Neural controller implementation in embedded
system with use of FPGA coprocessor

Karol Gugata, Aleksandra Swietlicka, Krzysztof Kolanowski, Igor Karon,
Mateusz Majchrzycki and Andrzej Rybarczyk
Poznan University of Technology
Faculty of Computing
Chair of Computer Engineering
60-965 Poznan, ul. Piotrowo 3A
Poland
Email: {karol.gugala, aleksandra.swietlicka, krzysztof.kolanowski,
mateusz.majchrzycki, andrzej.rybarczyk} @put.poznan.pl,
igor.karon @doctorate.put.poznan.pl

Abstract—In this paper we propose implementation of neural
control system as embedded system with coprocessor in extensible
processing platform.

I. INTRODUCTION

Neural control systems have proven their fitness especially
in nonlinear systems. They are widely used in robotics in tasks
like path finding [6], or improving fault tolerance of classic
controllers [5]. Main problem with that kind of controllers
is efficient implementation of a neural network calculations
allowing to work of the controller in a real time.

FPGA implementation of a neural coprocessors can effi-
ciently speed up neural calculations in the whole system [1],
[2]. On the other hand handling of such aspects as commu-
nication protocols and interactions with users, e.g. providing
User Interface (UI), are quite problematic using only the FPGA
cores.

Embedded System running complex OS such as Linux on a
dedicated hardware platform enables easy implementation of
user interfaces or communication protocols handling. Combi-
nation of complex operating system running on a fast CPU and
neural coprocessor implemented in reconfigurable logic can
give a lot of benefits in work speed and ease of implementation
of the whole system.

Extensible Processing Platform such as Xilinx Zynq-7000
chip unites advantages of the embedded system controlled
by complex operating system and FPGA configurable logic
allowing to implement custom hardware cores [7].

In this paper we propose implementation of neural motor
controller in the extensible processing platform, with use of
FPGA neural coprocessor and embedded Linux application. In
the next sections components of the system are presented.

II. SYSTEM ARCHITECTURE

Proposed system consists of FPGA implementation of neu-
ral coprocessor and embedded Linux based system running
control application. System structure is depicted in Fig.1.

Control application is running in embedded Linux user
space, and communicate through the system drivers with

IV-53

neural coprocessor and motor driver implemented in FPGA
part of the system.

Motor driver and coprocessor are attached to AXI bus [4]
and are mapped into /O memory space in Linux system [3].
Drivers of those cores share device files in the /dev directory
of the Linux system and series of ioctls enabling control and
data exchange between control application and FPGA cores.

Dual Cortex-A9
Linu
Application @ Drivers
FPGA
2] Motor Driver
Coprocessor
Fig. 1. System structure

III. NEURAL COPROCESSOR

Neural coprocessor used in the system is based on the one
described in [1]. It was extended to support 32 bit data bus,
also AXI controller was added to allow connection with the
rest of the system. Structure of this core is presented in Fig. 2.

Coprocessor logic is an aritmetic core detailed in [1]. Data
exchange is made through Local Memory module. System
writes input and reads output data from coprocessor through
AXI bus. Control writes and state reads of the coprocessor are
made with control registers module.

IV. MOTOR DRIVER

Motor driver is a hardware core enabling connection,
through power amplifier, of the motor to the control system.
The structure of this core is presented in Fig. 3.



Neural Coprocessor

Control
Registers

Coprocessor logic

Local
Memory

Fig. 2. Neural coprocessor structure

The Encoder decoder submodule is responsible for decod-
ing signals from rotary encoder to information about speed
and direction of motor rotation. The PWM module is respon-
sible for generating PWM signal with given duty cycle. All
data exchange and control commands are passed through the
Control Registers submodule.

Motor Driver

(N A

— Encoder decoder \
Control
Registers

— PWM module N

—/

Fig. 3. Motor driver structure

V. LINUX EMBEDDED SYSTEM INTEGRATION

Integration of the system as embedded system, controlled by
Linux OS, required implementation of a device drivers of the
Neural Coprocessor and the Motor Driver modules. Details
about those drivers are presented in the following subsections:

A. Neural Coprocessor device driver

Device driver of the Neural Coprocessor module provides
access to the Local Memory, and Control Registers submod-
ules.

Access to the Local Memory is assured through block device
file provided by the device driver in /dev directory in Linux
root file system [3]. To control work of the module the driver
shares two ioctls: COPROCESSOR_START _CALCULATION
and COPROCESSOR_STOP_CALCULATION.

The user space application can use those ioctls and block
device to depute neural calculations to coprocessor, but it must
assure correctness of input data itself - otherwise behavior of

IV-54

TABLE I
Motor Driver DEVICE DRIVER ioctls

ioctl
MOTOR_READ_SPEED

Description

Returns current speed of the motor
(read from the Encoder Decoder
submodule)

MOTOR_READ_DIRECTION Returns current direction of the
motor (read from the

Encoder Decoder submodule

MOTOR_READ_PWM_FREQ Returns current PWM signal

frequency

MOTOR_READ_PWM_DUTY Returns current PWM signal
duty cycle
Sets PWM signal duty cycle

Sets PWM signal frequency

MOTOR_SET_PWM_DUTY
MOTOR_SET_PWM_FREQ
MOTOR_START_PWM
MOTOR_STOP_PWM

Enables PWM signal generation

Disables PWM signal generation

the coprocessor is unpredictable. Third ioctl - COPROCES-
SOR_CALCULATION_STATUS is used to read current status
of the coprocessor.

B. Motor Driver device driver

The Motor Driver device driver is simpler than described
above. It provides only access to the Control Registers sub-
module via ioctls detailed in Table I.

VI. CONCLUSION

We have presented an example implementation of the neural
controller as an embedded system in the extensible processing
platform. This solution combines benefits of fast coprocessor
calculations and easiness of implementation of the control
application in complex operating system.

REFERENCES

[1] A. Rybarczyk and M. Szulc, The concept of a microcontroller with
neural-matrix coprocessor for control systems that exploits reconfigurable
FPGAs, Robot Motion and Control, 2002. RoMoCo ’02. Proceedings of
the Third International Workshop on., pp: 123-132, 2002

[2] M. Bogdan, H. Speckmann and W. Rosentiel, Kobold: A Neural Copro-
cessor for Backpropagation with Online Learning, Microelectronics for
Neural Networks and Fuzzy Systems, 1994., Proceedings of the Fourth
International Conference on, pp: 110 - 117, 1994

[3] J. Corbet, A. Rubini, and G. Kroah-Hartman, Linux Device Drivers, Third
Edition, O’Reilly, 2005
[4] Xilinx Inc., Zyng-7000 All Programmable SoC Technical Reference

Manual, 2012, http://www.xilinx.com

[5] N.S. Naikal, R. Panikkar, A.A. Pashilkar, and R. Nagaraj, Improved
Fault Tolerance for Autolanding Using Adaptive Backstepping Neural
Controller, Control Applications, 2007. CCA 2007. IEEE International
Conference on, pp: 1203 - 1208, 2007

[6] A.S. Al-Araji, M.F. Abbod, H.S. Al-Raweshidy, Neural autopilot pre-
dictive controller for nonholonomic wheeled mobile robot based on a
pre-assigned posture identifier in the presence of disturbances, Control,
Instrumentation and Automation (ICCIA), 2011 2nd International Con-
ference on, pp: 326-331, 2011

[7]1 K. DeHaven, EPPs: The Ideal Solution for a Wide Range of Embedded
Systems, Xilinx 2012, http://www.xilinx.com



