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ABSTRACT 
Motion LoD (Level of Detail) is a preprocessing technique that generates multiple details of captured motion by 

eliminating joints. This LoD technique is applied to movie, game or VR environments for the purpose of 

improving speed of crowd animation. So far, replacement techniques such as ‘impostor’ and ‘rigid body motion’ 

are widely used on real-time crowd, since they dramatically improve speed of animation. However, our 

experiment shows that the number of joints has a greater effect on the animation speed than anticipated. To 

exploit this, we propose a new motion LoD technique that not only improves the speed but also preserves the 

quality of motion. Our approach lies in between impostor and skeletal animation, offering seamless motion 

details at run time. Joint-elimination priority of each captured motion is derived from joint importance, which is 

generated by the proposed posture error equation. Considering hierarchical depth and rotational variation of 

joint, our error equation measures posture difference successfully and allows finding key posture of the entire 

motion. This ‘motion analysis’ process contributes error reduction to the next ‘motion simplification’ stage, 

where multiple details of motion are regenerated by the proposed motion optimization. In order to reduce the 

burden of optimization, all the terms of the objective function - distance, string, and angle error - are defined by 

joint-position vectors. In this aspect, a constrained optimization problem is formulated in a quadratic form. Thus, 

a sequential quadratic programming (SQP), a nonlinear optimization method, is suitable for resolving this 

problem. As the result of our experiment, the proposed motion LoD technique improves the animation speed and 

visual quality of simplified motion. Moreover, our approach reduces the preprocessing time and automates the 

whole process of LoD generation. 
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1. INTRODUCTION 
In recent animated products, the number of joints and 

polygons of articulated bodies has been increased 

substantially. Furthermore, the number of bodies that 

can be rendered in crowd scenes is also increasing. 

According to these trends, many studies on crowd 

animation have been presented to date. These works 

can be classified into two major categories: (1) 

realism enhancement - behavior manipulation [TT94] 

[MT01][ST05][YMP+09], collision detection [Rey87] 

[TCP06][PAB07], and (2) speed improvement of 

crowd animation. In the past, enhancement of realism 

was the major area of research with regard to crowd 

animation. At present, however, due to GPU 

evolution, the demands of real-time crowd animation 

have increased and, for this reason, speed of 

animation is becoming another important research 

topic. Skinning vertices are transformed in the GPU 

rather than in CPU. Therefore, at each frame, the 

CPU sends to GPU only the initial pose of mesh and 

the transformation matrix of joints [Dom01]. This 

animation mechanism reduces the calculation time of 

the dynamic mesh and relatively increases the burden 

of joint transformation. In order to demonstrate this, 

we conducted an experiment on the effect of joints. 

Joints and polygons are both simplified into 8 levels 

and finally 64 levels of detail are created. For each 

detail, 10,000 articulated bodies are cloned and 

animated. Our experiment shows that the number of 

joints remarkably affects the overall speed of crowd 

animation. In comparison with polygon reduction 

(see Fig. 1), joint elimination appears to be even 

more effective. Although this skeletal simplification 

approach cannot surpass the animation speed of 

impostor technique [ABT00][TLC02][DHO+05], our 
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experiment shows that the speed of the lowest detail 

(8% detail) is about four times faster than the original 

animation (100% detail), without any other physical 

simulation or interpolation, i.e., just for playback.  

 

 

Figure 1. Experiment on 10,000 walking virtual 

humans (VHs). A VH consists of 40 joints and 

1,310 polygons. Joints and polygons are simplified 

at a rate of 100, 82, 70, 58, 45, 33, 20, and 8%. 

Each bar represents animation speed of 10,000 

VHs by frame per second (FPS) at GeForce 7800 

GTX 512 MB and Pentium D 3.0 Ghz. 

 

Our major contributions are as follows:  

Automatic level generation: Each joint has different 

hierarchical depth and rotational variance per motion. 

If a joint has fast moves, it can be considered that it 

contains more information than a slow joint. The 

priority of elimination of joint will be decided by this 

importance measure. In this paper we present an 

equation that automatically generates this importance. 

Fast preprocessing: From the motion capture system, 

a number of motions are accumulated. Animators 

who have access to these captured motions spend lots 

of time to eliminate joints with low importance and 

to re-create simplified motion. Our simplification 

method optimizes simplified motion by excluding 

mesh parameters in the objective function and by 

using a fast nonlinear optimization solver. 

Preserved motion quality: If the bone length is not 

consistent during motion, the quality of motion will 

decrease. Previous works on skeletal simplification 

[JT05][AOW06] mentioned about this bone length 

problem. In this approach, we succeed to avoid bone 

length variation by defining constraints of rigid bone.  

From these contributions, our approach not only 

reduces preprocessing time of optimization, but also 

considers the quality of simplified motion. Moreover, 

automatic generation of joint importance shows the 

practicality and flexibility of this method. 

2. RELATED WORKS 
There are two approaches on crowd animation for 

improving the speed: (1) the ‘impostor’ [ABT00] 

[TLC02][DHO+05], wherein an image sequence is 

applied instead of articulated motion, and (2) the 

‘skeletal simplification’ for simulation LoD [CH97] 

[CIF99][PW99][BK04][RGL05][KRK08] or motion 

LoD [GJG+03][JT05][AOW06]. Among these works 

the impostor is more efficient in terms of increasing 

the speed of crowd. However, this image technique is 

compromised by the following disadvantages: 

Reality: If the camera approaches an animated 

virtual human (VH) or moves rapidly around the 

crowd, the realism of the motion is deteriorated. 

Memory: To animate a long take or multiple 

motions, a great deal of memory space is necessary 

for saving entire image sequences. 

Interactivity: In a real-time environment, interaction 

between the user and VH would not be easy. 

Skeletal simplification, meanwhile, can gradually 

decrease detail of motion and at run time it can adjust 

motion details by controlling the number of joints. 

Moreover, the skeletal simplification can overcome 

these reality, memory, and interactivity problems. 

Over the last decade, many researches on skeletal 

simplification have been presented. [CH97] and 

[PW99] simplified manually the hierarchy of an 

articulated figure in order to improve the speed of 

physical simulation and facilitate convergence. 

However, these skeletal simplifications are unable to 

apply in the crowd motion using motion capture data. 

[GJG+03] proposed a manually constructed level of 

articulation to improve speed of the real-time 

networked environment. [BK04] described a method 

for simulating motion of complex plants. They used a 

preprocessing method to generate different plant 

structure, along with a set of simulation LoD. 

[AW04] proposed a joint posture clustering (JPC) 

method in order to reduce the number of 

transformation and improve the speed of animation. 

However, reducing transformation is not as fast as 

eliminating joint of motion. [RGL05] presented an 

adaptive algorithm for computing forward dynamics 

of articulated bodies using motion error metrics. 

Their approach simplifies the dynamics of a multi-

body system, based on the desired number of degrees 

of freedom and forces. [JT05] generated different 

levels of motion based on given animating mesh 

sequences. The joint structure is reconstructed by 

clustering rotation of triangles. [AOW06] proposed 

an optimized motion LoD for real-time crowd 

animation. In order to generate a simplified motion, 

they minimized error between the original and the 

simplified motion by designing a linear system that 

optimizes skinning matrices by least square 

approximation (LSA).  
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In the early period of skeletal simplification, joints 

were eliminated for the purpose of improving speed 

of physical simulation (simulation LoD). Recently, 

however, eliminating joint from a captured motion 

(motion LoD) became another important issue. 

3. MOTION LOD FRAMEWORK 
The overall animating pipeline of our approach is 

depicted in Fig. 2. First, at the preprocessing stage, 

motion and mesh are divided into a number of details 

through our motion and geometric LoD [Hop96]. The 

number of details is given by user and a discrete level 

of mesh is generated by edge collapsing. Simplified 

motion is connected to the corresponding mesh level 

by ‘motion mapping’. The background scene is also 

analyzed to populate simplified bodies into the scene. 

A depth map is generated from the top orthographic 

view of the VH’s movable region. This map is later 

used for calculating height and limiting boundary of 

VH’s movement. At the run-time stage, preprocessed 

results are gathered into the ‘simulation’ module. 

During simulation, VH’s root position, view frustum 

culling, and projected size of VH from the camera 

coordinates are generated and sent to the ‘scene 

generation’ via ‘LoD control’ or directly. Finally, the 

whole scene is rendered for each frame and camera 

attributes are modified for the next simulation loop. 

 

 

Figure 2. The overall pipeline of motion LoD. 

 

The proposed motion LoD consists of two sub-parts - 

motion analysis and simplification. Every motion has 

different properties, thus the way of simplifying 

motion must be distinguished among each motion. 

The proposed ‘motion analysis’ enables us to 

distinguish motion by generating key posture of 

motion and priority list of joint elimination. In the 

‘motion simplification’ stage, each motion level is 

generated. Joints that are selected from the priority 

list become frozen joints (see Section 5). At the ‘joint 

freezing’ stage, frozen joints are applied to the 

simplified structure of motion. Finally, at the ‘motion 

optimization’, our nonlinear optimization algorithm 

calculates a new simplified motion by minimizing the 

error between the original and the simplified motion. 

4. MOTION ANALYSIS 
Before simplifying a skeletal structure of motion, we 

need to know the elimination priority of joints. This 

priority list is created by sorting joint importance, 

which are measured by the sum of posture error. In 

this section, we propose a basic equation on posture 

error and show how we extract key posture and 

derive joint importance from the posture error. 

 

 

Figure 3. The evaluation terms of posture error 

Ej(tref, t). The length rc
j(t) is the distance between 

joint j and its child c at frame t. The radian θc
j(tref, 

t) is the angle of pc(tref)pjpc(t), where pc(t) is the 

position of joint c at frame t. 

 

4.1. Posture Error of Joint 
Our posture error equation considers two important 

factors - hierarchical depth and rotational variance of 

joint. For example, if a joint lies near the root of 

hierarchy, its rotation will propagate to descendents. 

Therefore, a higher level joint has a higher posture 

error than a lower level joint. The rotational variance 

is a more intuitive factor. If a joint rotates in a wide 

range during motion then the difference will increase. 

As described in Eq. (1), the posture error Ej(tref, t) is a 

posture difference of joint j from frame tref to t. 

 E௝ሺݐ୰ୣ୤, ሻݐ ൌ ∑ ቛቂ୰ೕ೎ሺ௧౨౛౜ሻା୰ೕ೎ሺ௧ሻቃ஘ೕ೎ሺ௧౨౛౜,௧ሻቛ೘೎సభ ଶ஠୰ౣ౗౮         (1) 

 

Basically, the posture error equation is a normalized 

summation of joint-trajectory distance between tref 

and t. Each specific term of equation is depicted in 

Fig. 3. The constant m is the total number of children 

of joint j and 2πrmax is the normalization value of 
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posture error equation. In our experiment, we set the 

rmax value as the summation of rc
root (c=1, …, m). In 

this equation, the hierarchical factor is covered by the 

number of descendants m and the average length of 

rc
j(tref) and rc

j(t). Meanwhile, the rotational factor is 

covered by θc
j(tref, t). Some previous works proposed 

a different way to evaluate posture error [LCR+02] 

[KPS03]. Our posture error equation automatically 

generates a normalized and weighted error. 

4.2. Key Posture of Motion 
From the Eq. (1), we create a 2D array of posture 

errors for each joint, where the row parameter is tref, 

column is t and array value is Ej(tref, t). The key 

posture is generated from the minimum sum of the 

row i.e. for each joint j, we select a reference frame 

tref and calculate the sum of posture errors on entire 

frame t (1 ≤ t ≤ n). The constant n is the number of 

motion frames. This error summation proceeds for all 

tref (1 ≤ tref ≤ n). As defined by Eq. (2), the reference 

frame tref with the minimum row sum is set to t
key

j, 

which is the key frame of joint j. 

௝୩ୣ୷ݐ  ൌ arg min௧౨౛౜ሺଵஸ௧౨౛౜ஸ௡ሻൣ∑ E௝ሺݐ୰ୣ୤, ሻ௡௧ୀଵݐ ൧     (2) 

 

As the result, each joint contains different key frame 

t
key

j. Key posture of motion is generated by applying 

matrix or quaternion that is defined at frame t
key

j. 

Since the key frame of each joint is extracted from 

the existing motion frames, the key posture doesn’t 

violate human constraint. As depicted in Fig. 4, we 

applied our key posture algorithm to several motions. 

 

 

Figure 4. The key posture generation results. 

4.3. Joint Importance 
Joint importance is a measure of average variance of 

a joint on the entire motion. From this value, we can 

generate the priority list for joint elimination. The 

joint importance εj can be obtained from Eq. (2). As 

defined by Eq. (3), the sum of the row t
key

j is 

normalized by the number of frames. A joint with 

low importance has a higher elimination priority. The 

value εj is used on the motion simplification stage as 

for creating the priority list for joint elimination. 

 ε௝ ൌ ሺͳ ݊ሻ⁄ ∑ E௝ሺݐ௝୩ୣ୷, ሻ௡௧ୀଵݐ                 (3) 

 

5. MOTION SIMPLIFICATION 
In this section, we describe how to minimize error 

between original and simplified motion. The goal is 

achieved by two stages - joint freezing and motion 

optimization. In order to construct a priority list of 

joint elimination and to generate frozen joints, the 

joint importance εj is applied. The basic terms of the 

proposed objective function are acquired from joint 

position vectors and frozen joints. 

5.1. Frozen Joint 
Before removing joint from a motion, we freeze joint 

(make it rigid) in order to keep useful parameters 

such as rigid bone length and angle. Frozen joints are 

selected by εj and by the number of joints that will be 

eliminated during motion simplification. The local 

transformation of frame tkey
j which has the minimum 

error sum over all frames is applied as a frozen joint. 

For each frozen joint, the bone length and cosine 

angle constraints can be defined as in Eq. (4). 

 b௖,௣ሺݐሻ ൌ ฮܠ௖ሺݐሻ െ ሻݐሻฮଶ                             (4) θ௝ሺݐ௣ሺܠ ൌ ሻݐ௖ሺܠൣ െ ሻ൧ݐ௝ሺܠ · ሻݐ௣ሺܠൣ െ ሻݐሻb௝,௣ሺݐሻ൧b௖,௝ሺݐ௝ሺܠ  

 

 

Figure 5. The frozen joint and motion attributes 

for optimization. A simplified posture is a posture 

of which we want to minimize the error. 
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As depicted in Fig. 5, the unknown motion consists 

of position vectors of joint xj(t), functions of bone 

length bc,p(t), and cosine angle θj(t), where p is parent 

and c is child of joint j. Here the cosine angle θj(t) is 

defined from 0 to π. For every frozen joint j, known 

values bc,p(0) and θj(0) of the key posture (keys are 

saved into frame zero) are pre-calculated. The rest 

pose of a VH’s mesh is modified by the key posture, 

including skinning weights re-arrangement on the 

frozen area. If a vertex is related to a frozen joint, the 

skinning weights move to its parent joint. 

5.2. Motion Optimization 
The basic idea of motion optimization is to minimize 

the sum of difference between the original motion 

xo
j(t) and simplified motion xj(t). Due to the frozen 

joints, the objective function must consider additional 

hard constraints such as the bone length and joint 

angle. As was defined by Eq. (4), these functions can 

be replaced by unknown vectors xj(t). Therefore, we 

formulate the objective function E as a summation of 

distance Ed, string Es, and angle Ea error as in Eq. (5). 

Sequential quadratic programming (SQP) [GMW81] 

[Fle87][Gle98], is applied to solve this problem. 

Each error term is multiplied by the weighting 

constants α, ȕ, and Ȗ. In our experiment, we applied 

0.2, 0.4 and 0.4 respectively. 

 E ൌ Eୢߙ ൅ Eୱߚ ൅  Eୟ                      (5)ߛ

 

Distance error: The square sum of the positional 

difference between the original joint position xo
j(t) 

and an unknown simplified joint position xj(t) is the 

distance error Ed as in Eq. (6). Constants f and n are 

the total number of frames and joints, respectively. 

Root joint (j =1) is excluded in the evaluation, since 

the root position of the simplified motion is 

constrained to be the same as the original position. 

 Eୢ ൌ ∑ ∑ ฮܠ௝ሺݐሻ െ ሻฮଶ௡௝ୀଶ௙௧ୀଵݐ௝୭ሺܠ            (6) 

 

String error: The square sum of joint-to-joint length 

difference between bc,p(t) and bc,p(0) is the string 

error Es as in Eq. (7). Function bc,p(t) is the length 

between joint c and p of the unknown simplified 

motion at frame t, where p is the first parent of c 

among joints not to be removed (non-frozen joint). 

Constant bc,p(0) is the same length at the key posture. 

Constant m is the total number of non-frozen joints. 

Root joint (c = 1) is excluded in the evaluation, since 

its parent joint does not exist. 

 Eୱ ൌ ∑ ∑ ฮb௖,௣ሺݐሻ െ b௖,௣ሺͲሻฮଶ௠௝ୀଶ௙௧ୀଵ         (7) 

 

Angle error: The square sum of approximated cosine 

difference between θr(t) and θr(0) is the angle error 

Ea, as in Eq. (8). Function θr(t) is the cosine value of 

joint r at frame t, where r is one of the frozen joints. 

Constant θr(0) is the same cosine value of the angle 

of joint r at the key posture. Constant n-m is the total 

number of frozen joints. In the case of non-frozen 

joints, the cosine value varies through the frame, and 

therefore is not considered here. 

 Eୟ ൌ ∑ ∑ ԡθ௥ሺݐሻ െ θ௥ሺͲሻԡଶ௡ି௠௥ୀଵ௙௧ୀଵ           (8) 

 

For the initial values, the original motion’s joint 

position is used. The local transformation value of 

each joint is recovered from the optimization result 

xj(t) and the hierarchical information of each joint. 

Our approach optimizes simplified motion from the 

motion data itself. The frozen joints are removed 

after fitting motion data into the meshed structure. 

Fig. 6 shows each level of simplified motion. 

 

 

Figure 6. Motion LoD results. The number of 

joints is indicated on the left, for each LoD 

posture. Each color corresponds to a joint. 

 

6. EXPERIMENTAL RESULTS 
In this section, we describe our experiments that 

address the advantage of our proposed method. We 

have conducted four experiments - preprocessing 

time, motion quality, memory, and animation speed. 
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6.1. Preprocessing Time 
The main advantage of our approach is that we use 

simple parameters in the optimization process. Since 

the previous works [JT05][RGL05][AOW06] include 

complex parameters such as velocity, acceleration, 

position, and normal of mesh, they give a burden of 

preprocessing time. As was described in Table 1, we 

analyzed the preprocessing time of four different 

methods. The number of joints, frames, and vertices 

(Nj, Nf, Nv) are described for each experiment. Each 

preprocessing time was measured by minutes (tm). 

Motion analysis contributes to a fast convergence. 

 

Methods tm Nj Nf Nv 

SMA 7.2 22 400 3030 

LSA 29.4 11 287 2239 

SQP 3.5 24 331 2679 

ASQP 0.8 24 331 2679 

Table 1. A comparison of preprocessing times; 

SMA [JT05]; LSA [AOW06]; SQP: Our method; 

ASQP: Our method with motion analysis 

 

6.2. Motion Quality 
By formulating constraints of bone length and angle, 

we succeed to attain reasonable quality of motion. In 

order to show this, we conducted an experiment on 

the average errors and variations of the bone length 

(see Fig. 7). Each motion is simplified into 8 levels 

of detail and the sum of bone errors is calculated for 

each posture (i.e. the sum of bone length differences 

in a frame). The blue and green bar is the average of 

the sum of bone errors over entire frames and levels 

of motion. In addition to the average bone error, we 

generated the variation of bone length as well. For 

each bone, the standard deviation of bone length is 

calculated over all frames of motion. For each level, 

we added standard deviations of all bones. The red 

and violet bar is the average standard deviation over 

all levels of motion. As the result, our approach 

shows better stability compared to the other approach. 

Moreover, the length variation is less than 3%, which 

is not perceivable with full attention [HRP04]. The 

enhancement of our approach is shown in Fig. 8. 

6.3. Memory 
A previous work on impostor [DHO+05] mentioned 

that 7 MB of memory are required for sampling a 

single frame of motion. Considering a 287-frame 

shrinking motion, more than 2 GB will be required. 

However, our approach needs only 10.3 MB for ten 

levels of motion (animation and geometry: 9.94 MB, 

texture: 0.36 MB). According to the experiment of 

polypostor [KDC+08], our approach also gives better 

efficiency. The memory cost will decrease more, if a 

temporal compression [Ari06] or a geometric LoD 

[PHB07] are applied into our framework. 

 

Figure 7. The comparison of average bone length 

errors and variations in logarithmic scale of mm. 

 

 

Figure 8. Enhancement in terms of motion quality; 

Top: Growth motion; Bottom: Rebound motion 

 

6.4. Animation Speed 
To conduct an experiment on speed, 5,000 VHs with 

200,000 joints are populated in the scene. Motion and 

mesh are simplified into ten levels. As described in 

Table 2, average animation speed is measured for 

four different types of animation with the same 

navigation path. During the navigation, our approach 

improves the speed by minimum two to maximum 

five times faster than the original. Moreover, owing 

to the GPU skinning technique, motion LoD is even 

faster than geometric LoD. We used the same 

simplification rate for both GLoD [Hop96][OZS+03] 

and MLoD. The hardware environment is GeForce 

7800 GTX 512 MB and Pentium D 3.0 Ghz. 

 

 Original GLoD MLoD G+MLoD 

Nav1 6.78 12.44 17.83 21.73 

Nav2 12.49 20.62 26.44 30.43 

Table 2. Average animation speed in FPS for two 

navigation paths (Nav1, Nav2); GLoD: Navigation 

with Geometric LoD; MLoD: with Motion LoD; 

G+MLoD: with Geometric and Motion LoD 
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Finally, as was depicted in Fig. 9, we have populated 

15,880 VHs in a stadium environment to show the 

efficiency of our motion LoD approach. A total six 

different VH models and six different motions with 

about 1,240 frames were preprocessed by geometric 

LoD and motion LoD, respectively. The size of 

memory required for simplified VH was 41.7 MB 

(animation and geometry: 39.88 MB, texture: 1.82 

MB). We were able to animate 805,189 joints and 

56,775,042 polygons at 5.23 FPS with GeForce 8800 

GTX 768 MB and Core2Duo 2.4 Ghz. 

7. CONCLUSION 
We have presented a new LoD framework that 

improves the performance of a real-time crowd 

environment. We automate the whole process and 

reduce the preprocessing time for the practical use. 

Moreover, the bone length and angle preservation 

improves the animation quality of the simplified 

motion. As the result, we verified that our approach 

can be adopted in a crowd animation framework. 

However, the proposed motion LoD doesn’t consider 

the end effector or foot plant of the simplified motion. 

We assumed that the end effector is not a serious 

problem, since the detail of low level motion is 

indistinguishable in the scene. Our approach is not 

suitable for physics based animation, since the 

motion analysis and simplification is running on the 

preprocessing time. The proposed motion LoD is 

suitable for a real-time environment with captured 

motion. The error of LoD transition is not considered 

in our optimization. We tried to minimize the artifact 

by controlling LoD with projected pixel size of VH. 

For improving the quality of optimization, some 

future works remain. The proposed optimization 

focuses on a fast preprocessing with affordable 

accuracy of the simplified result. Therefore, other 

important issues such as motion smoothness are not 

considered in the proposed objective function. By 

resolving the temporal coherence problem, the 

quality of simplified motion will surely be improved. 

Another work that should be considered is to derive 

multiple key postures, since the error of simplified 

motion strictly depends on the key posture. The 

proposed motion LoD technique is expected to be 

more useful in the applications of highly crowded 

environments such as an urban simulation and games, 

since a great number of virtual humans are often 

occluded or appear tiny in the entire scene. It can 

readily be surmised that the number of virtual 

humans and the complexity of a skeleton would 

greatly increase in the near future. Motion LoD will 

be more challenging than ever before. 

Figure 9. The Stadium: A massive crowd scene; Top left: A scene populated with 15,880 VHs, 805,189 

joints, and 56,775,042 polygons; Top right: Top left scene with colored joints; Bottom left: Top right 

scene shown from the other camera view (motion LoD is applied from the top scene’s camera view); 

Bottom right: Bottom left scene without motion LoD (for comparing visual quality of our motion LoD); 

The average frame rate is 5.23 FPS (original scene is 1.21 FPS) 
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