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ABSTRACT

In this work we propose a generalization of the Heat Kernel Signature (HKS). The HKS is a point signature derived from
the heat kernel of the Laplace-Beltrami operator of a surface. In the theory of exterior calculus on a Riemannian manifold,
the Laplace-Beltrami operator of a surface is a special case of the Hodge Laplacian which acts on r-forms, i. e. the Hodge
Laplacian on 0-forms (functions) is the Laplace-Beltrami operator. We investigate the usefulness of the heat kernel of the
Hodge Laplacian on 1-forms (which can be seen as the vector Laplacian) to derive new point signatures which are invariant
under isometric mappings. A similar approach used to obtain the HKS yields a symmetric tensor field of second order; for
easier comparability we consider several scalar tensor invariants. Computed examples show that these new point signatures are
especially interesting for surfaces with boundary.

Keywords: Shape analysis, Hodge Laplacian, heat kernel, discrete exterior calculus

1 INTRODUCTION
The identification of similarly shaped surfaces or parts
of surfaces, represented as triangle meshes, is an im-
portant task in computational geometry. In this paper,
we consider two surfaces as being similar if there is an
isometry between them. For example, all meshes de-
scribing different poses of an animal are considered to
be similar.

One approach to solve this problem makes use of
spectral analysis of the Laplace-Beltrami operator ∆0
of the surface. The Laplace-Beltrami operator ∆0 de-
scribes diffusion processes, is by definition invariant
under isometries, and is known to reveal many geomet-
ric properties of the surface.

In [8] the eigenvalues of the Laplace-Beltrami oper-
ator are proposed as a ’Shape-DNA’. If two surfaces
are isometric, then the eigenvalues of the respective
Laplace-Beltrami operators coincide. While one can
construct counter examples to the converse of this state-
ment, this does not seem to pose a problem in practice.

In contrast to this global characterization of surfaces,
in [10] the eigenvalues and eigenfunctions of the
Laplace-Beltrami operator are used to compute a point
signature. This point signature is a function on the
surface containing a scale parameter, and is called Heat
Kernel Signature. For benchmarks evaluating the Heat
Kernel Signature and other methods we refer the reader
to [3], [4].

Permission to make digital or hard copies of all or part of
this work for personal or classroom use is granted without
fee provided that copies are not made or distributed for profit
or commercial advantage and that copies bear this notice
and the full citation on the first page. To copy otherwise,
or republish, to post on servers or to redistribute to lists,
requires prior specific permission and/or a fee.

In this work we propose and investigate a general-
ization of the Heat Kernel Signature. The Laplace-
Beltrami operator ∆0 of a surface can be generalized
to the Hodge Laplacian ∆r which is an operator acting
on r-forms. This operator is defined in the setting of ex-
terior calculus in Section 2 and its heat kernel is intro-
duced in Section 3. We can then derive a new isometry
invariant point signature from the Hodge-Laplacian on
1-forms ∆1 in Section 4. This yields a symmetric tensor
field of second order containing a scale parameter. As
it is difficult to compare and quantify such tensor fields,
we consider several scalar valued tensor invariants for
the purpose of surface analysis. To increase the repro-
ducibility of the results shown in Section 6, we give
some details about our implementation of this method
in Section 5. For our discretization of ∆1 we use the
theory of discrete exterior calculus (DEC) which mim-
ics the theory of exterior calculus on a discrete level.

2 MATHEMATICAL BACKGROUND
To generalize the Laplace-Beltrami operator and the
heat kernel to r-forms it is beneficial to employ the the-
ory of exterior calculus on a Riemannian manifold. We
will give a short introduction to this topic in this sec-
tion. An extensive introduction to exterior calculus can
be found for example in the textbook [1].

For simplicity we restrict ourselves to a Riemannian
manifold (M,g) of dimension 2. Readers who are not
familiar with Riemannian manifolds may think of M
being a surface embedded in R3. In this case the Rie-
mannian metric g is given by the first fundamental form,
i. e. gp is the scalar product on the tangent space Tp(M)
at p which is induced by the standard scalar product on
R3.

The set of r-forms on M is denoted by
∧r(M), where

r = 0 . . .2. A 0-form on M is a smooth function from
M to R, consequently

∧0(M) = C∞(M). A 1-form on
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M is a smooth map which assigns each p ∈M a linear
map from Tp(M) to R, i. e. an element of the dual space
(Tp(M))∗ of Tp(M). A 2-form α on M is a smooth map
which assigns each p ∈ M a bilinear form on Tp(M)
which is skew-symmetric, that is for each p ∈ M and
v,w ∈ Tp(M) we have αp(v,w) = −αp(w,v). We will
later see that a 1-form can be identified with a vector
field while a 2-form can be interpreted as a function on
the manifold.

The Hodge-Laplace operator will now be de-
fined in terms of local coordinates. Let (U,φ)
be a chart with coordinate functions (x1,x2), i. e.
φ(p) = (x1(p),x2(p)) ∈ R2. The tangent vectors to
the coordinate lines which are denoted by ∂

∂x1
, ∂

∂x2
, or

shorter ∂1,∂2, form a frame on U , i. e. (∂1)p,(∂2)p
is a basis of Tp(M) for each p ∈ U . The differentials
dx1,dx2 of x1 and x2 form a coframe on U , i. e.
(dx1)p,(dx2)p is a basis of (Tp(M))∗, and we have
dxi(∂ j) = δ i

j . Thus, for any 1-form α ∈
∧1(M) there

are functions f1, f2 ∈ C∞(U) such that

α|U = f1 dx1 + f2 dx2 ,

where f1 = α(∂1), f2 = α(∂2).
The wedge prodcut ∧ of two 1-forms α,β is defined

pointwise at each p ∈M by

(αp∧βp)(v,w) = αp(v)βp(w)−βp(v)αp(w)

for all v,w ∈ Tp(M). A two form α ∈
∧2(M) can

thereby be represented by α|U = f dx1 ∧ dx2 , where
f = α(∂1,∂2) ∈C∞(M).

There is an isomorphism between vector fields and
1-forms on M which is called flat operator and denoted
by [. For a vector field v it is defined by v[p(·) = g(vp, ·)
at each p ∈ M. Its inverse is the sharp operator ].
If e1,e2 is an orthonormal basis of Tp(M) and ε1,ε2

its dual basis we have (λ1e1 + λ2e2)
[ = λ1ε1 + λ2ε2 ,

where λ1,λ2 ∈ R.
The differential d takes a function f on M to the 1-

form

d0 f =
∂ f
∂x1

dx1 =
∂ f
∂x2

dx2 ,

i. e. d0 maps 0-forms to 1-forms. One may think of d0
as ∇. We will denote d also by d0 and define the map
d1 taking 1-forms to 2-forms by

d1 ( f1 dx1 + f2 dx2) =

(
∂ f2

∂x1
− ∂ f1

∂x2

)
dx1∧dx2 .

d1 can be interpreted as ∇×. The maps d0 and d1 are
referred to as exterior derivative.

Next we will define the maps δ1 and δ2 which take 1-
forms to 0-forms and 2-forms to 1-forms, respectively,
and are also called codifferential. These maps depend,
in contrast to d0 and d1, on the metric of M. We set
gi j = g

(
∂

∂xi
, ∂

∂x j

)
and G =

√
det[gi j]. For simplicity

we use orthogonal coordinates, that is [gi j] is a diagonal
matrix. This is not a restriction, since any point p∈M is
contained in a chart with this property. The Hodge star
operator ∗r is a map taking r-forms to (2− r)-forms,
r = 0, . . . ,2, defined by

∗0 f = G f dx∧dy ,

∗1( f1 dx1 + f2 dx1) =−g22G f2 dx1 +g11G f1 dx2 ,

∗2( f dx1∧dx2) =
f
G

.

Now δ1 and δ2 are defined by

δ1 =−∗2 d1∗1 , δ2 =−∗1 d0∗2 ,

which can be rewritten to

δ1 ( f1 dx1 + f2 dx2) =−
1
G

(
∂g11G f1

∂x1
+

∂g22G f2

∂x2

)
,

δ2( f dx1∧dx2) = g22G
∂

f
G

∂x2
dx1−g11G

∂
f
G

∂x1
dx2 .

One may think of −δ1 as ∇· and −δ1 as ∇⊥.
The Hodge Laplacian ∆r :

∧r(M)→
∧r(M), where

r = 0, . . . ,2, is now defined by

∆0 = δ1d0 ,

∆1 = δ2d1 +d0δ1 ,

∆2 = d1δ2 .

Sometimes ∆r is also called Laplace-de Rham oper-
ator or just Laplacian, where ∆0 is also referred to as
Laplace-Beltrami operator. If M = R2 with standard
coordinates we have g11 = g22 = G = 1, thus −∆0 co-
incides with the well-known definition of the Laplacian
on R2, i. e. ∆0 =

∂ 2

∂ 2x1
+ ∂ 2

∂ 2x2
.

3 HEAT KERNEL
The basic properties of heat diffusion on a Riemannian
manifold will be introduced in this section. Of special
interest for us is the heat kernel and its generalization
to 1-forms. In Section 4 we will derive point signatures
from the heat kernel for 1-forms in a similar way as the
Heat Kernel Signature is derived from the heat kernel
for functions. For details on the heat kernel for r-forms
see [9].

Let (M,g) be a 2-dimensional, compact, oriented
Riemannian manifold. Given an initial heat distribution
f (p) = f (0, p) ∈ C∞(M) on M, considered to be per-
fectly insulated, the heat distribution f (t, p) ∈ C∞(M)
at time t is governed by the heat equation

(∂t +∆0) f (t, p) = 0 .

The function k0(t, p,q) ∈ C∞ (R+×M×M) such that
for all f ∈C∞(M)

(∂t +(∆0)p)k0(t, p,q) = 0 ,

lim
t→0

∫
k0(t, p,q) f (q)dq = f (p) ,
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is called heat kernel. (∆0)p denotes the Laplacian act-
ing in the p variable. Using the heat kernel one can
define the heat operator Ht for t > 0 by

Ht f (p) =
∫

M
k0(t, p,q) f (q)dq .

One can show that f (t, p) = Ht f (p) solves the Heat
equation, thus Ht maps an initial heat distribution to
the heat distribution at time t. The heat kernel can be
computed from the eigenvalues λi and the correspond-
ing eigenfunctions φi of ∆0 by the formula

k0(t, p,q) = ∑
i

e−λitφi(p)φi(q) .

Next we will generalize the heat kernel to 1-forms
which results in a so-called double 1-form. A double
1-form is a smooth map which assigns each (p,q) ∈
M×M a bilinear map TpM×TqM→R . Consequently,
if β is a double form on M, v∈ Tp(M), w∈ Tq(M), then
q 7→ β (p,q)(v, ·) and p 7→ β (p,q)(·,w) are 1-forms on
M. The heat kernel for 1-forms is now a double form
k1(t, p,q) depending smoothly on an additional param-
eter t, which satisfies for each α ∈

∧k(M)

(∂t +(∆1)p)k1(t, p,q) = 0 ,

lim
t→0

∫
M

k1(t, p,q)
(
· ,α](q)

)
dq = α(p)(·) .

Note that, given α ∈
∧1(M) and p,q∈M we obtain a

bilinear map Tp(M)×Tq(M)→R by multiplying α(p)
and α(q); thus

(p,q) 7→ α(p)(·)α(q)(·)

is a double form. Similarly to the heat kernel for func-
tions, we can compute the heat kernel for 1-forms from
the eigenvalues λi and the eigenforms αi of ∆1 by

k1(t, p,q)(·, ·) = ∑
i

e−λitαi(p)(·)αi(q)(·) .

4 POINT SIGNATURES FROM THE
HEAT KERNEL FOR 1-FORMS

In this section we will derive new point signatures from
the heat kernel of 1-forms. This is done in a similar way
as the Heat Kernel Signature is derived from the heat
kernel for functions (0-forms). The main difference is
that this approach does not result in a time-dependent
function for the heat kernel of 1-forms, instead we ob-
tain a time-dependent tensor field. Thus, to obtain com-
parable values, we consider scalar tensor invariants. In
this way we obtain several point signatures which are
especially interesting for manifolds with boundary, as
we will see in Section 6.

The Heat Kernel Signature at p is defined by

t 7→ k0(t, p, p) ,

i. e. a function R+ → R is assigned to each point
p ∈ M. It is shown in [10] that two points p,q have
similar shaped neighborhoods if {k(t, p, p)}t>0 and
{k(t,q,q)}t>0 coincide.

The analogous definition for the heat kernel for 1-
forms,

t 7→ k1(t, p, p) ,

assigns each point p ∈ M a bilinear form on Tp(M)
or equivalently a symmetric covariant tensor of sec-
ond order. Comparing covariant tensors of second or-
der on Tp(M) and Tq(M) is not possible unless we
have a meaningful map between Tp(M) and Tq(M).
It is therefore difficult to compare {k1(t, p, p)}t>0 and
{k1(t,q,q)}t>0 directly. However, we can consider
scalar tensor invariants which are independent of the
chosen orthonormal basis of the tangent space.

If e1,e2 is an orthonormal basis of Tp(M) we can as-
sign to each bilinear form β a matrix B = (bi j), where
bi j = β (ei,e j), i, j = 1,2. Now B is the matrix represen-
tation of β with respect to the orthonormal basis e1,e2
and the eigenvalues of β are defined to be the eigen-
values of B. If ẽ1, ẽ2 is another orthonormal basis and
S the orthogonal matrix satisfying ẽ1 = Se1, ẽ2 = Se2,
then the corresponding matrix representation B̃ of α is
given by B̃ = SBST , and with that the definition of the
eigenvalues of β is independent of a certain orthonor-
mal basis. Consequently, if λ1 is the larger and λ2 the
smaller eigenvalue of β , quantities like λ1 or λ2 or com-
binations of it like the trace tr(β ) = tr(B) = λ1 +λ2 or
the determinant det(β ) = det(B) = λ1λ2 are scalar ten-
sor invariants. Using such tensor invariants we obtain
point signatures like {tr(k1(t, p, p))}t>0 which can be
compared similarly as the Heat Kernel Signature, see
[10] for details.

5 NUMERICAL REALIZATION
To compute our point signatures we need a matrix rep-
resentation of the bilinear forms k1(t, p, p). We will use
the equation

k1(t, p, p)(·, ·) = ∑
i

e−λitαi(p)(·)αi(p)(·) , (1)

where λi and αi are the eigenvalues and eigenforms of
∆1. For the computation of the eigenvalues and eigen-
forms we use the theory of discrete exterior calculus
(DEC), which mimics the theory of exterior calculus on
surfaces approximated as triangle meshes. A short in-
troduction to DEC is given in Subsection 5.1.

Unfortunately the computation of the eigenvalues and
eigenforms of ∆1 using DEC is not straightforward.
The common definitions work only for very special tri-
angulations. We propose a solution to this problem in
Subsection 5.2. Moreover we explain a way to realize
the product αi(p)(·)αi(p)(·) of two eigenforms which
is not obvious for discrete r-forms.
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5.1 Discrete Exterior Calculus
DEC deals with discrete forms which are defined on
on a triangle mesh as an approximation of a surface.
Additionally counterparts of operators like the exterior
derivative and the Hodge star operator are defined for
discrete forms. This enables us to define a discrete
Hodge Laplacian. Thus DEC mimics the theory of
smooth r-forms on surfaces. For details on DEC we re-
fer the reader to [7], which is the most extensive source,
as well as to [5] and [6].

Let K be a triangle mesh with vertex set V = {vi},
edge set E = {ei} and triangle set T = {ti}. We assume
that all triangles and edges have a fixed orientation. The
orientation of a vertex is always positive; the orientation
of an edge ei is given by an order of vertices e = [viv j];
the orientation of a triangle t is given by a cyclic order
of vertices t = [viv jvk]. If v is a vertex of the edge e =
[viv j], the orientations of v and e are said to agree if
v = v j and disagree if v = vi. Similarly, given an edge
e of a triangle t, the orientations of e and t are said to
agree (disagree) if the vertices of e occur in the same
(opposite) order in t.

Discrete 0-forms, 1-forms and 2-forms are defined to
be functions from V , E and T to R, respectively. The
function values should be understood as the integral of
a continuous 0-form, 1-form or 2-form over a vertex,
edge or triangle, respectively. Note that reversing the
orientation of vertices, edges or triangles changes the
sign of the associated integral values, thus the same
holds for discrete r-forms. Of course, this definition of
discrete r-forms does not allow a point-wise evaluation.

However, it is possible to interpolate discrete r-forms
by Whitney forms which are piecewise linear r-forms
on the triangles. Whitney 0-forms are the so-called hat
functions, i. e. φvi is the piecewise linear function with
φvi(v j) = δ i

j. For an edge e = [vi,v j] the Whitney 1-
form φe is supported on the triangles adjacent to e and
given by φe = φvi dφv j−φv j dφvi . Note that φe is piece-
wise linear on each triangle, but discontinuous on the
edge. However, the integral of both parts of φe over e
is 1. We also have that the integral of φe is 0 over each
edge different from e. There is a similar definition for
Whitney 2-forms which we omit here. The Whitney in-
terpolant I α of a discrete 0-form α is now given by

I α = ∑
i=1,...,|V |

α(vi)φvi .

The Whitney interpolant for discrete 1-forms and
2-forms is defined analogously.

0-forms, 1-forms and 2-forms can be seen as vectors
in R|V |, R|E| and R|T |. Thus operators like the exterior
derivative, the hodge star operator and the codifferential
are defined as matrices. To define the discrete exterior
derivate we need to define the boundary operator first.

The boundary operator ∂1 is given by the matrix of di-
mension |V |× |E| with the entries

(∂1)i j =

{
1 , orientations of vi and e j agree ,

−1 , orientations of vi and e j disagree ,

if vi is a vertex of the edge e j and zero otherwise. The
boundary operator ∂2 is now defined analogously by

(∂1)i j =

{
1 , orientations of ei and t j agree ,

−1 , orientations of ei and t j disagree ,

if the e j is an edge of the triangle t j and zero otherwise.
The discrete exterior derivate is now defined to be the
transpose of the boundary operator, i. e.

d0 = (∂1)
T , d1 = (∂2)

T .

Thus, as for smooth r-forms we have that d0 maps 0-
forms to 1-forms, and d1 maps 1-forms to 2-forms.

While the hodge star operator ∗r in the continuous
case maps r-forms to (2− r)-forms, the discrete hodge
star operator maps a discrete r-form to a so-called dual
(2− r)-form which is defined on the dual mesh. We
assume for the moment that every triangle t ∈ T con-
tains its circumcenter. Then the (circumcentric) dual
mesh is a cell decomposition of K where the cells are
constructed as follows: The dual 0-cell ?t of a triangle
t ∈ T is the circumcenter of t. The dual 1-cell ?e of an
edge e∈ E consists of the two line segments connecting
the circumcenters of the triangles adjacent to e and the
midpoint of e. The dual 2-cell ?v of a vertex v ∈ V is
the area around v which is bounded by the dual 1-cells
of the edges adjacent to v. Note that the dual mesh co-
incides with the Voronoi tesselation of K corresponding
to the vertex set V , see [2] for details.

A dual r-form is now a map which assigns each dual
r-cell a real number. Thus dual 0-forms, 1-forms and
2-forms can be represented as vectors in R|T |, R|E| and
R|V |. The exterior derivative on dual 0-forms and dual
1-forms is defined by the matrices

dDual
0 = dT

1 = ∂2 , dDual
1 =−dT

0 =−∂1 .

The discrete Hodge star operator ∗r which maps r-
forms to dual 2− r forms is given by square matrices

∗0 ∈ R|V |×|V | , ∗1 ∈ R|E|×|E| , ∗2 ∈ R|T |×|T | .

Unfortunately there is no unique way to define the en-
tries of these matrices. A possible choice for ∗0, ∗1 and
∗2 are diagonal matrices with entries given by

(∗0)ii =
|? vi|
|vi|

, (∗1)ii =
|? ei|
|ei|

, (∗2)ii =
|? ti|
|ti|

,

where |v|= 1, |e| is the length of e, |t| is the area of t and
analogously for dual cells. Since this is the common
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definition in DEC, see [7] and [5] for example, we also
denote this Hodge star by ∗DEC

r .
Another possible definition, suggested in [6], is to de-

fine (∗0)i j as the the L2-inner product of the Whitney 0-
forms φvi and φv j , and analogously for ∗1 and ∗2 using
Whitney 1-forms and 2-forms corresponding to edges
and triangles, respectively. For more details and an ex-
plicit computation of the entries of ∗Whit

r we refer to
[11]. We denote this Hodge star operator also by ∗Whit

r
in allusion to the use of Whitney forms. The advantages
and disadvantages of ∗DEC and ∗Whit in view of spectral
analysis of the Hodge Laplacian will be discussed in
Subsection 5.2.

To map dual (2− r)-forms to discrete r-forms we
need an inverse Hodge star operator ∗Dual

2−r . An obvi-
ous choice would be ∗−1 but in this case the property
∗r ∗2−r α = (−1)r(2−r)α which we have for a smooth
r-form α would not hold. Instead ∗Dual

2−r is defined by

∗Dual
2−r = (−1)r(2−r)(∗r)

−1 .

Now, similarly as for smooth r-forms, we define the
discrete codifferential which maps discrete r-forms to
discrete (r−1)-forms for r = 1,2 by

δ1 =−∗Dual
2 dDual

1 ∗1 ,

δ2 =−∗Dual
1 dDual

0 ∗2 .

This enables us to define the discrete Hodge Laplacian
∆r just the same way as in the smooth case by

∆0 = δ1d0 ,

∆1 = δ2d1 +d0δ1 ,

∆2 = d1δ2 .

Thus ∆r can be assembled from the boundary operator
and the discrete Hodge star operator by

∆0 = ∗−1
0 ∂1 ∗1 ∂

T
1 ,

∆1 = ∗−1
1 ∂2 ∗2 ∂

T
2 +∂

T
1 ∗−1

0 ∂1∗1 ,

∆2 = ∂
T
2 ∗−1

1 ∂2 ∗2 .

5.2 Numerical Computation of the Point
Signatures

To compute k1(t, p, p) using the formula (1) we need
to compute the eigenvalues and eigenforms of ∆1 in
a first step. We will see that we need certain com-
binations of the Hodge star operators ∗DEC

r and ∗Whit
r

to accomplish this. In a second step we need to com-
pute the products of two eigenforms αi(p)(·)αi(p)(·).
Since DEC does not provide such a product, we use
Whitney forms to interpolate smooth r-forms from dis-
crete r-forms. This results in matrix representations of
αi(p)(·)αi(p)(·) which can be summed easily.

To compute the eigenvalues of ∆1 we need to solve
the eigenvalue problem

∆1α =
(
∗−1

1 ∂2 ∗2 ∂
T
2 +∂

T
1 ∗−1

0 ∂1∗1
)

α = λα ,

or alternatively the generalized eigenvalue problem(
∂2 ∗2 ∂

T
2 +∗1∂

T
1 ∗−1

0 ∂1∗1
)

α = λ ∗1 α .

The advantage of the generalized eigenvalue problem is
that one does not need the inverse of ∗1, but only needs
the inverse of ∗0. However, to solve such a generalized
eigenvalue problem with usual numerical methods, e. g.
by using the command eigs in Matlab, the matrix on
the right hand side, i. e. ∗1, must be symmetric positive
definite. Moreover we need to compute the inverse of
∗0. So, which of the matrices ∗DEC

r , ∗Whit
r , r = 0, . . . ,2,

are invertible, which are also symmetric positive defi-
nite?

Since ∗DEC
1 is a diagonal matrix with diagonal entries

given by

(∗1)ii =
|? ei|
|ei|

,

it is invertible if and only if | ? ei|/|ei| 6= 0 for i =
1, . . . , |E|; if | ? ei|/|ei| > 0 for i = 1, . . . , |E| it is also
positive definite. The length |e| of an edge is obviously
always positive. For the length |?e| of the dual 1-cell of
an edge e this is possibly not the case. Of course, if we
assume that the circumcenter of each t ∈ T is contained
in t, as in the previous section, the length of ?e is the
sum of the lengths of the two line segments connect-
ing the circumcenters of the two triangles adjacent to e
with the midpoint of e and thus positive. But this is not
a viable assumption in applications. One can solve this
problem in the following way: Let t be a triangle adja-
cent to e. If t and the circumcenter of t lie on different
sides of the line containing e, then the according line
segment counts negative. Thus the length |?e| of a dual
1-cell ?e can be negative; this is the case if and only if
this edge violates the local Delaunay property and con-
sequently the entries of ∗DEC are only nonnegative if
K is an (intrinsic) Delaunay triangulation, see [2] for
details on Delaunay triangulations of triangle meshes.
Since it is a very strong condition to assume that K is a
Delaunay triangulation and moreover not sufficient for
positive definiteness of ∗DEC, only positive semidefi-
niteness, we cannot assume that ∗DEC

1 is invertible or
even positive definite.

Similarly ∗DEC
0 is positive definite if | ? vi| > 0 for

i = 1, . . . , |V |. The computation of the area | ? v| of a
dual 2-cell ?v is shown in Figure 1, for details we refer
the reader to [11]. Note that |?v| can be positive even if
K is not a Delaunay triangulation; |?v| is only negative
for rather degenerate meshes. Thus we can assume that
∗DEC

0 is positive definite and thus invertible. Finally,
∗DEC

2 is obviously positive definite.
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Figure 1: Primal and dual meshes. The left mesh is
Delaunay, whereas the other meshes are not Delaunay.
The middle mesh shows a dual 0-cell whose area is
given by the blue area minus the red area. The red
line in the right mesh shows a dual 1-cell with negative
length.

The positive definiteness of ∗Whit
r follows from the

fact that αT ∗Whit
r β is the L2-inner product of the Whit-

ney interpolants I α and I β of two discrete r-forms
α,β , thus

α
T ∗Whit

r α > 0

for any r-form α 6= 0. Consequently ∗Whit
r is also in-

vertible, but unfortunately we cannot use the inverse of
∗Whit

r . The reason for this is that ∗Whit
k is not diagonal

(unless r = 2) and thus the inverse is in general not a
sparse matrix which is a mandatory condition for large
meshes.

As a consequence, to solve the generalized eigen-
value problem for ∆1, we have to use (∗DEC

0 )−1 and
∗Whit

1 on the right hand side. For ∗1 on the left hand
side we can choose either ∗DEC

1 or ∗Whit
1 , both work

properly as the numerical tests in [11] show. For ∗2
there is nothing to choose, since ∗DEC

2 = ∗Whit
2 .

We now discuss the computation of the matrix repre-
sentation of k1(t, p, p) from the eigenvalues and eigen-
forms of ∆1 using the formula

k1(t, p, p)(·, ·) = ∑
i

e−λitαi(p)(·)αi(p)(·) .

One difficulty is to compute the product of the eigen-
forms αi of ∆1. The αi are only available as discrete
1-forms, but unfortunately DEC does not provide such
a product. To overcome this problem we interpolate
the discrete 1-forms using Whitney forms. The result-
ing smooth forms can be multiplied easily. Though, as
noted in the previous subsection, the Whitney forms are
only continuous within the triangles, thus it is not pos-
sible to evaluate the resulting tensors on the vertices.
Instead, we evaluate the tensors on the barycenters of
the triangles.

We proceed with a detailed description of the com-
putation of the matrix representation of k1(t, p, p). Let
t = [viv jvk] be a triangle, while the orientation of the
edges is given by ei = [v jvk], e j = [vkvi] and ek = [viv j].
Using the orthonormal basis

e1 =
v j− vi

‖v j− vi‖
, e2 =

(vk− vi)−〈vk− vi ,e1〉e1

‖(vk− vi)−〈vk− vi ,e1〉e1‖

and choosing vi as origin we obtain

vi =

(
0
0

)
, v j =

(
x j
0

)
, vk =

(
xk
yk

)
,

where x j =
〈
v j ,e1

〉
, xk = 〈vk ,e1〉, yk = 〈vk ,e2〉. Now

easy calculations show for the hat functions φvi ,φv j ,φvk
that

(dφi)
] =

(
− 1

x j
xk

x jyk
− 1

yk

)
,

(dφ j)
] =

(
1
x j

− xk
x jyk

)
,

(dφk)
] =

(
0
1
yk

)
,

where we used the sharp operator to identify 1-forms
with vectorfields. Let now α be an eigenform of ∆1,
then the Whitney interpolant I β at the barycenter p of
T is given by

(I α)(p) =
1
3
(α(ek)(dφv j −dφvi)

+α(ei)(dφvk −dφv j)+α(ev j)(dφvi −dφvk)) .

The matrix representaion of I α(p)(·)I α(p)(·) is
now given by(

(I α)](p)
)(

(I α)](p)
)T

,

and the matrix representation of k1(t, p, p) by

∑
i

e−λit
(
(I αi)

](p)
)(

(I αi)
](p)

)T
. (2)

6 RESULTS
In this section we visualize our point signatures with
colormaps; small values are represented by blue and
high values by red. The surfaces we investigate are
the trim-star model, the armadillo model and the Caesar
model, provided by the AIM@SHAPE Shape Reposi-
tory, a surface representing a mandible produced by M.
Zinser, Universitätsklinik Köln, and a square. Plots of
the point signatures for these surfaces are given for dif-
ferent time values and compared with the Heat Kernel
Signature.

We approximate the sum in equation 2 by the first
100 summands, i. e. we have to compute the 100 small-
est eigenvalues and the corresponding eigenvectors of
∆1. The number of summands needed depends on the
surface. In our examples more summands show no sig-
nificant improvement. The computation of the eigen-
values and eigenvectors of ∆1, for which we use Mat-
lab, needs most time, everything else can be done in-
teractively. Timings are shown in Table 1; for compar-
ison we also give timings for the computation of 100
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Model Vertices ∆1 ∆0
Mandible 11495 39.9 8.9
Trim-star 5192 17.2 7.6
Square 4096 13.4 3.4
Caesar 4717 15.0 3.0

Table 1: Timings in seconds for the computation of 100
eigenvalues and eigenvectors of ∆1 and ∆0.

eigenvalues and eigenvectors of ∆0, which are needed
to compute the HKS.

To avoid readjusting the colormap for different values
of t we plot the function

tr
(
k1(t, p, p)

)∫
M tr(k1(t, p, p)) d p

,

rather than tr
(
k1(t, p, p)

)
, and analogously for other in-

variants. Such a normalization is also used in [10] to en-
sure that different values of t contribute approximately
equally when comparing two signatures.

In the case of a closed surface the smaller and the
larger eigenvalue of k1(t, p, p) have very similar val-
ues for all p ∈ M and all t > 0. The behavior of
tr
(
k1(t, p, p)

)
and det

(
k1(t, p, p)

)
corresponds to this

observation. Thus, whichever invariant we use, we
obtain nearly the same information from the resulting
point signature. A comparison of tr

(
k1(t, p, p)

)
and the

Heat Kernel Signature is shown in Figures 2 and 3. De-
spite the fact that the Heat Kernel Signature has high
values where tr

(
e1(t, p, p)

)
has low values and vice

versa, both point signatures show a similar behavior for
small values of t. In contrast, for large values of t their
behavior is very different.

We should note here that ∆0 has a single zero eigen-
value and the corresponding eigenfunction is constant.
Thus we have

lim
t→∞

k0(t, p, p) = lim
t→∞

∑
i

e−λitφi(p)φi(p) = φ
2
0 (p) ,

i. e. the Heat Kernel Signature converges to a constant
function which is different to zero. In contrast, ∆1 has
2g eigenforms to the eigenvalue zero, where g is the
genus of the surface. Now the limit

lim
t→∞

k1(t, p,q)(·, ·) = lim
t→∞

∑
i

e−λitαi(p)(·)αi(p)(·)

is zero for surfaces with g = 0 and nonzero for surfaces
with g > 0.

Thus, for the mandible model in Figure 2
tr
(
k1(t, p, p)

)
converges to zero, while it does not

converge to zero for the trim-star in Figure 3. However,
as a consequence of our normalization, the limit zero is
not visible in Figure 2, we rather see how tr

(
k1(t, p, p)

)
approaches zero.

To demonstrate the isometry invariance of k1(t, p, p)
Figure 4 shows tr

(
k1(t, p, p)

)
for different poses of the

armadillo modell.

In contrast to closed surfaces the smaller and
the larger eigenvalue of k1(t, p, p) behave differ-
ently for surfaces with boundary. Consequently we
also have a different behavior of tr

(
k1(t, p, p)

)
and

det
(
k1(t, p, p)

)
, see Figure 5 for a square and Figure

6 for a model of the head of Julius Caesar. While
tr
(
k1(t, p, p)

)
and the Heat Kernel Signature show a

similar behavior for small t in the case of a closed
surface, for surfaces with boundary this is only true
away from the boundary, see again Figures 5 and 6.
The Heat Kernel Signature seems to be much more in-
fluenced by the boundary as tr

(
k1(t, p, p)

)
. We should

note here that we used for the computation of the Heat
Kernel Signature eigenfunctions satisfying Neumann
boundary conditions, i. e. for any eigenfunction φ we
have

∂φ

∂n
(p) = 0 , p ∈ ∂M ,

where ∂M denotes the boundary of M and n denotes
the normal to the boundary. If we would use Dirichlet
boundary conditions instead, i. e.

φ(p) = 0 , p ∈ ∂M ,

the influence of the boundary to the Heat Kernel Signa-
ture would be even bigger.

Figure 2: tr(k1(t, p, p)) (top) and Heat Kernel Signature
(bottom) for increasing values of t.

Figure 3: tr(k1(t, p, p)) (top) and Heat Kernel Signature
(bottom) for increasing values of t.

7 CONCLUSION
In this work we derived new point signatures from the
heat kernel for 1-forms. We imitated the way in which
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Figure 4: tr(k1(t, p, p)) of the armadillo modell in dif-
ferent poses.

Figure 5: from top to bottom: smaller eigen-
value of k1(t, p, p), larger eigenvalue of k1(t, p, p),
tr(k1(t, p, p)), det(k1(t, p, p)) and Heat Kernel signa-
ture for increasing values of t.

the Heat Kernel Signature is derived from the Heat Ker-
nel of 0-forms. Since this yields a time-dependent ten-
sor field of second order, we obtain several point sig-
natures by considering tensor invariants like the eigen-
values, the trace and the determinant. In the case of
surfaces without boundary both eigenvalues have very
similar values; the trace and the determinant behave ac-
cordingly. For small time values the behavior of both
eigenvalues is quite similar to the Heat Kernel Signa-
ture, but it differs for large time values. In contrast to
this, the behavior of the eigenvalues is very different
for surfaces with boundary, even for small time values.
Thus all considered tensor invariants differ significantly
from the Heat Kernel Signature. This property might
bring improvements for the analysis of surfaces with
boundary, compared to the Heat Kernel Signature with

Figure 6: from top to bottom: tr(k1(t, p, p)),
det(k1(t, p, p)) and Heat Kernel Signature for increas-
ing values of t.

Dirichlet or Neumann boundary conditions; a further
examination is left for future work.
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