.29
and density ρ = 7 870 kg/m3. For postprocessing, the line L is given by relations z = r and the

point P has coordinates [z = 1 cm, r = 1 cm], see fig. 1.

3.1. Concentrated force

The point, circle area (radius q = 0.5 mm) and cylinder (radius q = 0.5 mm, height h =
1 mm) are used to FEM-modeling of point force in the z direction (see fig. 5). In case of point,

the excitation is applied in origin (fig. 5 a) as point load by source force f0(t) in direction z, see

eq. (3). In case of circle area, the excitation is applied on edge (bold line in fig. 5 b) as edge

load by force in direction z. Thus the source force must be divided by the circle area:

f̄0(t) = f0(t)/(πq2). (4)

In case of cylinder, the excitation is applied on subdomain (black rectangle in fig. 5 c) as body

load by force in direction z. The source force must be divided by the volume of cylinder:

f̃0(t) = f0(t)/(πq2h). (5)

The constraint boundary condition is axial symmetry on the symmetry axis z marked by

number 1 in fig. 5 d, and other boundary conditions of model on boundaries 2–4 are free due to

modeling infinite domain in axisymmetric 2D application mode. The neighbourhood of source

is remarked by circle and letter s.

•

f0(t) 1

2

3

4
z
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Fig. 5. FEM-models of force: a – point, b – circle area and c – cylinder; d – the boundary of model
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The solution times and accuracies of the tasks are too different. The root mean square errors

of displacements are computed to comparison of the model usability. The root mean square

error is defined as

RMSE w =

√

√

√

√

√

N
∑

n=1

(wFEM
n − wT

n )2

N
, (6)

where wFEM
n is nth observation of variable w obtained by FE–axisymmetric model, wT

n is

nth observation of theoretical variable w and N is number of observations.

The values of the root mean square error for radial displacement (RMSE ur) and vertical

displacement (RMSE uz) in time 6 µs over the line L for the three source models and for four

types of time function (see fig. 4 – top) are included in tab. 1. In this table the solution times of

particular tasks are shown too. Although the solution times for cylinder model are the shortest,

the circle area model will be used for concentrated force modeling in future simulations because

of its the smallest RMSE.

Fig. 6 shows space distribution of absolute errors for time function type A. The analytical

solution (1) of radial (ur = u13) and vertical (uz = u33) displacements at time 6 µs over the line

L is shown in upper-left picture. The other pictures of this figure show absolute errors of FE-

solution for particular sources: point, circle area and cylinder. The source model is represented

by symbol in bottom–left corner of particular pictures.

The effect of the exciting pulse width for circle area source model is demonstrated for time

6 µs over the line L in fig. 7 and for time dependence in point P in fig. 8. The solid lines are

used for radial displacements and the dashed lines for vertical displacements in both of figures.

Color of lines determines kind of solution. Gray is used for analytical and black for FEM

solutions. The type of time function is represented by letter in upper-left corner of particular

Table 1. Comparison of solution times and RMSE for the particular time function types and source

models

Type of function

Model of source Parameters A B C D

RMSE ur [10−10 m] 0.045 9 0.092 7 0.184 1 0.925 0

• RMSE uz [10−10 m] 0.048 6 0.094 1 0.190 9 0.944 2

Solution time [s] 2 936 3 667 4 787 9 668

RMSE ur [10−10 m] 0.032 8 0.079 0 0.148 9 0.264 0

RMSE uz [10−10 m] 0.033 9 0.082 4 0.150 1 0.266 1

Solution time [s] 865 1 586 1 793 2 227

RMSE ur [10−10 m] 0.063 7 0.089 8 0.763 6 0.798 0

RMSE uz [10−10 m] 0.066 6 0.091 2 0.778 4 0.803 9

Solution time [s] 713 789 1 356 1 765
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Fig. 6. Comparison of radial (ur) and vertical (uz) displacements for FE–axisymmetric models to an

analytical solution for the time function type A at time 6 µs over the line L. Upper left: analytical

solution; the others: absolute errors of FE-solution for particular sources: point, circle area and cylinder

pictures. These results shows the ability of COMSOL Multiphysics to represent accurately the

wave except for minor variations at the peak of the wave and at neighbourhood of suddenly

changes, which are appeared in cases of the time function type C and D with the narrower pulse

width. These differences are due to the dispersive properties of used mesh and the frequency

content of used excitation [7].

3.2. Concentrated dipole

Analogous to the previous case the point, circle area (radius q = 0.5 mm) and cylinder (radius

q = 0.5 mm, height h = 1 mm) are used to FEM-modeling of dipole. With respect to symmetry

of the loading forces it is possible to analyze only upper half of model (see fig. 9). Four cases of

the dipole arm length (from 1 to 4 mm) are computed in FEM simulations. The influence of the

dipole arm length d is studied. In case of point, the excitation is applied in point with coordinates

[0, d/2] as point load by source force f0(t) in direction z, see eq. (3). In case of circle area, the

excitation is applied on edge (bold line in fig. 9 b) as edge load f̄0(t) in direction z, see eq. (4).
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Fig. 7. Comparison of displacements for a FE model to an analytical solution for the circle source with

the time function A, B, C, and D at time 6 µs over the line L. Analytical: gray; FEM: black

2 4 6 8

-1

0

1

2

u
[n

m
]

A

ur

uz

2 4 6 8

-1

0

1

2

u
[n

m
]

B

ur

uz

2 4 6 8

-1

0

1

2

time [µs]

u
[n

m
]

C

ur

uz

2 4 6 8

-1

0

1

2

time [µs]

u
[n

m
]

D

ur

uz

Fig. 8. Comparison of displacements for a FE model to an analytical solution for the circle source with

the time function A, B, C, and D in point P . Analytical: gray; FEM: black

31



P. Hora et al. / Applied and Computational Mechanics 4 (2010) 25–36
d

/2

•

f0(t)

d
/2

d
/2

1

2

3

4

z

r

s

a b c d

Fig. 9. FEM-models of dipole: a – point, b – circle, c – cylinder (here d is the arm length); d – the

boundary of model

In case of cylinder, the excitation is applied on subdomain (black rectangle in fig. 9 c) as body

load f̃0(t) in direction z, see eq. (5).

The constraint boundary conditions: i) axial symmetry on the axis z (dot-dash line) marked

by number 1 in fig. 9 d; ii) the symmetry plane on the axis r (roller symbols) marked by num-

ber 2; iii) free boundary condition marked by numbers 3–4 due to modeling infinite domain in

axisymmetric 2D application mode. The neighbourhood of source is remarked by circle and

letter s.

Table 2. Comparison solution time and root mean square error (RMSE) for the particular time function

type and for particular source models

Type of function

Model of source Parameters A B C D

RMSE ur [10−6 m] 0.024 8 0.048 0 0.119 7 0.170 2

• RMSE uz [10−6 m] 0.024 8 0.048 0 0.119 3 0.170 5

Solution time [s] 1 769 1 696 2 603 2 583

RMSE ur [10−6 m] 0.032 3 0.076 9 0.084 3 0.168 8

RMSE uz [10−6 m] 0.032 2 0.076 8 0.083 8 0.169 0

Solution time [s] 911 928 631 923

RMSE ur [10−6 m] 0.024 2 0.075 6 0.118 9 0.162 4

RMSE uz [10−6 m] 0.024 1 0.075 3 0.118 3 0.161 8

Solution time [s] 470 417 413 420

Again, the values of RMSE ur and RMSE uz, see eq. (6), in time 6 µs over the line L for

the source models and for four types of time function are included in tab. 2. The solution times

of particular tasks are shown there too. The values in this table are only for the 1 mm arm

length dipole. The solution times for cylinder model are the shortest as well as in case of point

concentrated force. The RMSE values are not so unique as in case point concentrated force, but

their differences are not so big in comparison with differences in solution times. Therefore the

cylinder model will be used for concentrated dipole modeling in future simulations.
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Fig. 10. Comparison of radial (ur) and vertical (uz) displacements for FE-axisymmetric models to an

analytical solution for the time function type A at time 6 µs over the line L. Upper left: analytical

solution; the others: absolute errors of FE-solution for particular sources: point, circle area and cylinder

Fig. 10 shows space distribution of absolute errors for time function type A and dipole

arm length 1 mm. The analytical solution (2) of radial (ur = u331) and vertical (uz = u333)

displacements at time 6 µs over the line L is shown in upper-left picture of fig. 10. The other

pictures of this figure show absolute errors of FE-solution for particular sources: point, circle

area and cylinder. The source model is represented by symbol in bottom-left corner of particular

pictures.

The effect of the dipole arm length for cylinder source model and time function A is demon-

strated for time 6 µs over the line L in fig. 11 and for time dependence in point P in fig. 12.

The solid lines are used for radial displacements and the dashed lines for vertical displacements

in both of figures. Color of lines determines kind of solution. Gray is used for analytical and

black for FEM solutions. The difference between FEM and analytical solution (2) is decreas-

ing with the decreasing arm length. The analytical solution supposes that the arm of dipole is

infinitesimal. In order to be able to compare the analytical and FEM solution, the FEM solution

is divided by the dipole arm length. Roughly speaking, FEM solution very well represents the

wave arrival, especially for the smallest arm length.
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Fig. 11. Comparison of displacements for a FE model to an analytical solution for the cylindrical dipole

source with the time function A at time 6 µs over the line L for particular arm lengths d. Analytical:

gray; FEM: black
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Fig. 12. Comparison of displacements for a FE model (black) to an analytical solution (gray) for the

cylindrical dipole source with the time function A in point P for some arm lengths d
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4. Conclusion

The acoustic emission source modeling by means of FEM system COMSOL Multiphysics [5]

is presented here. The spatially concentrated force and concentrated dipole are used as kinds

of the acoustic emission sources. Four kinds of the time dependence loading are studied. As a

model of unbounded media is used the steel cylinder.

To provide a point of comparison for the finite element models, an analytical solutions for

displacements in unbounded media excited a concentrated sources are also computed. MAT-

LAB [8] is used for these computations, scripting of COMSOL tasks and figure creating.

Several various shapes (point, circle area and cylinder) are used to FEM-modeling of point

force. In comparison with the analytical solution, the circle area exciting gives the smallest

root square mean errors. Therefore the circle area model will be used for concentrated force

modeling in our future simulations. The effect of the exciting pulse width is analyzed. The

computed displacements show the ability of COMSOL Multiphysics to represent accurately the

wave propagation. There are a minor variations at the peak of the waves and at neighbourhood

of suddenly changes. These differences are due to dispersive properties of mesh.

To FEM-modeling of dipole forces are used the same shapes. In comparison with the ana-

lytical solution, the cylinder exciting has the smallest solution time with acceptable root square

mean errors. Therefore the cylinder model will be used for concentrated dipole modeling in our

future simulations. The influence of the dipole arm length d is studied. Four cases of the dipole

arm length (1, 2, 3, and 4 mm) are computed in FEM simulations. The difference between FEM

and analytical solution (the arm length of dipole is infinitesimal) is decreasing with the decreas-

ing arm length. FEM solution very well represents the wave arrival, especially for the smallest

arm length.

The proper motivation of this study is choosing the best model of concentrated force and

dipole. These models will be used to calculations of surface displacements in real steel con-

structions for the purpose of comparing with surface displacements obtained by non destructive

testing.

All computations are performed on HP xw6600 Workstation with two processors Intel Xeon

E5430/2.67 GHz (Quad Core) and 32 GB RAM.
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