
A caching approach to real-time procedural generation of
cities from GIS data

Brian Cullen
Trinity College Dublin
cullenb4@cs.tcd.ie

Carol O’Sullivan
Trinity College Dublin

Carol.OSullivan@cs.tcd.ie

ABSTRACT

This paper presents a method for real-time generation of detailed procedural cities. Buildings are generated as
needed from real GIS data, using modern techniques that can generate realistic content and without having a huge
impact on the rendering system. The system uses a client-server approach allowing multiple clients to generate
any part of the city the user wishes without requiring the full data-set, or any pre-generated models. The paper
introduces the use of object oriented shape grammars to reduce redundant code and presents a parallel cache to
allow real-time generation of detailed cities.

Keywords: Procedural Modelling, GIS Data, Buildings, Cities, Real-Time Rendering.

1 INTRODUCTION
Procedural modelling of urban environments has be-
come an important topic in computer graphics. With
the ever increasing demand for larger and more real-
istic content in games and movies, the time and cost
to model urban content by hand is becoming unfeasi-
ble. Apart from the entertainment industry, large urban
models are also desired for urban planning applications
and emergency response training.

We present a client-server system capable of generat-
ing huge cities of any size without requiring the client
to download large 3d geometrical data sets. Our main
contributions are as follows:

1. We propose the use of object oriented shape gram-
mars to combat redundancies when creating build-
ings with multiple different styles.

2. We introduce a multi-state parallel cache that pro-
cedurally generates the city’s geometry before it
becomes visible. We will demonstrate frame-rate
improvements over a system that simply generates
buildings as they are needed.

While many cache based approaches have been pro-
posed for rendering large terrains, the use of such tech-
niques has not been explored for procedural generation
of urban models. Numerous problems occur as render-
ing the buildings takes much less time than generating
them. We aim to tackle this problem with a simple solu-
tion that can be used with existing techniques for terrain
paging.

After an overview of our system and how we can
utilise GIS data to model real cities (Section 3), we

Permission to make digital or hard copies of all or part of this work
for personal or classroom use is granted without fee provided that
copies are not made or distributed for profit or commercial advantage
and that copies bear this notice and the full citation on the first page.
To copy otherwise, or republish, to post on servers or to redistribute
to lists, requires prior specific permission and/or a fee.

then introduce the idea of object oriented shape gram-
mars (Section 4) demonstrating how they can be used to
make simple changes to a building without creating re-
dundant code. In Sections 5 and 6 we present our cache
based system that can generate huge cities in real-time
with interactive frame-rates and evaluate it. Example
code of object oriented shape grammars is listed in the
Appendix for the interested reader.

2 RELATED WORK
This section will review current techniques for the pro-
cedural generation of 3d building models. We will
mainly review systems that employ production systems
as they have been the most successful at generating re-
alistic content. Other approaches based on stochastic
texture synthesis ideas are touched upon briefly.

Detailed architectural models can be created using
production systems (a set of symbols that are iteratively
replaced according to a well defined grammar) but re-
quire a modeller to manually write rules. Their strength
lies in the ability to provide detailed descriptions and
yet randomness in a structured way.

Parish et al. [24] introduced the idea of using L-
Systems [26] to model architectural content. L-Systems
are production systems that use the parallel replacement
of symbols in a string to simulate a growth process.
L-Systems have previously achieved a lot of success
in modelling trees and plants [27, 23], but have limi-
tations in modelling buildings (since a building struc-
ture is more spatially constrained and does not reflect a
growth process).

Stiny pioneered the idea of shape grammars [33, 31,
32] which can be used for generating complex shapes
within a given spatial area. Shape grammars have been
used for the construction and analysis of architectural
designs [5, 8, 34, 12]. However, Stiny’s original shape
grammar operates on sets of labelled points and lines

Journal of WSCG 119 ISSN 1213-6972

and is difficult to implement on a machine because of
the number of transformations that must be searched
before a rule can be selected and applied.

Wonka et al. [37] modify the idea of shape grammars
to better represent building facades. They use a split
grammar in which building facade is derived using a
sequence of split and repeat commands to subdivide a
planar shape.

Müller et al. [21] expand on this idea by develop-
ing the CGA shape grammar. This grammar includes
environmental parameters that allow a shape (a part of
a derived facade) to query if it is occluded by some-
thing else in the city, thereby aiding the placement of
windows and doors. CGA shape is continually being
improved and has even been used to reconstruct arche-
ological sites [22] and is used in commercial products
like CityEngine [1].

Recently Kracklau et al. [13] presented a new gener-
alised language based on Python. They can create pow-
erful descriptions by passing non-terminals as parame-
ters, thus enabling abstract templates to be defined.

Shape grammars alone are not sufficient to gener-
ate realistic roofs on buildings. Laycock et al. [14]
demonstrate a technique to generate roof models in dif-
ferent styles from a building footprint. They modify
the straight skeleton algorithm proposed in [7] to gen-
erate different roof types. Soon [30] describes an algo-
rithm capable of modelling roofs common to east Asian
buildings, like temples and pagodas.

A completely different approach to production gram-
mars takes concepts from texture synthesis and applies
them to 3D models. Texture synthesis traditionally ex-
trapolates image data by incrementally adding bits of
the image that best match a small neighbourhood. This
can produce very convincing results [35, 6, 15].

Merrell and Manoch [18, 19, 20] present a method
that takes an example model as input and can produce
larger models that resemble it. Output models are still
very random and lack the fine control that production
systems provide. Synthesis based approaches to gener-
ating new models are still very slow and are thus not
applicable for interactive applications.

Layout generation concerns the automatic layout of
roads and placement of urban content that is crucial for
generating an entire city. Urban planning applications
require the possibility to view changes to city layouts
and to see the effect a proposed road network would
have on traffic congestion. Using procedural tech-
niques, such changes can be made interactively which
is a great improvement over manual systems.

Parish et al. [24] introduce the use of L-Systems to
grow road networks in a similar way to branches on a
tree. This was one of the corner-stone papers in the area
of procedural cities. However, it is difficult to fine tune
the results because the variables do not give enough
control over the road layout.

Chen et al. [4] introduce the use of tensor fields to
guide road network generation. The user edits the ten-
sor fields using interactive techniques discussed in [38].
Users can then interactively edit individual roads in a
quick and easy manner.

Aliaga et al. [3] take a different approach to recon-
figuring road networks. Using vector data of roads they
form a graph to represent road intersections and parcels
of land. Then, using k-means clustering [17], user-
deformed parcels are replaced with similar parcels from
elsewhere in the city. In [2] they improve on this sys-
tem to allow the synthesis of completely new areas of
the city. Cities with different road structures can then
be blended together.

Grueter et al. [9] use a lazy generation technique
to construct a potentially infinitely large city. Build-
ings are constructed when they are visible in the view
frustum. The system seeds a random number generator
based on the building’s coordinates, thereby allowing
each building to maintain a persistent style. Whelan
et al. [36] present a system that allows real-time in-
teraction in modifying roads and tweaking parameters.
The user provides a height map and lays the roads, af-
ter which the system automatically places buildings and
other details. The buildings are simple extrusions with
texture and bump maps. Recently Haegler et al. [10]
presented a system capable of generating detailed cities
in real-time by carrying out procedural generation on
the GPU.

Cache based techniques have been used extensively
in real-time rendering. Paging is a popular technique
for rendering large terrains [28, 16, 39]. Slater et al.
[29] present a caching system that exploits temporal co-
herency to accelerate view culling. Akenine-Möller et
al. [11] discuss many modern real-time rendering tech-
niques including level of detail, batch processing and
imposters.

3 SYSTEM OVERVIEW
In this section we present a system that can produce
large detailed virtual cities in real-time using GIS data.
Previous approaches discussed in Section 2 focus on ei-
ther pre-generating large cities or are limited to simple
grid layouts and building geometry with random styles.
The system presented continuously updates the city by
streaming GIS data from a server along with style de-
scriptions for every building, without interrupting the
rendering system.

Urban GIS is preprocessed and stored in a database
along with style descriptions for every building for
quick referencing. This preprocessing step is explained
in section 3.1. Style sheets that control the facade gen-
eration are loaded at run-time and are stored in a hash-
table on the client’s system. The geometry cache up-
dates itself based on the camera’s position in the en-
vironment, downloading the surrounding environment

Journal of WSCG 120 ISSN 1213-6972

data from the GIS database. This includes the position
and shape of building footprints and style parameters
(such as texture id, height and style id) used for gener-
ating the buildings. This allows persistent generation of
the city. The cache controls what geometry is procedu-
rally generated based on its distance from the camera.
Meshes for the roads and buildings are then batched to-
gether for efficient rendering and sent to the render sys-
tem. This process is described in detail in Section 5.

3.1 Data Extraction from GIS
The GIS data recorded contains detailed urban planning
information, which is stored in different semantic layers
that make it easy to access the building layouts. How-
ever, since the data is simply represented by a set of
poly-lines, it is necessary to determine which lines be-
long to the same buildings. Figure 1 illustrates this pro-
cess. The following algorithm describes how to extract
the building layouts:

1. Create a graph representing all the vertices and edges.
2. Start at the bottom left node which contains two or

more edges.
3. Follow the least interior angle edges until the start-

ing node is reached again, thus creating a cycle.
4. Decrement the degree of every node along the cycle.
5. Repeat from Step 2 until no nodes with a degree

greater than one remain.

A similar approach was taken by Pina et al. [25],
however, individual buildings are extracted as opposed
to urban blocks. The extracted building footprints are
then loaded into a database for quick referencing by the
system. A similar technique is used to extract the roads
and insert the road network graph into a database.

4 BUILDING GENERATION
Buildings are procedurally generated using split gram-
mar rules based on [21]. The rules compose of subdiv,
repeat, insert, extrude, detrude and comp commands,
which can subdivide and decompose shapes into new
ones.

Comp
Breaks a shape down into the lower dimensional
shapes it is composed of. For example, a building
is broken down into its composing facades;

Subdiv
Subdivides a shape along a given axis;

Repeat
Subdivides a planar shape several times to fit many
new shapes of a given width;

Insert
Replaces a planar shape with an external model;

Extrude
Extrudes a planar shape, thereby creating a new vol-
umetric shape;

Detrude
Detrudes a planar shape, thereby creating a new vol-
umetric shape.

Combinations of these simple commands can produce
complex architectural geometry, while building roofs
are generated using the approach described in [14]. The
rules are specified using a script with a parameterised
L-System style syntax:

Pred : Exp ;Command(params){Successor} : Prob

If the Boolean Expression evaluates to true then
Command is carried out on the shape with ID Predecessor
and the resulting output shapes are given the ID Successor.
Multiple rules can be specified for the same Predecessor
and one is chosen at random based on its Probability
value. This allows some variability among generated
shapes.

A simple compiler was built to parse the scripts at
runtime and generate a hash table of C++ function ob-
jects. This allows the script to be applied extremely
quickly to new buildings but also allows parameters to
be changed at runtime.

4.1 Object Oriented Buildings
The production system presented in [21] contains a lot
of redundant code between different building scripts. It
is very cumbersome to rewrite entire building specifica-
tions just to make a specific change.

We propose the use of object oriented buildings as a
solution to this problem. Figure 2 illustrates this idea.
Buildings inherit everything from more abstract styles
and only respecify certain aspects of the style. This
is achieved by encapsulating semantically relevant pro-
duction rules in labelled blocks. Each block is given a
list of variables that can be changed at runtime or re-
specified by a child style. Code listings to generate the
buildings in Figure 2 can be found in the Appendix.
Buildings also inherit their parents’ elements (i.e., 3D
models that are imported and used to replace certain
terminal symbols) and can add or remove from their
parents’ element set. We allow multiple meshes to be
specified, corresponding to different levels of detail for
the rendering system. Meshes are swapped with differ-
ent level of detail meshes depending on their distance
to the camera. In this implementation of the system the
Ogre rendering engine was utilised to manage level of
detail swapping and rendering of the scene. The use of
object oriented building styles can simplify the writing
of new styles and can link building styles together in a
meaningful way.

Journal of WSCG 121 ISSN 1213-6972

Figure 1: Extracting building footprints from GIS data (left). Layer containing buildings is first chosen by the user (middle),
while buildings are then extracted by finding loops in the data (right).

Figure 2: Building2 inherits from Building1, specifying how
windowsills should be added. Building3 also inherits from
Building1, adding a ledge to each floor. Code listings are
provided in the Appendix.

5 REAL-TIME GENERATION
In this section we present our process for generating
procedural cities in real-time.

5.1 Parallel Geometry Cache
In order to maintain a constant and high frame rate,
building generation should not interrupt the rendering
system. We achieve this by introducing a multi-state
cache that stores geometry that is currently being gen-
erated. The system is based on the idea of paging ge-
ometry for rendering large terrains. The world is split
into a regular grid as illustrated in Figure 4. The data in
the cache has the following three states:

State 1 Geometry descriptions are downloaded from
the database and the area is procedurally generated.
(Outer white area in Figure 4).

State 2 Meshes are constructed and sent to the graph-
ics card but are not yet rendered (Middle blue area
in Figure 4).

State 3 Meshes currently being rendered (Inner green
area in Figure 4).

Depending on the camera motion, grid squares that
are likely to become visible in the near future are loaded.
Geometry descriptions are downloaded from the GIS
database, procedurally generated and inserted into the
cache. This is done in a separate thread from the ren-
dering system. Only squares that are close to the cam-
era are rendered. If a square is not yet generated, the
rendering thread will put it on the end of a queue and
try to retrieve the next square.

5.2 Parallel Building Generation
With the trend in computing power drifting towards
multi-processor architectures, it is desirable to take ad-
vantage of parallel computation. It is possible to pro-
cedurally generate multiple buildings at the same time
by utilizing parallel processing techniques. Algorithm
3 presents a simple algorithm that can speed up building
generation on multiprocessor systems.

w h i l e NewPage = getPageFromQueue ()
NumBldPerThd = NewPage . NumBlds / NumProc
f o r x = 0 t o numProccesors−1

Thread [x] = ForkThread ()
Thread [x] . MemoryPool = new MemoryPool
Thread [x] . B u i l d i n g L i s t = d i s t B u i l d i n g s (NumBldPerThd)
Thread [x] . G e n e r a t e B u i l d i n g s ()
NewPage . s e t B u i l d i n g M e s h e s (Thread [x])

end f o r
S y n c h r o n i s e T h r e a d s ()

end w h i l e
NewPage . BatchMeshes ()

Algorithm 3: Algorithm for procedurally generating buildings
in parallel.

Each thread maintains a memory pool that is reused
for every building it generates, which reduces mem-
ory allocation bottlenecks. Threads must synchronise
before writing to the cache so that buildings can be
batched together for fast rendering.

6 RESULTS
To test the system, we conducted two separate bench-
mark, which were performed on a machine with the fol-
lowing specifications:

CPU Intel(R) Core(TM)2 Duo CPU E8500 @ 3.16GHZ
RAM 4GB
GPU NVIDIA GeForce 9800GT

First, a frame rate analysis of the system was taken
while the camera was moved between two preset points,

Journal of WSCG 122 ISSN 1213-6972

Figure 4: As the camera moves towards the geometry, new
pages must be loaded. The pages are organised into a queue
and processed in order of their distance to the camera. The
buildings within each page should be shared among parallel
executing threads.

both with and without the parallel geometry cache (Sec-
tion 5.1). The results are given in Figure 5. While the
camera travelled a distance of 800m in the scene, ex-
actly 2,038 buildings were created. This had a signifi-
cant effect on the frame rate of the system without a par-
allel cache. The sudden drops in frame rate correspond
with new geometry pages being loaded and cause a jerk
in the camera motion. In the system with the parallel
cache there is much less jerking when pages are loaded
and the overall frame rate stays within acceptable lev-
els.

The second experiment performed was a multi-threaded
processing benchmark. Four pages were generated con-
sisting of 10, 100, 1000 and 10,000 buildings respec-
tively. Processing time was logged for each of the pages
with building generation distributed over different num-
ber of threads. The average results over ten repetitions
are shown in Figure 6. A configuration with two threads
running in parallel yielded the best performance on the
dual core machine. Running the experiment with more
threads than processors led to worse results because of
the overhead of thread switching. However, this result
suggests better performance could be achieved with a
greater number of processing cores. Better results were
obtained using larger page sizes with 10,000 buildings
leading to a 27.48% increase in performance (We sus-
pect that this is due the initial memory pool allocation
assigned to each thread). Table 1 shows the number
of buildings generated per second for the 10,000 build-
ing page test. Each building was set to be strictly the
same shape, contained an average of 980 vertices and
required 610 shape operations to generate.

Figure 7 demonstrates the type of architecture and
scale of the city generated in the tests.

Figure 5: A comparison of results with and without the cache
described in Section 5.1. The system with the cache has a
much higher frame rate and less jerky movements of the cam-
era. There was an average of 1,922 buildings in the scene at
any time with 2,038 buildings created and destroyed over the
distance.

(a) 10 Buildings (b) 100 Buildings

(c) 1000 Buildings (d) 10000 Buildings

Figure 6: Time in seconds to generate buildings with differ-
ent levels of multithreading. On the dual core machine two
threads yielded the best performance.

Bld/Sec Ops/Sec Percent Increase
1 Thread 255.56 15,586.34
2 Threads 325.78 19,868.86 27.48%
3 Threads 277.47 16,922.73 8.57%

Table 1: Benchmark of multi-threaded processing on the
10,000 building data set. Results are shown for the number
of buildings generated per second, the number of shape oper-
ations (discussed in Section 4) performed per second and the
percentage performance boost over a single threaded config-
uration.

Journal of WSCG 123 ISSN 1213-6972

Figure 7: Output of the system

7 CONCLUSION
We have presented a system that can generate large vir-
tual cities with detailed buildings in real-time. The sys-
tem can be run over a network while allowing multi-
ple clients with only one data set. We introduced the
idea of object oriented building styles that can help re-
duce code redundancies and make it easier to specify
multiple building styles. We also presented a set of
benchmarking statistics calculated with different con-
figurations of the system. The results showed that our
parallel cache offers superior performance to that of a
system that simply generates the buildings as they are
needed. We also showed a performance benefit when
utilising parallel generation on multi-core processors.

Regarding limitations, currently the system only gen-
erates buildings within a single page in parallel. The
results from our experiment suggest that improved per-
formance could be achieved by generating sets of pages
in parallel, thus handling more buildings per thread and
requiring less thread synchronisation. Rendering of
the system could improved by implementing occlusion
culling and better LOD techniques. In this implementa-
tion, different level of details are provided for a build-
ing’s elements but not the shape of the building itself.

A SHAPE GRAMMAR SYNTAX
In this appendix we present the syntax of our object ori-
ented shape grammar.

The listings correspond to the buildings shown in Fig-
ure 2. Semantically relevant production rules can be
combined into meaningful blocks. Each block can have
its own list of variables that may be changed at run-
time. A child class inherits everything from its parents
and may redefine a block of rules and its variables. In
addition to defining a block of production rules, a class

can also define a set of building elements (Listing 9).
These elements correspond to terminal symbols in the
production system, which should be replaced with ex-
ternal models. A series of meshes can be given to each
element specifying a different level of detail. In our sys-
tem, the distance at which to change a mesh is the same
for each element and is specified by the cache system.
As with the production rules, probabilities are given for
the replacement of terminal symbols with 3D meshes.

c l a s s B u i l d i n g 1 : ElementPack
{

F o o t p r i n t {
FOOTPRINT ;

e x t r u d e (BUILDING_HEIGHT) { Bui ld ingVol } : 1
B u i l d i n g V o l ;

comp (" f a c a d e s ") { FACADE } : 1
}

Facade {
v a r Gro und F lo o rH e ig h t 1

FACADE : H > (Gro und F lo o rH e ig h t + 1) ;

s u b d i v ("Y" , GroundFloorHe igh t , 1 r)
{ GROUND_FLOOR | UPPER_FLOORS } : 1

}

Ground_Floor {
v a r En t r anceWid th 0 . 7 5
v a r DoorDepth 0 . 1

GROUND_FLOOR: W > (En t r anceWid th +1) ;

s u b d i v ("X" ,1 r , En t ranceWid th , 0 . 1)
{ FLOOR | E n t r a n c e P a n e l |WALL } : 0 . 3

GROUND_FLOOR: W > (En t r anceWid th +1) ;

s u b d i v ("X" ,1 r , En t ranceWid th , 1 r)
{ FLOOR | E n t r a n c e P a n e l | FLOOR } : 0 . 4 4

GROUND_FLOOR: W > (En t r anceWid th +1) ;

s u b d i v ("X" , 0 . 1 , En t ranceWid th , 1 r)
{ WALL | E n t r a n c e P a n e l | FLOOR } : 0 . 3

E n t r a n c e P a n e l ; s u b d i v ("Y" , 0 . 0 2 , 1 r)
{ WALL | E n t r a n c e }

E n t r a n c e ; d e t r u d e (DoorDepth)
{ DOOR |WALL } : 1

}

U p p e r _ F l o o r s {
v a r F l o o r H e i g h t 1 . 0

UPPER_FLOORS ; r e p e a t ("Y" , F l o o r H e i g h t) {FLOOR} : 1
}

F l o o r {
v a r T i l e W i d t h 1 . 1

FLOOR ; r e p e a t ("X" , T i l e W i d t h) { TILE} : 1
}

T i l e {
v a r WindowDepth 0 . 1
v a r WindowWidth 0 . 7 5
v a r WindowHeight 0 . 5

TILE ; s u b d i v ("X" ,1 r , WindowWidth , 1 r)
{ WALL | T i l e | WALL } : 1

Ti l eC ; s u b d i v ("Y" ,1 r , WindowHeight , 1 r)
{ WALL | WindowPlane | WALL } : 1

WindowPlane ; d e t r u d e (WindowDepth)
{ WINDOW | WALL } : 1

}
}

Listing 8: Listing for simple building

Journal of WSCG 124 ISSN 1213-6972

c l a s s ElementPack
{

Elemen t s {
WINDOW:

"window1LOD1 . mesh " "window1LOD2 . mesh " : 0 . 5
"window2LOD1 . mesh " "window2LOD2 . mesh " : 0 . 5

DOOR:
" door1 . mesh " : 0 . 2
" door2LOD1 . mesh " " door2LOD2 . mesh " : 0 . 8

LEDGE:
" windowLedge1LOD1 . mesh " " windowLedge1LOD2 . mesh " : 1

}
}

Listing 9: Listing for elements

c l a s s B u i l d i n g 2 : B u i l d i n g 1
{

T i l e {
v a r LedgeHeigh t 0 .075
v a r WLedgeHeight (WindowHeight+ LedgeHeigh t)

TILE ; s u b d i v ("X" ,1 r , WindowWidth , 1 r)
{ WALL | T i l eC | WALL } : 1

Ti l eC ; s u b d i v ("Y" ,1 r , WLedgeHeight , 1 r)
{ WALL | WindowPlane | WALL } : 1

WindowPlane ; d e t r u d e (WindowDepth)
{ WindowPlaneInner | WALL } : 1

WindowPlaneInner ; s u b d i v ("Y" , LedgeHeight , 1 r)
{ LEDGE | WINDOW } : 1

}
}

Listing 10: Building2 inherits everything from Building1 but
specifies how windowsills should be added.

c l a s s B u i l d i n g 3 : B u i l d i n g 1
{

f l o o r {
v a r T i l e W i d t h 1
v a r LedgeHeigh t 0 .075

FLOOR ; s u b d i v ("Y" , LedgeHeight , 1 r)
{LEDGE | FloorU } : 1

FloorU ; r e p e a t ("X" , T i l e W i d t h) { TILE} : 1
}

}

Listing 11: Building3 inherits everything from Building1
adding a ledge to each floor.

REFERENCES
[1] Procedural inc. - 3D modeling software for urban

environments. http://www.procedural.com/.

[2] D. G. Aliaga, B. Beneš, C. A. Vanegas, and
N. Andrysco. Interactive reconfiguration of urban
layouts. IEEE Comput. Graph. Appl., 28(3):38–
47, 2008.

[3] D. G. Aliaga, C. A. Vanegas, and B. Beneš. In-
teractive example-based urban layout synthesis.
ACM Trans. Graph., 27(5):1–10, 2008.

[4] G. Chen, G. Esch, P. Wonka, P. Müller, and
E. Zhang. Interactive procedural street modeling.
ACM Trans. Graph., 27(3):1–10, 2008.

[5] J. Duarte. Malagueira Grammar - towards a
tool for customizing Alvaro Siza’s mass houses at
Malagueira. PhD thesis, MIT School of Architec-
ture and Planning, 2002.

[6] C. Eisenacher, S. Lefebvre, and M. Stamminger.
Texture synthesis from photographs. CGF: Euro-
graphics, 27(2):419–428, 2008.

[7] P. Felkel and S. Obdrzálek. Straight skeleton im-
plementation. In SCCG: Spring Conference on
Computer Graphics, page 210–218, 1998.

[8] U. Flemming. More than the sum of parts: the
grammar of queen anne houses. Environment and
Planning B: Planning and Design, 14(3):323–
350, 1987.

[9] S. Greuter, J. Parker, N. Stewart, and G. Leach.
Real-time procedural generation of ‘pseudo infi-
nite’ cities. In GRAPHITE: Computer Graph-
ics and Interactive Techniques, page 87–ff, New
York, NY, USA, 2003. ACM.

[10] S. Haegler, P. Wonka, S. M. Arisona, L. V. Gool,
and P. Müller. Grammar-based encoding of fa-
cades. CGF: Eurographics, 29(4):1479–1487,
2010.

[11] J. Hasselgren and T. Akenine-Möller. PCU: the
programmable culling unit. ACM Trans. Graph.,
26(3):92, 2007.

[12] H. Koning and J. Eizenberg. The language of the
prairie: Frank lloyd wright’s prairie houses. En-
vironment and Planning B: Planning and Design,
8(3):295–323, 1981.

[13] L. Krecklau, D. Pavic, and L. Kobbelt. General-
ized use of Non-Terminal symbols for procedural
modeling. CGF: Eurographics (to appear 2010),
2010.

[14] R. G. Laycock and A. M. Day. Automatically gen-
erating roof models from building footprints. In
Journal of WSCG, 2003.

[15] S. Lefebvre and H. Hoppe. Appearance-space tex-
ture synthesis. In ACM Trans. Graph., pages 541–
548, Boston, Massachusetts, 2006. ACM.

[16] Y. Livny, Z. Kogan, and J. El-Sana. Seamless
patches for GPU-based terrain rendering. Vis.
Comput., 25(3):197–208, 2009.

[17] J. B. MacQueen. Some methods for classifica-
tion and analysis of multivariate observations. In
5th Berkeley Symposium on Mathematical Statis-
tics and Probability, pages 281–297, 1967.

[18] P. Merrell. Example-based model synthesis. In
I3D: Symposium on Interactive 3D Graphics and
Games, page 105–112, New York, NY, USA,
2007. ACM.

Journal of WSCG 125 ISSN 1213-6972

[19] P. Merrell and D. Manocha. Continuous model
synthesis. ACM Trans. Graph., 27(5):1–7, 2008.

[20] P. Merrell and D. Manocha. Constraint-based
model synthesis. In SPM ’09: SIAM/ACM Joint
Conference on Geometric and Physical Modeling,
page 101–111, New York, NY, USA, 2009. ACM.

[21] P. Müller, T. Vereenooghe, P. Wonka, I. Paap, and
L. V. Gool. Procedural 3D reconstruction of puuc
buildings in xkipché. In VAST: Symposium on Vir-
tual Reality, Archaeology and Intelligent Cultural
Heritage, page 139–146, 2006.

[22] P. Müller, P. Wonka, S. Haegler, A. Ulmer, and
L. V. Gool. Procedural modeling of buildings.
ACM Trans. Graph., 25(3):614–623, 2006.

[23] R. Měch and P. Prusinkiewicz. Visual models of
plants interacting with their environment. In SIG-
GRAPH ’96: Computer Graphics and interactive
techniques, page 397–410, New York, NY, USA,
1996. ACM.

[24] Y. I. H. Parish and P. Müller. Procedural model-
ing of cities. In Proceedings of the 28th annual
conference on Computer graphics and interactive
techniques, pages 301–308. ACM, 2001.

[25] J. L. Pina, F. J. Serón, and E. Cerezo. Building and
rendering 3d navigable digital cities. In GI_forum,
pages 167–176, Salzburg, Austria, 2009.

[26] P. Prusinkiewicz and A. Lindenmayer. The al-
gorithmic beauty of plants. Springer-Verlag New
York, Inc., 1990.

[27] P. Prusinkiewicz, L. Mündermann, R. Karwowski,
and B. Lane. The use of positional information in
the modeling of plants. In SIGGRAPH ’01: Com-
puter Graphics and Interactive Techniques, pages
289–300. ACM, 2001.

[28] J. Schneider and R. Westermann. GPU-Friendly
High-Quality terrain rendering. Journal of WSCG,
14(1-3):49–56, 2006.

[29] M. Slater and Y. Chrysanthou. View volume
culling using a probabilistic caching scheme. In
Department of Computer Science, University Col-
lege London, pages 71–78. ACM Press, 1997.

[30] T. T. Soon. Generalized descriptions for the pro-
cedural modeling of ancient east asian buildings.
In Symposium on Computational Aesthetics in
Graphics, Visualization, and Imaging(CAE’09),
2009.

[31] G. Stiny. Introduction to shape and shape gram-
mars. Environment and Planning B: Planning and
Design, 7(3):343 – 351, 1980.

[32] G. Stiny. Spatial relations and grammars. Envi-
ronment and Planning B, 9(1):113–114, 1982.

[33] G. Stiny and J. Gips. Shape grammars and the
generative specification of painting and sculpture.
In C. V. Friedman, editor, Information Processing
’71, page 1460–1465, Amsterdam, 1972.

[34] G. Stiny and W. J. Mitchell. The palladian gram-
mar. Environment and Planning B: Planning and
Design, 5(1):5 – 18, 1978.

[35] L. Wei, S. Lefebvre, V. Kwatra, and G. Turk. State
of the art in example-based texture synthesis. In
Eurographics 2009, State of the Art Reports, EG-
STAR. Eurographics Association, 2009.

[36] G. Whelan, G. Kelly, and H. McCabe. Roll
your own city. In Digital Interactive Media in
Entertainment and Arts, pages 534–535, Athens,
Greece, 2008. ACM.

[37] P. Wonka, M. Wimmer, F. Sillion, and W. Rib-
arsky. Instant architecture. ACM Trans. Graph.,
22(3):669–677, 2003.

[38] E. Zhang, J. Hays, and G. Turk. Interactive tensor
field design and visualization on surfaces. IEEE
TVCG: Transactions on Visualization and Com-
puter Graphics, 13(1):94–107, 2007.

[39] Z. Zhou, B. Cai, D. Zhang, and X. Zhang. Paged
cache based massive terrain dataset Real-Time
rendering algorithm. In ICIECS: Information
Engineering and Computer Science, pages 1–4,
2009.

Journal of WSCG 126 ISSN 1213-6972

	K29-full.pdf

