
View-dependent Tetrahedral Meshing and Rendering using

Arbitrary Segments

Ralf Sondershaus
WSI / GRIS

University of Tübingen, Germany

sondershaus@gris.uni-tuebingen.de

Wolfgang Straßer
WSI / GRIS

University of Tübingen, Germany

strasser@gris.uni-tuebingen.de

ABSTRACT

We present a meshing and rendering framework for tetrahedral meshes that constructs a multi-resolution representation and uses

this representation to adapt the mesh to rendering parameters. The mesh is partitioned into several segments which are simplified

independently. A multi-resolution representation is constructed by merging simplified segments and again simplifying the

merged segments. We end up with a (binary) hierarchy of segments whose parent nodes are the simplified versions of their

children nodes. We show how the segments of arbitrary levels can be connected efficiently such that the mesh can be adapted

fast to rendering parameters at run time. This hierarchy is stored on disc and segments are swapped into the main memory as

needed. Our algorithm ensures that the adapted mesh can always be treated like a not-segmented mesh from outside and thus

can be used by any renderer. We demonstrate a segmentation technnique that is based on an octree although the multi-resolution

representation itself does not rely on any paticular segmentation technique.

Keywords: multi-resolution meshes, tetrahedral meshes, view-dependent rendering, volume rendering

1 INTRODUCTION

Tetrahedral meshes are often used as finite element

meshes that discretize a volumetric domain for sci-

entific simulations like computational fluid dynamics

(CFD). Modern simulation environments typically use

meshes that contain millions of tetrahedra.

The simulations carry data along with a tetrahedral

mesh. The data values are usually scalar values like

temperature or pressure, or vector values like velocity,

and can be attached to the vertices, edges, border faces

or to the tetrahedra.

The emerging need to visualize the simulation data

has introduced tetrahedral meshes to volume visualiza-

tion. Modern algorithms render up to about one million

of projected tetrahedra per second [KQE04] or can ex-

tract isosurfaces of about two millions of tetrahedra per

second [KSE04]. This is not enough to render a model

like the F16 interactively (figure 8) that contains about

6 million tetrahedra.

In this paper, we present an out-of-core data struc-

ture that enables such a big mesh to be simplified with

a small memory footprint. The data structure is built on

segments which are swapped efficiently to and from the

core memory as needed. Additionally, we introduce a

multi-resolution framework which is built on a hierar-

Permission to make digital or hard copies of all or part of this
work for personal or classroom use is granted without fee provided
that copies are not made or distributed for profit or commercial
advantage and that copies bear this notice and the full citation on the
first page. To copy otherwise, or republish, to post on servers or to
redistribute to lists, requires prior specific permission and/or a fee.

Journal of WSCG, ISSN 1213-6972, Vol.14, 2006
Plzen, Czech Republic.
Copyright UNION Agency – Science Press

chy of segments and can be used for interactive volume

rendering.

Our out-of-core data structure partitions the mesh

into segments by merging leaves of an octree. The seg-

mentation adapts to the details of the mesh and thereby

creates segments which contain similiar number of ver-

tices (and tetrahedra). Subsequent algorithms (like sim-

plifiers) process the mesh one segment after the other

and need small memory footprints. As a by-product,

the vertices are reordered as they are assigned to the

segments which results in a better performance of a

subsequent algorithm because it tends to reduce cache-

misses.

Based on the out-of-core data structure, we introduce

a multi-resolution framework. Many previously pub-

lished multi-resolution frameworks work with a hierar-

chy of vertices and decide per frame which vertex is

to be split or which edge is to be collapsed in order to

refine or coarsen the mesh. Because a huge mesh can

contain millions of points, the adaptation of the mesh

can be become time-consuming even if priority queues

are used. We construct a hierarchy of segments where

segments of arbitrary resolution levels can connect to

each other (however, they need to share the same border

vertices). The hierarchy of segments is used at run-time

to adjust the mesh to viewing parameters and performs

better than a vertex hierarchy because fewer nodes must

be tested to be refined or coarsened and no dependen-

cies between nodes are needed.

For triangle meshes, the big issue is to connect differ-

ent segments correctly if the segments belong to differ-

ent resolution levels. Many previous algorithms store

dependencies between segments in a directed acyclic

graph or restrict the resolution levels to differ by at

Journal of WSCG 129 ISBN 1213-6972 ISBN 80-86943-09-7

most one between adjacent segments in order to ensure

correct connections between segments. Our model can

connect arbitrary resolution levels by fixing the borders

between segments.

For tetrahedral meshes, the adjacency information

for every tetrahedron must additionally be set in or-

der for subsequent algorithms (like MPVO sorting

in volume rendering) to work correctly. Our multi-

resolution framework introduces a so-called 0-segment

which handles the adaptation of the adjacency informa-

tion efficiently. The volume renderer always sees just

one consistent mesh and can run its sorting and render-

ing routines as if no multi-resolution mesh is used.

Our multi-resolution model does not depend directly

on how the mesh is segmented but can work on any seg-

mentation. Instead of the octree-based structure, other

techniques like vertex clustering could be used. Fur-

thermore, we do not rely on edge collapse based sim-

plifications but could use any simplification technique.

2 RELATED WORK

Simplification, multi-resolution, and out-of-core tech-

niques are described shortly because they are important

to our technique. A small overview to volume render-

ing techniques is given.

Simplification. We restrict our overview to ap-

proaches that are based on edge collapses. For other

simplification techniques we refer to mesh decimation

[RO96] or TetFusion [CM02].

Popovic et al. [PH97] have extended the Progres-

sive Mesh approach [Hop96] to general simplicial com-

plexes but do not take into account how the underlying

scalar field of a tetrahedral mesh is approximated.

Staadt et al. [SG98] have applied the Progressive

Mesh approach to tetrahedral meshes. The edge col-

lapses are sorted by an error heap that uses a cost func-

tion which considers various errors like scalar field er-

ror or volume and shape deformation.

Cignoni et al. [CCM+00] have characterized the field

and domain errors of an edge collapse and present vari-

ous techniques to predict these errors reliably. The field

error is introduced by approximating the original scalar

field of the mesh whereas the domain error is introduced

by reducing the boundary of the mesh.

Kraus et al. [KE00] have simplified non-convex

meshes and can change the topology of the mesh dur-

ing simplification. Chiang [CL03] have preserved the

topological structure of isosurfaces of the mesh during

simplification.

Garland [GZ05] extended the quadric error metrics to

arbitrary simplices (and to tetrahedra in particular) and

showed that this approach produces high-quality ap-

proximations that automatically take domain and field

errors into account.

Out-of-Core Data Structures. Cignoni et al.

[CMRS03] use an octree to partition a large tetrahedral

(or triangle) mesh into segments. Each segment can be

modified independently of the other segments. Simpli-

fication algorithms are adapted to process the mesh on

a per-segment basis.

Gumhold et al. [GI03] construct a segmentation of a

huge triangle mesh by sorting the vertices into a regular

grid and merging grid cells into segments that contain

approximatively the same number of vertices. Triangles

are sorted into the segments according to their center

points.

Isenburg et al. [IL05] introduced streaming meshes

which are defined as a new file format that interleaves

triangle and vertex definitions and does not introduce a

vertex until it is indexed by a triangle. Furthermore,

it is marked if no subsequent triangle indexes a ver-

tex anymore such that this vertex can be safely deleted.

Streaming meshes are highly efficient to both mesh

compression and mesh simplification [VCL+05].

Multi-resolution representations. Many multi-

resolution representations [CMRS03, DDFM+04,

CDFL+04] construct a binary vertex hierarchy by edge

collapses. At run-time, a front through the hierarchy

defines a valid mesh. Vertices on the front can be split

(which refines the mesh) or collapsed (which coarsens

the mesh). In order for the mesh to be valid, not all

splits or collapses are valid. Geometric and topological

conditions need to be checked and the operation is

allowed only if the conditions are fulfilled. These

conditions can be enforced by performing additional

operations which results in additional costs.

Cignoni et al. [CGG+04] use longest-edge bisection

of a tetrahedral mesh in order to decompose the spa-

tial domain of a huge polygonal mesh and to construct

a hierarchical decomposition of this polygonal mesh.

The mesh segments that are contained in a tetrahedra

diamond are simplified leaving the border vertices un-

changed, i.e. those vertices that connect different seg-

ments. Using longest-edge bisection results in a hierar-

chy which ensures that neighboring segments can differ

in at most one resolution level.

Volume Visualization. A standard technique for

direct volume rendering of unstuctured tetrahedral

meshes is the projected tetrahedra algorithm of [ST90]

that has been greatly enhanced by the pre-integration

technique of [MHC90, RKE00].

The tetrahedra are sorted from back to front which

can be done for all acyclic tetrahedral meshes and be-

cause a tetrahedron is always convex. The tetrahedra

are projected onto the view plane and decomposed into

1 - 4 triangles according to the positions of the pro-

jected vertices. These triangles are rendered using al-

pha blending from back to front.

3 OUT-OF-CORE DATA STRUCTURE

We design a data structure that is suited to handle large

tetrahedral meshes memory efficiently as well as to sup-

Journal of WSCG 130 ISBN 1213-6972 ISBN 80-86943-09-7

port volume rendering at run-time. Therefore, the mesh

is partitioned into segments such that the segments are

stored on disc, can be loaded independently to main

memory and can be written back to disc.

Every segment contains a number of vertices (such

that a vertex of the original mesh belongs to exactly

one segment) and a number of tetrahedra (a tetrahedra

of the original mesh belongs to exactly one segment).

The index of a vertex consists of an index-pair (si, li)
with a segment index si and a local index li which spec-

ifies the vertex within the segment si. We encode this

index-pair as a bit field of 32 bits. A tetrahedron is also

addressed as an index-pair with li as the local index of

the tetrahedron.

Because all vertices and tetrahedra need to be ad-

dressable with this address space, the number of ver-

tices and tetrahedra within a segment should be bal-

anced.

The multi-resolution model (section 5) adds new seg-

ments to the mesh that are simplified versions of the

original segments. Every simplified segment has an er-

ror associated with it such that the volume renderer can

compute which segment is to be swapped in and out

from the main memory. In order to achieve a good er-

ror estimation for each segment, we need segments that

contain vertices with similiar attribute values and tetra-

hedra with similiar sizes.

Using these objectives as a starting point, we con-

struct the segmentation as follows.

3.1 Construction

Although we could use the techiques of [CMRS03] or

[GI03], we found both only partly applicable to our

models. An octree partitions the vertices of a mesh fast

and robust. Its leaves reflect the density of the points

in the mesh which can be significantly different in dif-

ferent areas of a tetrahedral mesh (for an example see

figure 8, left). But the number of vertices that are sorted

into cells can differ highly such that some cells contain

almost no vertices whereas other contain many. This

leads to segments of different sizes which can result in

memory and address space defraction.

A grid has the disadvantage that the user must specify

its resolution and that dependending on the resolution

the variation of the number of vertices of the grid cells

differ highly. But it is easy to be implemented out-of-

core. It is mandatory to combine cells afterwards to

form segments in order to obtain balanced segments.

For tetrahedral meshes, the size of the grid cells needs

to be very small in order to catch the fine-detailed areas

of the mesh which results in a huge number of cells that

contain data.

We combine both approaches. First, an octree is con-

structed for the vertices of the mesh. Afterwards, the

leaves of the octree are considered as nodes in a (undi-

rected) graph. The edges of the graph reflect the neigh-

borhood of the leaves but contain edges between cells

only that share a face and have similiar sizes (we re-

strict the size difference to be at most two). This ensures

that areas of the mesh with a similiar point density are

merged into one segment because the size of an octree

leaf reflects the point density of the mesh.

A graph partitioning algorithm (we use Metis 4.0) is

called which constructs a partition of the graph. Every

partition forms now a segment and consists of a col-

lection of leaves of the octree. Every leaf belongs to

exactly one segment.

a) b)

Figure 1: Segmentations that sort the tetrahedra (a) accord-

ing to their center vertices into the segmentation, or (b) ac-

cording to the smallest segment index of their four vertices.

Afterwards, we sort the tetrahedra into the segments

as follows. The four vertices of a tetrahedron are as-

signed to their segments. The tetrahedron is assigned

to the segment of the vertex with the smallest segment

index. We do not need to compute the center of the

segment (as it is done by [CMRS03] and [GI03]) and

found this method to produce well-shaped borders that

are sufficient for our purposes, see figures 1 and 2.

The user specifies the average number of vertices that

are to be stored in each segment. The octree is con-

structed to contain at most this number of vertices in its

leaves. The graph matching combines leaves into seg-

ments such that a balanced segmentation is achieved.

a) b)

Figure 2: (a) A tetrahedron is sorted to the segment of its

index with the smallest segment index. Red is smaller than

yellow which is smaller than blue. Note that a tetrahedron

may reference vertices from other segments. (b) The white

vertices on the boundary belong to the 0-segment as described

in section 5.

Because subsequent algorithms process the mesh by

traversing the segments one after another, the segments

need to be stored in an order that neighboring segments

are traversed together. Therefore, we sort the segments

by their minimal points, first in x-, followed by y- and

Journal of WSCG 131 ISBN 1213-6972 ISBN 80-86943-09-7

by z-coordinates. More elaborated techniques could be

applied here.

The segments are stored in a single file on disc in the

order of the sortation. For every segment, we store

1. The geometry of the vertices using the local order-

ing of the vertices within the segment.

2. The attributes of the vertices (if any).

3. For every tetrahedron its four vertex index-pairs.

4. The attributes of the tetrahedra (if any).

5. For every tetrahedron its four adjacent tetrahedra.

6. The indices of all segments that are incident to this

segment (i.e. share at least one vertex).

In order to traverse the tetrahedra of the mesh, we store

adjacency indices (number 5 above). Every tetrahedron

t stores one index-triple (si, ti,ci) for each of its vertex

index-pairs that points to the tetrahedron that is oppo-

site to the vertex. The index-triple encodes the segment

index si, the local index ti (within the segment si) and

a code ci ∈ {0,1,2,3}. The code specifies the vertex

inside the adjacent tetrahedron that is opposite to the

shared face.

The interface of the data structures allows for loading

a particular segment as well as to request a single vertex

or tetrahedron such that the segment that this vertex be-

longs to is automatically loaded. A Last-Recently-Used

queue keeps track of all loaded segments and stores seg-

ments that have been changed back to disc if they are

not needed any more.

4 SIMPLIFICATION

Using our data structure, the simplifier traverses the

mesh one segment after the other and simplifies each

segment. Our simplifier uses edge collapses and is

steered by a priority queue that sorts all possible col-

lapses of a segment by the error that they introduce.

The error is evaluated by using quadric error metrics

of Garland et al. [GZ05].

A quadric error metric measures the squared geo-

metric and attribute distances of points to hyperplanes

that are spanned by the (original) tetrahedra. A special

penalty error can be introduced at boundary vertices in

order to preserve the boundary of the mesh well.

The vertices v = (vx,vy,vz) of the mesh and their

attributes fi,v are embedded into a 3 + k dimensional

space with p = p(vx,vy,vz, f1,v, ..., fk,v). For every tetra-

hedron t = (p0,p1,p2,p3), a local coordinate system e0,

e1, e2 is constructed by orthonormalizing the vectors

p1 −p0, p2 −p0, and p3 −p0.

Then, the quadric error function Q of a tetrahedron

can be written with a symmetric, positive semi-definite

matrix A, a vector b, and a scalar value c as

Q(x) = xT Ax−2bT x+ c

with

A = I−
2

∑
i=0

eie
T
i b = Ap c = pT Ap

where p is the barycenter of the tetrahedron.

The quadric error of a vertex approximates the sum

of the squared distances to its incident hyperplanes

and can be computed by summing all matrices A

component-wise as well as all vectors b and all scalars

c of the incident tetrahedra.

For an edge collapse, the metrics (i.e. A, b, and c) of

both collapsing vertices are summed component-wise.

The point that minimizes this quadratic error function

can be found by solving the linear system Ax = b. Be-

cause A is symmetric and positive semi-definite, a cg

solver can be used that takes the middle point of the

collapsing edge as starting point.

5 MULTI-RESOLUTION MODEL

The data structure and the simplifier presented so far

can be used to simplify a tetrahedral mesh as a whole.

But for view-dependent rendering the mesh needs to be

adapted to viewing parameters and thus different sim-

plification (or resolution) levels need to be merged into

one mesh at run-time.

Therefore, we build a hierarchy of segments where

each segment can connect to its neighbors regardless of

their resolution levels. We first describe how the hier-

archy is constructed and show after that how the adja-

cency information between segments can be updated.

5.1 Construction

The segmented tetrahedral mesh is stored on disc as de-

scribed above. We create new segments to build up a

hierarchy as follows and append the new segments at

the end of the file. Each segment stores all the informa-

tion described in section 3.

First, we copy each segment of the original mesh and

simplify the copies (as described above) independently.

The vertices that are referenced by different segments

remain unchanged (i.e. the vertices on the boundary be-

tween at least two segments). We end up with a coarse

approximation of each segment where the segments are

still connected at the original resolution level. The sim-

plified copies are inserted as parents of their original

segments into the hierarchy, see figure 6.

Secondly, we construct an undirected graph whose

nodes are the (simplified) segments and whose edges

are between every pair of (simplified) segments that

share at least one tetrahedral face. The nodes are

weighted by the number of vertices in their segments.

We find a matching of the graph using a greedy algo-

rithm and end up with pairs of nodes (segments).

Each pair is merged into a new segment and the new

segment is simplified. The vertices that have connected

Journal of WSCG 132 ISBN 1213-6972 ISBN 80-86943-09-7

Figure 3: The construction process of the NASA fighter dataset merges two segments into a new segment which is simplified.

The colors of the segments can change from picture to picture.

both segments belong to the new segment now and are

simplified. The vertices that are on the boundaries be-

tween the new segments remain unchanged as shown in

figure 4.

Figure 4: The purple and the green segment are merged and

simplified. The shared vertices are removed but the vertices

to the red segment are left unchanged (white vertices).

Iterating this strategy leads to the algorithm in fig-

ure 5. Every iteration constructs the neighboring graph

and computes pairs of segments. Both segments of a

pair are merged into a new segment which is simplified.

The hierarchy is constructed by building a (at most lev-

els binary) tree where the new segment is the parent of

both merged segments as shown in figure 6.

Because the border vertices between segments are

left unchanged, different resolution levels automatically

connect to each other. Figure 3 shows the construction

process for the NASA fighter dataset.

For every segments s

snew = copy segment s;

add snew as parent of s;

simplify snew;

While the number of roots > 1

construct the node graph G;

find pairwise matching M of G;

For every pair (s1,s2) in M

snew = merge segments s1 and s2;

add snew as parent of s1 and s2;

simplify snew;

Figure 5: Every iteration finds pairs of segments that are

merged into a new segment and simplified.

The final mesh segments are written in breadth-

first order to disc together with the hierarchy. Us-

ing a breadth-first order enhances file accesses because

neighboring segments are likely to be stored near to-

gether. Each segment is stored as described in section 3.

5.2 Usage

Refining one segment means to replace the mesh of the

segment by the meshes of its children. Both children

can now be refined independently of each other. For in-

stance, the first child could be refined again and again

while the second child remains unchanged. This would

lead to a high resolution level that automatically con-

nects to the low resolution level of the second child (but

with the limitation that both the high and the low reso-

lution segments need to share the same vertices on their

border).

Figure 6: The segment hierarchy stores how the segments are

merged into their parent segments (left). The segments of the

original mesh are gray. A front through the hierarchy corre-

sponds to a valid mesh (right).

Coarsening a segment means to replace the segment

itself as well as its sibbling (in the binary hierarchy) by

the coarser mesh of the parent.

A valid mesh is defined as a list of segments within

the hierarchy that has exactly one segment in every path

from the root down to the leaves as shown in figure 6

(right). We call this list a segment front. This corre-

sponds to the well-known vertex front in vertex-based

multi-resolution models [DDFM+04].

5.3 The 0-segment

The meshes of the segment front form a valid tetrahe-

dral mesh. During rendering, the adjacencies between

all tetrahedra are often needed (for instance for MPVO-

based sorting [Wil92]). A fast method to adapt the ad-

jacencies between segments is needed whenever a seg-

ment is replaced by another segment. We introduce

a special segment that handles the adjacency between

any two neighboring segments. Because this special

segment has the unique segment index 0, we call it 0-

segment.

Journal of WSCG 133 ISBN 1213-6972 ISBN 80-86943-09-7

The 0-segment is defined as the cut of all segments of

the original mesh. Thus, it contains

• all vertices that are on boundaries between two

neighboring segments in the original mesh (white

vertices in figure 1b), and

• all triangles that form the border between two

neighboring segments, and

• (theoretically) all edges (not stored).

The triangles of the 0-segment are now used as a buffer

(or a docking station) between two segments. Instead

of storing the index of the adjacent tetrahedron, the in-

dex of the shared triangle in the 0-segment is stored in

the adjacency information. Because the triangles never

change and have always the same index, the adjacency

to this triangle can be stored in the mesh (and in the

file).

Each triangle stores two adjacency index-triples that

point to tetrahedra in the adjacent segments, see also

figure 7b. The tetrahedra of a segment that have a bor-

der to the 0-segment store an index-triple (si, ti,ci) as

usual that points into the 0-segment with s0 = 0 and ti
as the triangle index. ci can be 0 or 1 and points to one

of the two adjacency index-triples of the triangle.

When a segment s replaces another segment r, it must

update the 0-segment as follows. All border tetrahedra

of s are traversed. At least one of the four adjacency

index-triples of these tetrahedra point to a triangle t in

the 0-segment (the other index-triples point to tetrahe-

dra inside s itself). The index-triple of t points to the

segment r and must be replaced by the index-triple of

s, i.e. (si, ti,ci) where si = s, ti is the index of the bor-

der tetrahedron and ci is the local index of the opposite

vertex within ti, see also figure 7.

a) b)

Figure 7: Instead of storing the index-triple of the neighbor-

ing tetrahedron at the border of two segments (a), the index of

the triangle in the 0-segment is stored (b).

In order to find all border tetrahedra fast, they are

stored before all other (inner) tetrahedra in the file. So

iterating all border tetrahedra can be accomplished by

iterating over all tetrahedra until a non-border tetrahe-

dron is found.

The 0-segment does not need to exist at the construc-

tion phase. It must exist only at run-time when seg-

ments are to be exchanged very fast and can be com-

puted once after (or before) the construction phase.

6 VIEW-DEPENDENT RENDERING

In order to adapt the mesh to current viewing and classi-

fication parameters, we need to decide which segments

of the segment front must be coarsened (replaced by the

parent) or refined (replaced by the children). Therefore,

the following values are stored with each segment

• The histogram H of the attribute values (which is a

lookup-table of resolution N with normalized en-

tries Hi ∈ [0,1]), and

• A look-up table E of the same resolution N which

specifies the maximal error that the segment con-

tains for the according attribute value, and

• The (axis aligned) bounding box.

The user can specify a maximal field error εmax.

For each frame, the segment front is traversed. Every

segment of the front is marked by the tags COARSEN,

REFINE, and NOTHING that help later to adapt the

mesh:

1. If the bounding box is outside the view-frustum

and if the sibbling exists, mark as COARSEN, else

2. Compute the average S = ∑
N
i HiEiαi where the

sum runs over all histogram values, Hi is the (nor-

malized) i-th histogram value, Ei is the according

error and αi is the according classified opacity.

If S > εmax, mark as REFINE, else

3. Mark as NOTHING.

After all segments of the front are marked, the front

is traversed again and every segment is adapted:

1. If a segment is marked as REFINE, it is replaced

by its children.

2. If a segment and its sibbling are marked as

COARSEN, both are replaced by their parent.

The histogram H as well as the look-up table E

are computed during the construction of the multi-

resolution model. Every edge collapse introduces a par-

ticular error for a scalar field attribute which is stored in

the look-up table E if it is greater than the already stored

error.

A simple LRU queue keeps track of the mapped seg-

ments. We refer the reader to the more elaborated

caching methods of for instance [YLPM05].

7 RESULTS

We implemented the technique with memory mapped

files which are a operating system opportunity for mem-

ory allocation such that parts of a file can be directly

mapped into memory. The operating system performs

all necessary swapping.

Journal of WSCG 134 ISBN 1213-6972 ISBN 80-86943-09-7

Name # Vertices # Tetra # Segments Min Vertices Max Vertices Min Tets Max Tets Time

per segment per segment per segment per segment hh:mm:ss

Seaway 102,165 524,640 18 3,050 5,989 17,382 38,929 0:00:10

Fighter 256,614 1,403,504 48 3,175 5,078 21,648 31,660 0:00:15

Rbl 730,273 3,886,728 131 2,714 6,599 17,378 36,284 0:00:26

F16 1,124,648 6,345,709 212 2,874 6,169 26,104 37,087 0:00:58

Table 1: The properties of the datasets and the timings for the construction of the segmented mesh from the original mesh. The

octree was steered to contain at most 5,000 vertices per leaf node.

So if a segment s replaces another segment, our im-

plementation calls the operating system to map the parts

of the file that correspond to s into the memory. We

found that the operating system (we use Windows XP)

needs nearly constant time to map a segment if the mesh

part has been accessed some time before due to caching.

However, sometimes the caching misses and delays of

at most one second may occur.

The frame rates depend mainly on the power of the

volume renderer that uses preintegrated projected tetra-

hedra. Because the size of the segment front is small,

the costs for checking if a segment can be refined or

coarsened, are neglectable. We experienced frame rates

of about 3-4 frames per second with a workload of

about 250,000 tetrahedra. We can render the F16 model

interactively which is impossible for the full resolution

mesh (it would take at least 6 seconds to render a single

frame).

In average, 80% of the time of a frame is used by the

volume renderer whereas 16% are used for reloading

segments (file IO) and 4% are used for segment adja-

cency adaption (measured average values for the NASA

Fighter dataset, the other datasets perform similiar).

The construction timings of the segmented meshes

(section 3) are shown in table 1. Most of the time is

needed for file IO. For the Rbl dataset, for instance, the

IO to write the mesh to disc needed 20 seconds (out of

the 26 seconds total construction time).

The main time was spent to simplify the meshes and

to construct the hierarchy, see table 2. Although the

timings do not compare to the (much faster) timings

of Lindstrom [VCL+05], we differ from Lindstrom be-

cause we need to store all segments and do not use the

randomized edge collapses.

Furthermore, the file sizes are huge because we store

each segment in a raw format such that it is ready to be

mapped to memory.

Name # Tetra in Time file size

base mesh hh:mm:ss [MB]

Seaway 18,763 0:13:47 67

Fighter 30,042 0:19:23 101

Rbl 259,363 0:31:05 349

F16 84,246 1:08:23 514

Table 2: The simplification timings and the sizes of the stored

multi-resolution files.

8 CONCLUSION AND FUTURE

WORK

We presented an out-of-core data structure that enables

to simplify a tetrahedral mesh with a small memory

footprint. The segments are constructed by combining

leaves of an octree such that the segments contain sim-

iliar parts of the mesh.

A multi-resolution hierarchy is built based on the seg-

ments where pairs of segments are merged and sim-

plified. The segments connect to each other using the

0-segment. It allows for the multi-resolution mesh

to adapt its adjacancy information efficiently which

is mandatory for tetrahedral sorting algorithms like

MPVO.

The multi-resolution model is included into a direct

volume rendering frame work that adpats the mesh to

viewing and classification parameters using a histogram

of attribute values and errors.

Future work should make use of a compression

scheme for the segments in order to shrink the file sizes

of the models. Furthermore, more elaborated segmenta-

tion techniques that cluster vertex data based on spatial

density and attribute values can be used.

ACKNOWLEDGEMENTS

The authors would like to thank Udo Tremel from

EADS Military Aircraft for the beautiful F16-like sim-

ulation data, and Uli Bieg from the University of Tübin-

gen for the mesh of the Burdigalian Seaway. This work

is supported by EC within FP6 under Grant 511568

with the acronym 3DTV. This work has been funded

by the SFB grant 382 of the German Research Council

(DFG).

REFERENCES
[CCM+00] P. Cignoni, D. Constanza, C. Montani, C. Rocchini, and

R. Scopigno. Simplification of tetrahedral meshes with accu-

rate error evaluation. In Proceedings of the conference on IEEE

Visualization ’00, pages 85–92, 2000.

[CDFL+04] P. Cignoni, L. De Floriani, P. Lindstrom, V. Pascucci,

J. Rossignac, and C. Silva. Multi–resolution modeling, visu-

alization and streaming of volume meshes. Eurographics ’04

Tutorial Notes, 2004.

[CGG+04] Paolo Cignoni, Fabio Ganovelli, Enrico Gobbetti, Fabio

Marton, Federico Ponchio, and Roberto Scopigno. Adaptive

tetrapuzzles: efficient out-of-core construction and visualiza-

tion of gigantic multiresolution polygonal models. ACM Trans-

actions on Graphics, 23(3):796–803, 2004.

Journal of WSCG 135 ISBN 1213-6972 ISBN 80-86943-09-7

a) b) c) d)

Figure 8: This model is used for a CFD simulation of a F16-like aircraft and contains about 6 million tetrahedra. Figure (a)

shows the full resolution mesh and (b) shows a zoom into the full resolution mesh. Note how the size of the tetrahedra varies

which needs to be captured by the segmentation. Figure (c) shows how the mesh is adapted to the viewpoint in the volume

rendering (d).

a) b) c) d) e)

Figure 9: The NASA fighter dataset (a-c) shows a fighter in a wind tunnel and contains 1.5 million tetrahedra. The full

resolution mesh (a) is adpated to the viewpoint and the classification (b) in order to render picture (c) with 250,000 tetrahedra

interactively. The Rbl dataset (d) is a portion of an endoplastic reticulum in a cell. Its 3.8 million tetrahedra are simplified to

260,000 tetrahedra using the segmentation in (d). Picture (e) shows a zoom to an adaption of the mesh.

[CL03] Y. Chiang and X. Lu. Progressive simplification of tetra-

hedral meshes preserving all isosurface topologies. In Com-

puter Graphics Forum (Special Issue for Eurographics ’03),

volume 22, pages 493–504, 2003.

[CM02] Prashant Chopra and Jörg Meyer. Tetfusion: an algorithm

for rapid tetrahedral mesh simplification. In Proceedings of the

conference on Visualization ’02, pages 133–140, 2002.

[CMRS03] P. Cignoni, C. Montani, C. Rocchini, and R. Scopigno.

External memory management and simplification of huge

meshes. IEEE Transactions on Visualization and Computer

Graphics, 9:525–537, Nov 2003.

[DDFM+04] E. Danovaro, L. De Floriani, P. Magillo, E. Puppo,

D. Sobrero, and N. Sokolovsky. A compact data structure for

level–of–detail tetrahedral meshes. Technical report, Univer-

sity of Genova, 2004.

[GI03] Stefan Gumhold and Martin Isenburg. Out-of-core compres-

sion for gigantic polygon meshes. In ACM Transactions on

Graphics, volume 22, pages 935–942, 2003.

[GZ05] Michael Garland and Yuan Zhou. Quadric-based simplifica-

tion in any dimension. ACM Transactions on Graphics, 24(2),

2005.

[Hop96] Hugues Hoppe. Progressive meshes. Computer Graphics,

30(Annual Conference Series):99–108, 1996.

[IL05] Martin Isenburg and Peter Lindstrom. Streaming meshes. In

IEEE Visualization 05, pages 231–238, 2005.

[KE00] M. Kraus and T. Ertl. Simplification of nonconvex tetrahe-

dral meshes. Electronic Proceedings of NSF/DoE Lake Tahoe

Workshop for Scientific Visualization, 2000.

[KQE04] M. Kraus, W. Qiao, and D. Ebert. Projecting tetrahedra

without rendering artifacts. In Proceedings of IEEE Visualiza-

tion ’04, pages 27–34, 2004.

[KSE04] T. Klein, S. Stegmaier, and T. Ertl. Hardware–accelerated

reconstruction of polygonal isosurface representations on un-

structured grids. In Proceedings of Pacific Graphics ’04, pages

186–195, 2004.

[MHC90] N. L. Max, P. Hanrahan, and R. Crawfis. Area and vol-

ume coherence for efficient visualization of 3d scalar functions.

Computer Graphics (San Diego Workshop on Volume Visual-

ization), 24(5):27–33, 1990.

[PH97] Jovan Popovic and Hugues Hoppe. Progressive simplicial

complexes. In SIGGRAPH, pages 217–224, 1997.

[RKE00] S. Roettger, M. Kraus, and T. Ertl. Hardware–accelerated

volume and isosurface rendering based on cell projection. In

IEEE Proceedings Visualization ’00, pages 109–116, 2000.

[RO96] Kevin J. Renze and James H. Oliver. Generalized unstruc-

tured decimation. IEEE Computer Graphics and Applications,

Nov 1996.

[SG98] O. G. Staadt and M. H. Gross. Progressive tetrahedraliza-

tions. In Proceedings of IEEE Visualization ’98, pages 397–

402, Oct 1998.

[ST90] P. Shirley and A. Tuchman. A polygonal approximation to

direct scalar volume rendering. ACM Computer Graphics (San

Diego Workshop on Volume Visualization), 5(4):63–70, 1990.

[VCL+05] Hyu Vo, Steven Callahan, Peter Lindstrom, Valerio Pas-

cucci, and Claudio Silva. Streaming simplification of tetrahe-

dral meshes. Technical report, LLNL technical report UCRL-

CONF-208710, 2005.

[Wil92] Peter L. Williams. Visibility-ordering meshed polyhedra.

ACM Transactions on Graphics, 11(2):103–126, 1992.

[YLPM05] S.-E. Yoon, P. Lindstrom, V. Pascucci, and D. Manocha.

Cache-oblivious mesh layouts. In ACM Transactions on

Graphics (SIGGRAPH), pages 886–893, 2005.

Journal of WSCG 136 ISBN 1213-6972 ISBN 80-86943-09-7

	E43-full.pdf

