

Automated Motion LoD with Rigid Constraints

Junghyun Ahn

VRLab, EPFL
IC ISIM, Station 14
 1015, Lausanne

Switzerland

junghyun.ahn@epfl.ch

Byung-Cheol Kim

EECS, KAIST
335 Gwahangno, Yusung

305-701, Daejeon
South Korea

ciel@vr.kaist.ac.kr

Daniel Thalmann

VRLab, EPFL
IC ISIM, Station 14

1015, Lausanne
Switzerland

daniel.thalmann@epfl.ch

ABSTRACT
Motion LoD (Level of Detail) is a preprocessing technique that generates multiple details of captured motion by

eliminating joints. This LoD technique is applied to movie, game or VR environments for the purpose of

improving speed of crowd animation. So far, replacement techniques such as ‘impostor’ and ‘rigid body motion’

are widely used on real-time crowd, since they dramatically improve speed of animation. However, our

experiment shows that the number of joints has a greater effect on the animation speed than anticipated. To

exploit this, we propose a new motion LoD technique that not only improves the speed but also preserves the

quality of motion. Our approach lies in between impostor and skeletal animation, offering seamless motion

details at run time. Joint-elimination priority of each captured motion is derived from joint importance, which is

generated by the proposed posture error equation. Considering hierarchical depth and rotational variation of

joint, our error equation measures posture difference successfully and allows finding key posture of the entire

motion. This ‘motion analysis’ process contributes error reduction to the next ‘motion simplification’ stage,

where multiple details of motion are regenerated by the proposed motion optimization. In order to reduce the

burden of optimization, all the terms of the objective function - distance, string, and angle error - are defined by

joint-position vectors. In this aspect, a constrained optimization problem is formulated in a quadratic form. Thus,

a sequential quadratic programming (SQP), a nonlinear optimization method, is suitable for resolving this

problem. As the result of our experiment, the proposed motion LoD technique improves the animation speed and

visual quality of simplified motion. Moreover, our approach reduces the preprocessing time and automates the

whole process of LoD generation.

Keywords
Level of detail, Crowd animation, Real-time animation, Motion analysis, Motion optimization

1. INTRODUCTION
In recent animated products, the number of joints and

polygons of articulated bodies has been increased

substantially. Furthermore, the number of bodies that

can be rendered in crowd scenes is also increasing.

According to these trends, many studies on crowd

animation have been presented to date. These works

can be classified into two major categories: (1)

realism enhancement - behavior manipulation [TT94]

[MT01][ST05][YMP+09], collision detection [Rey87]

[TCP06][PAB07], and (2) speed improvement of

crowd animation. In the past, enhancement of realism

was the major area of research with regard to crowd

animation. At present, however, due to GPU

evolution, the demands of real-time crowd animation

have increased and, for this reason, speed of

animation is becoming another important research

topic. Skinning vertices are transformed in the GPU

rather than in CPU. Therefore, at each frame, the

CPU sends to GPU only the initial pose of mesh and

the transformation matrix of joints [Dom01]. This

animation mechanism reduces the calculation time of

the dynamic mesh and relatively increases the burden

of joint transformation. In order to demonstrate this,

we conducted an experiment on the effect of joints.

Joints and polygons are both simplified into 8 levels

and finally 64 levels of detail are created. For each

detail, 10,000 articulated bodies are cloned and

animated. Our experiment shows that the number of

joints remarkably affects the overall speed of crowd

animation. In comparison with polygon reduction

(see Fig. 1), joint elimination appears to be even

more effective. Although this skeletal simplification

approach cannot surpass the animation speed of

impostor technique [ABT00][TLC02][DHO+05], our

Permission to make digital or hard copies of all or part of

this work for personal or classroom use is granted without

fee provided that copies are not made or distributed for

profit or commercial advantage and that copies bear this

notice and the full citation on the first page. To copy

otherwise, or republish, to post on servers or to

redistribute to lists, requires prior specific permission

and/or a fee.

Kwangyun Wohn

GSCT, KAIST
335 Gwahangno, Yusung

305-701, Daejeon
South Korea

wohn@kaist.ac.kr

105 Journal of WSCG

experiment shows that the speed of the lowest detail

(8% detail) is about four times faster than the original

animation (100% detail), without any other physical

simulation or interpolation, i.e., just for playback.

Figure 1. Experiment on 10,000 walking virtual

humans (VHs). A VH consists of 40 joints and

1,310 polygons. Joints and polygons are simplified

at a rate of 100, 82, 70, 58, 45, 33, 20, and 8%.

Each bar represents animation speed of 10,000

VHs by frame per second (FPS) at GeForce 7800

GTX 512 MB and Pentium D 3.0 Ghz.

Our major contributions are as follows:

Automatic level generation: Each joint has different

hierarchical depth and rotational variance per motion.

If a joint has fast moves, it can be considered that it

contains more information than a slow joint. The

priority of elimination of joint will be decided by this

importance measure. In this paper we present an

equation that automatically generates this importance.

Fast preprocessing: From the motion capture system,

a number of motions are accumulated. Animators

who have access to these captured motions spend lots

of time to eliminate joints with low importance and

to re-create simplified motion. Our simplification

method optimizes simplified motion by excluding

mesh parameters in the objective function and by

using a fast nonlinear optimization solver.

Preserved motion quality: If the bone length is not

consistent during motion, the quality of motion will

decrease. Previous works on skeletal simplification

[JT05][AOW06] mentioned about this bone length

problem. In this approach, we succeed to avoid bone

length variation by defining constraints of rigid bone.

From these contributions, our approach not only

reduces preprocessing time of optimization, but also

considers the quality of simplified motion. Moreover,

automatic generation of joint importance shows the

practicality and flexibility of this method.

2. RELATED WORKS
There are two approaches on crowd animation for

improving the speed: (1) the ‘impostor’ [ABT00]

[TLC02][DHO+05], wherein an image sequence is

applied instead of articulated motion, and (2) the

‘skeletal simplification’ for simulation LoD [CH97]

[CIF99][PW99][BK04][RGL05][KRK08] or motion

LoD [GJG+03][JT05][AOW06]. Among these works

the impostor is more efficient in terms of increasing

the speed of crowd. However, this image technique is

compromised by the following disadvantages:

Reality: If the camera approaches an animated

virtual human (VH) or moves rapidly around the

crowd, the realism of the motion is deteriorated.

Memory: To animate a long take or multiple

motions, a great deal of memory space is necessary

for saving entire image sequences.

Interactivity: In a real-time environment, interaction

between the user and VH would not be easy.

Skeletal simplification, meanwhile, can gradually

decrease detail of motion and at run time it can adjust

motion details by controlling the number of joints.

Moreover, the skeletal simplification can overcome

these reality, memory, and interactivity problems.

Over the last decade, many researches on skeletal

simplification have been presented. [CH97] and

[PW99] simplified manually the hierarchy of an

articulated figure in order to improve the speed of

physical simulation and facilitate convergence.

However, these skeletal simplifications are unable to

apply in the crowd motion using motion capture data.

[GJG+03] proposed a manually constructed level of

articulation to improve speed of the real-time

networked environment. [BK04] described a method

for simulating motion of complex plants. They used a

preprocessing method to generate different plant

structure, along with a set of simulation LoD.

[AW04] proposed a joint posture clustering (JPC)

method in order to reduce the number of

transformation and improve the speed of animation.

However, reducing transformation is not as fast as

eliminating joint of motion. [RGL05] presented an

adaptive algorithm for computing forward dynamics

of articulated bodies using motion error metrics.

Their approach simplifies the dynamics of a multi-

body system, based on the desired number of degrees

of freedom and forces. [JT05] generated different

levels of motion based on given animating mesh

sequences. The joint structure is reconstructed by

clustering rotation of triangles. [AOW06] proposed

an optimized motion LoD for real-time crowd

animation. In order to generate a simplified motion,

they minimized error between the original and the

simplified motion by designing a linear system that

optimizes skinning matrices by least square

approximation (LSA).

106

In the early period of skeletal simplification, joints

were eliminated for the purpose of improving speed

of physical simulation (simulation LoD). Recently,

however, eliminating joint from a captured motion

(motion LoD) became another important issue.

3. MOTION LOD FRAMEWORK
The overall animating pipeline of our approach is

depicted in Fig. 2. First, at the preprocessing stage,

motion and mesh are divided into a number of details

through our motion and geometric LoD [Hop96]. The

number of details is given by user and a discrete level

of mesh is generated by edge collapsing. Simplified

motion is connected to the corresponding mesh level

by ‘motion mapping’. The background scene is also

analyzed to populate simplified bodies into the scene.

A depth map is generated from the top orthographic

view of the VH’s movable region. This map is later

used for calculating height and limiting boundary of

VH’s movement. At the run-time stage, preprocessed

results are gathered into the ‘simulation’ module.

During simulation, VH’s root position, view frustum

culling, and projected size of VH from the camera

coordinates are generated and sent to the ‘scene

generation’ via ‘LoD control’ or directly. Finally, the

whole scene is rendered for each frame and camera

attributes are modified for the next simulation loop.

Figure 2. The overall pipeline of motion LoD.

The proposed motion LoD consists of two sub-parts -

motion analysis and simplification. Every motion has

different properties, thus the way of simplifying

motion must be distinguished among each motion.

The proposed ‘motion analysis’ enables us to

distinguish motion by generating key posture of

motion and priority list of joint elimination. In the

‘motion simplification’ stage, each motion level is

generated. Joints that are selected from the priority

list become frozen joints (see Section 5). At the ‘joint

freezing’ stage, frozen joints are applied to the

simplified structure of motion. Finally, at the ‘motion

optimization’, our nonlinear optimization algorithm

calculates a new simplified motion by minimizing the

error between the original and the simplified motion.

4. MOTION ANALYSIS
Before simplifying a skeletal structure of motion, we

need to know the elimination priority of joints. This

priority list is created by sorting joint importance,

which are measured by the sum of posture error. In

this section, we propose a basic equation on posture

error and show how we extract key posture and

derive joint importance from the posture error.

Figure 3. The evaluation terms of posture error

Ej(tref, t). The length rc
j(t) is the distance between

joint j and its child c at frame t. The radian θc
j(tref,

t) is the angle of pc(tref)pjpc(t), where pc(t) is the

position of joint c at frame t.

4.1. Posture Error of Joint
Our posture error equation considers two important

factors - hierarchical depth and rotational variance of

joint. For example, if a joint lies near the root of

hierarchy, its rotation will propagate to descendents.

Therefore, a higher level joint has a higher posture

error than a lower level joint. The rotational variance

is a more intuitive factor. If a joint rotates in a wide

range during motion then the difference will increase.

As described in Eq. (1), the posture error Ej(tref, t) is a

posture difference of joint j from frame tref to t.

 E௝ሺݐ୰ୣ୤, ሻݐ ൌ ∑ ቛቂ୰ೕ೎ሺ௧౨౛౜ሻା୰ೕ೎ሺ௧ሻቃ஘ೕ೎ሺ௧౨౛౜,௧ሻቛ೘೎సభ ଶ஠୰ౣ౗౮ (1)

Basically, the posture error equation is a normalized

summation of joint-trajectory distance between tref

and t. Each specific term of equation is depicted in

Fig. 3. The constant m is the total number of children

of joint j and 2πrmax is the normalization value of

107 Journal of WSCG

posture error equation. In our experiment, we set the

rmax value as the summation of rc
root (c=1, …, m). In

this equation, the hierarchical factor is covered by the

number of descendants m and the average length of

rc
j(tref) and rc

j(t). Meanwhile, the rotational factor is

covered by θc
j(tref, t). Some previous works proposed

a different way to evaluate posture error [LCR+02]

[KPS03]. Our posture error equation automatically

generates a normalized and weighted error.

4.2. Key Posture of Motion
From the Eq. (1), we create a 2D array of posture

errors for each joint, where the row parameter is tref,

column is t and array value is Ej(tref, t). The key

posture is generated from the minimum sum of the

row i.e. for each joint j, we select a reference frame

tref and calculate the sum of posture errors on entire

frame t (1 ≤ t ≤ n). The constant n is the number of

motion frames. This error summation proceeds for all

tref (1 ≤ tref ≤ n). As defined by Eq. (2), the reference

frame tref with the minimum row sum is set to t
key

j,

which is the key frame of joint j.

௝୩ୣ୷ݐ ൌ arg min௧౨౛౜ሺଵஸ௧౨౛౜ஸ௡ሻൣ∑ E௝ሺݐ୰ୣ୤, ሻ௡௧ୀଵݐ ൧ (2)

As the result, each joint contains different key frame

t
key

j. Key posture of motion is generated by applying

matrix or quaternion that is defined at frame t
key

j.

Since the key frame of each joint is extracted from

the existing motion frames, the key posture doesn’t

violate human constraint. As depicted in Fig. 4, we

applied our key posture algorithm to several motions.

Figure 4. The key posture generation results.

4.3. Joint Importance
Joint importance is a measure of average variance of

a joint on the entire motion. From this value, we can

generate the priority list for joint elimination. The

joint importance εj can be obtained from Eq. (2). As

defined by Eq. (3), the sum of the row t
key

j is

normalized by the number of frames. A joint with

low importance has a higher elimination priority. The

value εj is used on the motion simplification stage as

for creating the priority list for joint elimination.

 ε௝ ൌ ሺͳ ݊ሻ⁄ ∑ E௝ሺݐ௝୩ୣ୷, ሻ௡௧ୀଵݐ (3)

5. MOTION SIMPLIFICATION
In this section, we describe how to minimize error

between original and simplified motion. The goal is

achieved by two stages - joint freezing and motion

optimization. In order to construct a priority list of

joint elimination and to generate frozen joints, the

joint importance εj is applied. The basic terms of the

proposed objective function are acquired from joint

position vectors and frozen joints.

5.1. Frozen Joint
Before removing joint from a motion, we freeze joint

(make it rigid) in order to keep useful parameters

such as rigid bone length and angle. Frozen joints are

selected by εj and by the number of joints that will be

eliminated during motion simplification. The local

transformation of frame tkey
j which has the minimum

error sum over all frames is applied as a frozen joint.

For each frozen joint, the bone length and cosine

angle constraints can be defined as in Eq. (4).

 b௖,௣ሺݐሻ ൌ ฮܠ௖ሺݐሻ െ ሻݐሻฮଶ (4) θ௝ሺݐ௣ሺܠ ൌ ሻݐ௖ሺܠൣ െ ሻ൧ݐ௝ሺܠ · ሻݐ௣ሺܠൣ െ ሻݐሻb௝,௣ሺݐሻ൧b௖,௝ሺݐ௝ሺܠ

Figure 5. The frozen joint and motion attributes

for optimization. A simplified posture is a posture

of which we want to minimize the error.

108

As depicted in Fig. 5, the unknown motion consists

of position vectors of joint xj(t), functions of bone

length bc,p(t), and cosine angle θj(t), where p is parent

and c is child of joint j. Here the cosine angle θj(t) is

defined from 0 to π. For every frozen joint j, known

values bc,p(0) and θj(0) of the key posture (keys are

saved into frame zero) are pre-calculated. The rest

pose of a VH’s mesh is modified by the key posture,

including skinning weights re-arrangement on the

frozen area. If a vertex is related to a frozen joint, the

skinning weights move to its parent joint.

5.2. Motion Optimization
The basic idea of motion optimization is to minimize

the sum of difference between the original motion

xo
j(t) and simplified motion xj(t). Due to the frozen

joints, the objective function must consider additional

hard constraints such as the bone length and joint

angle. As was defined by Eq. (4), these functions can

be replaced by unknown vectors xj(t). Therefore, we

formulate the objective function E as a summation of

distance Ed, string Es, and angle Ea error as in Eq. (5).

Sequential quadratic programming (SQP) [GMW81]

[Fle87][Gle98], is applied to solve this problem.

Each error term is multiplied by the weighting

constants α, ȕ, and Ȗ. In our experiment, we applied

0.2, 0.4 and 0.4 respectively.

 E ൌ Eୢߙ ൅ Eୱߚ ൅ Eୟ (5)ߛ

Distance error: The square sum of the positional

difference between the original joint position xo
j(t)

and an unknown simplified joint position xj(t) is the

distance error Ed as in Eq. (6). Constants f and n are

the total number of frames and joints, respectively.

Root joint (j =1) is excluded in the evaluation, since

the root position of the simplified motion is

constrained to be the same as the original position.

 Eୢ ൌ ∑ ∑ ฮܠ௝ሺݐሻ െ ሻฮଶ௡௝ୀଶ௙௧ୀଵݐ௝୭ሺܠ (6)

String error: The square sum of joint-to-joint length

difference between bc,p(t) and bc,p(0) is the string

error Es as in Eq. (7). Function bc,p(t) is the length

between joint c and p of the unknown simplified

motion at frame t, where p is the first parent of c

among joints not to be removed (non-frozen joint).

Constant bc,p(0) is the same length at the key posture.

Constant m is the total number of non-frozen joints.

Root joint (c = 1) is excluded in the evaluation, since

its parent joint does not exist.

 Eୱ ൌ ∑ ∑ ฮb௖,௣ሺݐሻ െ b௖,௣ሺͲሻฮଶ௠௝ୀଶ௙௧ୀଵ (7)

Angle error: The square sum of approximated cosine

difference between θr(t) and θr(0) is the angle error

Ea, as in Eq. (8). Function θr(t) is the cosine value of

joint r at frame t, where r is one of the frozen joints.

Constant θr(0) is the same cosine value of the angle

of joint r at the key posture. Constant n-m is the total

number of frozen joints. In the case of non-frozen

joints, the cosine value varies through the frame, and

therefore is not considered here.

 Eୟ ൌ ∑ ∑ ԡθ௥ሺݐሻ െ θ௥ሺͲሻԡଶ௡ି௠௥ୀଵ௙௧ୀଵ (8)

For the initial values, the original motion’s joint

position is used. The local transformation value of

each joint is recovered from the optimization result

xj(t) and the hierarchical information of each joint.

Our approach optimizes simplified motion from the

motion data itself. The frozen joints are removed

after fitting motion data into the meshed structure.

Fig. 6 shows each level of simplified motion.

Figure 6. Motion LoD results. The number of

joints is indicated on the left, for each LoD

posture. Each color corresponds to a joint.

6. EXPERIMENTAL RESULTS
In this section, we describe our experiments that

address the advantage of our proposed method. We

have conducted four experiments - preprocessing

time, motion quality, memory, and animation speed.

109 Journal of WSCG

6.1. Preprocessing Time
The main advantage of our approach is that we use

simple parameters in the optimization process. Since

the previous works [JT05][RGL05][AOW06] include

complex parameters such as velocity, acceleration,

position, and normal of mesh, they give a burden of

preprocessing time. As was described in Table 1, we

analyzed the preprocessing time of four different

methods. The number of joints, frames, and vertices

(Nj, Nf, Nv) are described for each experiment. Each

preprocessing time was measured by minutes (tm).

Motion analysis contributes to a fast convergence.

Methods tm Nj Nf Nv

SMA 7.2 22 400 3030

LSA 29.4 11 287 2239

SQP 3.5 24 331 2679

ASQP 0.8 24 331 2679

Table 1. A comparison of preprocessing times;

SMA [JT05]; LSA [AOW06]; SQP: Our method;

ASQP: Our method with motion analysis

6.2. Motion Quality
By formulating constraints of bone length and angle,

we succeed to attain reasonable quality of motion. In

order to show this, we conducted an experiment on

the average errors and variations of the bone length

(see Fig. 7). Each motion is simplified into 8 levels

of detail and the sum of bone errors is calculated for

each posture (i.e. the sum of bone length differences

in a frame). The blue and green bar is the average of

the sum of bone errors over entire frames and levels

of motion. In addition to the average bone error, we

generated the variation of bone length as well. For

each bone, the standard deviation of bone length is

calculated over all frames of motion. For each level,

we added standard deviations of all bones. The red

and violet bar is the average standard deviation over

all levels of motion. As the result, our approach

shows better stability compared to the other approach.

Moreover, the length variation is less than 3%, which

is not perceivable with full attention [HRP04]. The

enhancement of our approach is shown in Fig. 8.

6.3. Memory
A previous work on impostor [DHO+05] mentioned

that 7 MB of memory are required for sampling a

single frame of motion. Considering a 287-frame

shrinking motion, more than 2 GB will be required.

However, our approach needs only 10.3 MB for ten

levels of motion (animation and geometry: 9.94 MB,

texture: 0.36 MB). According to the experiment of

polypostor [KDC+08], our approach also gives better

efficiency. The memory cost will decrease more, if a

temporal compression [Ari06] or a geometric LoD

[PHB07] are applied into our framework.

Figure 7. The comparison of average bone length

errors and variations in logarithmic scale of mm.

Figure 8. Enhancement in terms of motion quality;

Top: Growth motion; Bottom: Rebound motion

6.4. Animation Speed
To conduct an experiment on speed, 5,000 VHs with

200,000 joints are populated in the scene. Motion and

mesh are simplified into ten levels. As described in

Table 2, average animation speed is measured for

four different types of animation with the same

navigation path. During the navigation, our approach

improves the speed by minimum two to maximum

five times faster than the original. Moreover, owing

to the GPU skinning technique, motion LoD is even

faster than geometric LoD. We used the same

simplification rate for both GLoD [Hop96][OZS+03]

and MLoD. The hardware environment is GeForce

7800 GTX 512 MB and Pentium D 3.0 Ghz.

 Original GLoD MLoD G+MLoD

Nav1 6.78 12.44 17.83 21.73

Nav2 12.49 20.62 26.44 30.43

Table 2. Average animation speed in FPS for two

navigation paths (Nav1, Nav2); GLoD: Navigation

with Geometric LoD; MLoD: with Motion LoD;

G+MLoD: with Geometric and Motion LoD

110

Finally, as was depicted in Fig. 9, we have populated

15,880 VHs in a stadium environment to show the

efficiency of our motion LoD approach. A total six

different VH models and six different motions with

about 1,240 frames were preprocessed by geometric

LoD and motion LoD, respectively. The size of

memory required for simplified VH was 41.7 MB

(animation and geometry: 39.88 MB, texture: 1.82

MB). We were able to animate 805,189 joints and

56,775,042 polygons at 5.23 FPS with GeForce 8800

GTX 768 MB and Core2Duo 2.4 Ghz.

7. CONCLUSION
We have presented a new LoD framework that

improves the performance of a real-time crowd

environment. We automate the whole process and

reduce the preprocessing time for the practical use.

Moreover, the bone length and angle preservation

improves the animation quality of the simplified

motion. As the result, we verified that our approach

can be adopted in a crowd animation framework.

However, the proposed motion LoD doesn’t consider

the end effector or foot plant of the simplified motion.

We assumed that the end effector is not a serious

problem, since the detail of low level motion is

indistinguishable in the scene. Our approach is not

suitable for physics based animation, since the

motion analysis and simplification is running on the

preprocessing time. The proposed motion LoD is

suitable for a real-time environment with captured

motion. The error of LoD transition is not considered

in our optimization. We tried to minimize the artifact

by controlling LoD with projected pixel size of VH.

For improving the quality of optimization, some

future works remain. The proposed optimization

focuses on a fast preprocessing with affordable

accuracy of the simplified result. Therefore, other

important issues such as motion smoothness are not

considered in the proposed objective function. By

resolving the temporal coherence problem, the

quality of simplified motion will surely be improved.

Another work that should be considered is to derive

multiple key postures, since the error of simplified

motion strictly depends on the key posture. The

proposed motion LoD technique is expected to be

more useful in the applications of highly crowded

environments such as an urban simulation and games,

since a great number of virtual humans are often

occluded or appear tiny in the entire scene. It can

readily be surmised that the number of virtual

humans and the complexity of a skeleton would

greatly increase in the near future. Motion LoD will

be more challenging than ever before.

Figure 9. The Stadium: A massive crowd scene; Top left: A scene populated with 15,880 VHs, 805,189

joints, and 56,775,042 polygons; Top right: Top left scene with colored joints; Bottom left: Top right

scene shown from the other camera view (motion LoD is applied from the top scene’s camera view);

Bottom right: Bottom left scene without motion LoD (for comparing visual quality of our motion LoD);

The average frame rate is 5.23 FPS (original scene is 1.21 FPS)

111 Journal of WSCG

8. ACKNOWLEDGMENTS
This research was supported in part by a grant from

European Union (EU) FP7 funded IP project,

CYBEREMOTIONS (Grant: 231323), from Swiss

National Research Foundation (FNRS) funded

project, AERIALCROWDS (Grant: CRSI20-122696),

and from KAIST Institute for Entertainment

Engineering (KIEE). The authors wish to thank Dr.

Stéphane Gobron, Quentin Silvestre, Clément Marx,

and Olivier Renault for the discussions and supports.

9. REFERENCES
[ABT00] Aubel A., Boulic R., and Thalmann D., Real-time

display of virtual humans: Levels of detail and

impostors, IEEE Transactions on Circuits and Systems

for Video Technology, 10(2): 207–217, 2000.

[AOW06] Ahn J., Oh S., and Wohn K., Optimized motion

simplification for crowd animation, Computer

Animation and Virtual Worlds, 17(3–4): 155–165,

2006.

[Ari06] Arikan O., Compression of motion capture

databases, ACM Transactions on Graphics, 25(3):

890–897, 2006.

[AW04] Ahn J., and Wohn K., Motion level-of-detail: A

simplification method on crowd scene, Computer

Animation and Social Agents, pp. 129–137, 2004.

[BK04] Beaudoin J., and Keyser J., Simulation levels of

detail for plant motion, Symposium on Computer

Animation, pp. 297–304, 2004.

[CH97] Carlson D. A., and Hodgins J. K., Simulation levels

of detail for real-time animation, Graphics Interface, pp.

1–8, 1997.

[CIF99] Chenney S., Ichnowski J., and Forsyth D.,

Dynamics modeling and culling, IEEE Computer

Graphics and Applications, 19(2): 79–87, 1999.

[DHO+05] Dobbyn S., Hamill J., O’Conor K., and

O’Sullivan C., Geopostors: a real-time geometry /

impostor crowd rendering system, Symposium on

Interactive 3D graphics and games, pp. 95–102, 2005.

[Dom01] Dominé S., Mesh skinning, NVIDIA, 2001.

(http://developer.nvidia.com/object/skinning.html)

[Fle87] Fletcher R., Practical methods of optimization (2nd

edition), Wiley-Interscience, 1987.

[GJG+03] Giacomo T. D., Joslin C., Garchery S., and

Magnenat-Thalmann N., Adaptation of facial and body

animation for mpeg-based architectures, Cyberworlds,

p. 221, 2003.

[Gle98] Gleicher M., Retargetting motion to new

characters, SIGGRAPH, pp. 33–42, 1998.

[GMW81] Gill P., Murray W., and Wright M., Practical

optimization, Academic Press, 1981.

[Hop96] Hoppe H., Progressive meshes, SIGGRAPH, pp.

99–108, 1996.

[HRP04] Harrison J., Rensink R. A., and van de Panne M.,

Obscuring length changes during animated motion,

ACM Transactions on Graphics, 23(3): 569–573, 2004.

[JT05] James D. L., and Twigg C. D., Skinning mesh

animations, ACM Transactions on Graphics, 24(3):

399–407, 2005.

[KDC+08] Kavan L., Dobbyn S., Collins S., Zara J., and

O’Sullivan C., Polypostors: 2D polygonal impostors

for 3D crowds, Symposium on Interactive 3D graphics

and games, pp. 149–155, 2008.

[KPS03] hoon Kim T., Park S. I., and Shin S. Y., Rhythmic

motion synthesis based on motion-beat analysis, ACM

Transactions on Graphics, 22(3): 392–401, 2003.

[KRK08] Kim S., Redon S., and Kim Y. J., View-

dependent dynamics of articulated bodies, Computer

Animation and Virtual Worlds, 19(3–4): 223–233,

2008.

[LCR+02] Lee J., Chai J., Reitsma P. S. A., Hodgins J. K.,

and Pollard N. S., Interactive control of avatars

animated with human motion data, SIGGRAPH, pp.

491–500, 2002.

[MT01] Musse S. R., and Thalmann D., Hierarchical

model for real time simulation of virtual human crowds,

IEEE Transactions on Visualization and Computer

Graphics, 7(2): 152–164, 2001.

[OZS+03] Oliveira J., Zhang D., Spanlang B., and Buxton

B., Animating Scanned Human Models, Journal of

WSCG, 11(2): 362–369, 2003.

[PAB07] Pelechano N., Allbeck J. M., and Badler N. I.,

Controlling individual agents in high-density crowd

simulation, Symposium on Computer Animation, pp.

99–108, 2007.

[PHB07] Payan F., Hahmann S., and Bonneau G.-P.,

Deforming surface simplification based on dynamic

geometry sampling, IEEE International Conference on

Shape Modeling and Applications, pp.71–80, 2007.

[PW99] Popović Z., and Witkin A., Physically based

motion transformation, SIGGRAPH, pp. 11–20, 1999.

[Rey87] Reynolds C. W., Flocks, herds and schools: A

distributed behavioral model, SIGGRAPH, pp. 25–34,

1987.

[RGL05] Redon S., Galoppo N., and Lin M. C., Adaptive

dynamics of articulated bodies, ACM Transactions on

Graphics, 24(3): 936–945, 2005.

[ST05] Shao W., Terzopoulos D., Autonomous pedestrians,

Symposium on Computer Animation, pp. 19–28, 2005.

[TCP06] Treuille A., Cooper S., and Popović Z.,

Continuum crowds, ACM Transactions on Graphics,

25(3): 1160–1168, 2006.

[TLC02] Tecchia F., Loscos C., and Chrysanthou Y.,

Image based crowd rendering, IEEE Computer

Graphics and Applications, 22(2): 36–43, 2002.

[TT94] Tu X., and Terzopoulos D., Artificial fishes:

physics, locomotion, perception, behavior, SIGGRAPH,

pp.43–50, 1994.

[YMP+09] Yersin B., Maïm J., Pettré J., and Thalmann D.,

Crowd patches: populating large-scale virtual

environments for real-time applications, Symposium

on Interactive 3D graphics and games, pp. 207–214,

2009.

112

	!_2010_J_WSCG_1-3.pdf
	E37-full.pdf

