
 
Biquadratic S-Patch in Bézier form  

 

Alexej Kolcun 

Institute of Geonics, Czech Academy of Sciences  
Studentská 1768 

708 00 Ostrava, Czech Republic 

alexej.kolcun@ugn.cas.cz 

 

ABSTRACT 
Mutual conversions between triangular and quadrilateral meshes need the same degree of both diagonal and 
boundary curves of quadrilateral meshes. New approach to quadrilateral patches, S-Patches, offers such 
possibility. The Bézier approach of Smart patches (S-Patch) in the biquadratic case is analyzed. Dependencies 
among the control points are derived. BS-Patches are presented. Close relation between Bézier triangles and BS-
Patches is found. Condition for smooth concatenation of biquadratic BS-Patches is formulated. 
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1. INTRODUCTION 
Two types of meshes, triangular and quadrilateral are 
used very often in various fields of computer graphic 
modeling [Pup_11]. Mutual conversions between 
them are the aim of interest for a long time, e.g. 
[Bru_80], [Far_86], [Gol_87], [Far_88]. Due to 
different geometric properties and incompatibility in 
these two types of meshes, it is difficult to use both 
kinds of patches in the same CAD system. 
Approximation techniques of the meshes mutual 
substitution are analyzed e.g. in [Lai_99]. Conversion 
of triangular patch to three quadrilateral ones is 
analyzed in [Hu_96]. Idea of degenerated rectangular 
meshes is used in [Hu_01]. Functional composition 
of the meshes is studied in [Fen_99] and [Las_02].  
In [Hol_99] some properties of diagonal curve of the 
quadrilateral patch are analyzed. Importance of the 
main diagonal curves is recognized in [Ska_10], 
where the concept of Smart-Patches (S-Patch) is 
introduced. Here the main idea is to find suitable 
conditions, when both diagonal and boundary curves 
are the parametric curves of the same degree. It gives 
us a possibility to find simple and direct correlation 
between triangular and quadrilateral patches. In 
[Ska_10] bicubic patches in Hermit polynomial basis 

are analyzed. 
In our approach we inspired with the idea mentioned 
above. We prefer Bernstein-Bézier form of 
polynomial basis functions. It is more convenient, 
due to the fact that we obtain the same formal 
description of both triangular and quadrilateral 
patches.  
In this paper only the biquadratic case of S-Patches is 
analyzed in detail. (The importance and usefulness of 
biquadratic quadrilateral patches and quadratic 
triangular patches can be found e.g. in [Raz_05], 
[Boc_09].) Proves of main properties are presented in 
a very detailed way due to the fact, that in similar 
way the analysis of the patches of higher degree can 
be realized. 
The rest of the paper is organized as follows. In 
section 2 biquadratic S-Patch is introduced in general 
form of simple polynomial basis functions (1, u, u2). 
It gives us a basic form of S-Patch. In section 3 
Bernstein-Bézier polynomial basis is used. Mutual 
dependencies of control points are analyzed. In 
section 4 it is shown when diagonal curves of S-Patch 
can be expressed as Bézier curves of proper 
‘diagonal’ control points. Such patches are 
introduced as BS-Patches. In section 5 it is shown, 
that BS-Patches we can split to Bézier triangle 
patches. In section 6 conditions of smooth 
concatenation of BS-Patches are formulated. 

2. PROBLEM FORMULATION 
Let us consider biquadratic parametric patch 
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Our goal is to find out the conditions for all boundary 
lines and both main diagonals D1(u), D2(u) to be the 
lines of the same degree. 
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Such patches are named S-Patches [Ska_10]. 

 

Theorem 1. Biquadratic patch (1) is a S-Patch iff  

0222112 === RRR ,  

i.e. 
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Proof: Resulting matrix for (3) is 
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So, the conditions (2) and (3) lead to the equations  
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It is obvious, that linear system (5) has trivial solution 
only 

    0222112 === RRR . 

QED. 

Corollary. A ll parametric lines of a biquadratic S-
Patch are curves of degree d ≤ 2. 

Proof: Let us consider general parametric line of S-
patch. Using standard transformations of (4) for 

( ) ( )buauXuL += ,  we obtain the resulting formula 
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Q.E.D. 

3. BÉZIER FORM OF S-PATCH 
Let us express the biquadratic S-Patch in Bézier form 
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From (6) we can find control points Pij. 
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In more detailed way 
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Explicit vector form of (7) gives  
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Rank of the matrix M  in (8),  rank(M ) = 6. 

In the text below (Figures 2 – 4) we use vector 
indexing and Cartesian indexing  of control points of 
a patch – Fig. 1. 

 

1 2 3  00 01 02 

4 5 6  10 11 12 

7 8 9  20 21 22 

a)   b) 
Figure 1. a) vector indexing, b) Cartesian 

indexing of control points. 
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The first six rows of matrix M  in (8) (Fig. 2a)) are 
linearly dependent, as we can write  

    111002010012 22 PPPPPP +−+−= . 

Similarly, the sets of rows in (8) (i.e. the rows of 
matrix M ) (1,2,3,7,8,9), (4,5,6,7,8,9), (1,4,7,2,5,8), 
(1,4,7,3,6,9), (2,5,8,3,6,9) are linearly dependent too. 

 

 
a)            b)            c) 

Figure 2. Configurations of dependent 6-element 
sets of control points Pij (black). 

 

For the configuration of points Fig. 2c), i.e. for the 
configuration of rows (1,2,4,6,8,9) of the matrix M  in 
(8) we can find relation 

    001001211222 PPPPPP +−−+= . 

The symmetric configuration of rows (2,3,4,6,7,8) is 
linearly dependent too. 

We can formulate the condition for the independency 
of sets of the control points Pij. 

 

Theorem 2. Only the eight six-element sets of control 
points mentioned above are linearly dependent. 

Proof can be done by computing the determinant of 

all 84
6

9
=




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   6x6 submatrices of M  in (8).  

(Due to symmetries it is enough to parse not more 
than 21 cases.)  

QED. 

Such configurations of control points cannot be used 
for the patch determination. 

Fig. 3 gives examples of independent sets of control 
points. Symmetrical cases are independent too. 

 

 
a)                b)                c)                d) 

Figure 3. Some configurations of independent 6-
element sets of control points (black). 

 

Useful properties of some independent configurations 
of control points are: 

1. configurations from Fig. 3a), 3b) involve all 
corner control points, 

2. configurations from Fig. 3a), 3c) involve full 
information of the pair of neighbour boundary 
lines. 

 

4. BS-PATCH 
Let us analyze the relations between main diagonal 
D1(u) of S-Patch (4) 
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and proper Bézier diagonal – i.e. the curve defined on 

the set of ‘diagonal’ control points 221100 ,, PPP  – 

Bézier diagonal curve 
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Using the abbreviation 

    ( )TRRRRRR 112002100100=ℜ ,  

for (9) we obtain 
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On the other hand, for Bézier diagonal curve the 
resulting expression of (10) is 
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As the matrices in (11) and (12) differ in the last 
column only, the condition R11 = 0 must be fulfilled 
for both Bézier and S-patch diagonals to be identical. 

The same result we obtain for the diagonal curves 
D2(u) and D2B(u). 
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Here the matrices in (13) and (14) also differ in the 
last column only. 

Just proved relations among the diagonal lines can be 
formulated as the theorem below. 
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a)                   b)                   c)                   d)                   e)                   f)                   g) 

Figure 4. 5-element sets of control-points. a),b) – non independent, c)–g) independent sets. 

 

 

Theorem 3. D1(u)= D1B(u) if and only if R11=0. 
Moreover, equality of these diagonals automatically 
implies the equality of D2(u)= D2B(u). 

On the base of the Theorem 3 we can introduce 
biquadratic BS-Patch, i.e. patch in the form as 
follows 
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In this case mutual relations among Bézier control 
points Pij (8) are reduced to 
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We can see that now the corner control points 
(Fig. 4a) ) are dependent,  

    00022022 PPPP −+= . 

It means that the corner control points create 
rhomboids.  

Similarly the quaternion of neighbour control points  
(Fig. 4b) ) is dependent too, 

    00011011 PPPP −+= . 

 

Examples of non independent and independent 5-
element sets of control points of BS-Patches are 
presented in Fig. 4 c) – g). E.g. for independent 
pentad from Fig. 4e) the rest of control points can be 
represented as 
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5. BS-PATCH AND BÉZIER 
TRIANGLES 

As both diagonal and boundary curves of BS-Patches 
are Bézier curves, it is meaningful to analyze the 
triangle patches. We shall demonstrate that there is a 
very close connection between the Cartesian BS-
Patch and a pair of triangular Bézier patches. This 
relation is formulated for the case n =2. 

Let us consider triangular mesh of nodes  

    nkjinkjiPijk =++≤≤ ,,,0  

where nodes 
222111

, kjikji PP are neighbour, if  

    2212121 =−+−+− kkjjii . 

Bézier triangular patch is defined as  
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where  

nkjinkjiwvuwvu =++≤≤=++≤≤ ,,,0,1,1,,0 . 

 

Let us consider quadratic BS-Patch defined on the set 
of control points 2,0, ≤≤ jiPij . Let us consider 

Cartesian and triangular indexing of these control 
points according to Fig. 5. 

 

 
a)  b)  c) 

Figure 5. Cartesian a) and triangular b), c) 
indexing of control nodes for n = 2. 
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Theorem 4. BS-Patch defined on control points 
2,0, ≤≤ jiPij  is the same surface as the pair of 

triangular Bézier patches, defined on the sets of 
proper control points. 

Proof. Let us use the independent set of control 
points according to Fig. 4e). Solving proper 
subsystem of (16) 
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and inserting the solution into (15) we obtain 
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Let us express triangular patch on the nodes  

    P00, P01, P02, P10, P11, P20 – Fig. 5a). 

Using the triangular indexing – Fig. 5b), we have 
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Rewriting it to Cartesian indexes – Fig. 5a) we obtain 
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Using (17) and excluding w, as vuw −−=1  leads to 
the final form of triangle patch 
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We have obtained the same relation as (19). 

For the triangle defined on control points form 
Fig. 5c) the process of proving is similar. Difference 
is in used parametrization only: in (20) we use 

( )u−1  instead of u and ( )v−1  instead of v. 

For triangles with the diagonal defined on control 
points 221100 ,, PPP  in (20) we have to use 

parametrizations ( ) vu ,1− ,  ( )vu −1,  respectively. 

QED. 

 

Corollary. Just proved theorem gives us an important 
generalizaton of the trivial fact that a bilinear patch 

can be decomposed to two triangles iff the quaternion 
of control points is planar. 

6. SMOOTH CONCATENATION OF 
BS-PATCHES 

Let us consider 5-element set of independent control 
points form Fig. 4e). Condition (17) says that the set 
of control points creates four rhomboids – Fig. 6. 
Here we can distinguish three types of control points: 
‘central’, ‘crosswise’ and ‘dependent’. 

 

 
Figure 6. Resulting geometry of control points for 
BS-patch. Different types of control points are 
distinguished: black – central one, dark – 
crosswise ones, light – dependent ones. 

 

Let us consider four general BS-patches – Fig. 7a). 
The conditions for concatenation of the patches are 
obvious – Fig 7b):  

a=e, c=g, i=m, k=o, d=l, b=j, h=p, f=n. 

This condition can be formulated more generally in 
the following way. 

 

        
a)   b) 

Figure 7. Concatenation of BS-patches.  

a) Four independent BS-patches. b) Concatenated 
BS-patches. 

 

Let there are two open polylines 

 ( )nPPPP L2101 =Λ  and ( )mRRRR L2102 =Λ . 

Let us consider the lattice of nodes  

    ( )mjniQ ji ≤≤≤≤= 0,0:,Λ  

where 

  .,
00 ,, PPRjiRRPji xyyyxxxx

ijji
−+=−+=  
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a)   b)   c)   d) 

Figure 8. Smooth concatenation of BS-patches according to the steps a) – d) below. 

 

Theorem 5. Surface is set of BS-Patches iff set of 
control points is a lattice of polylines. 

Moreover, if we demand smooth concatenation of 
BS-Patches, edges b,h must be parallel. Similarly, 
edges c,i must be parallel too. It means that the 
quaternion of central control points from Fig. 7b) 
creates the vertices of rhomboid.  

Construction  

Given two polylines  

( )nPPP L101 =Λ , ( )mRRR L102 =Λ , 

given two sets 

( )110 ,,, −= nppp Lπ , ( )110 ,,, −= mrrr Lρ , 1,0 << ji rp , 

we can construct smooth concatenation of BS-patches 
according to the steps below. 

a) We suppose that the central control points of 
BS-patches create a lattice.  

b) Crosswise control points can be found as a 
ratio of neighbour central control points. 

c) Dependent control points (corners of BS-
patches) are found according to the (17). 

d) Concatenation consists of full-defined BC-
patches. 

Fig. 8 illustrates the above described construction. 

7. CONCLUSIONS 
In the presented study we have described the Bézier 
form of S-Patches in the biquadratic case.  
• Dependencies among the control points are 

derived.  
• BS-Patches are introduced.  
• Close relation between Bézier triangles and BS-

Patches is found.  
• Condition for smooth concatenation of 

biquadratic BS-Patches is formulated. 
We can see that biquadratic BS-patches are very 
convenient for mutual conversion between triangular 
and quadrilateral patches. On the other hand, smooth 
concatenation of such patches is ‘too rigid’ and 
perhaps it is hardly used for the shape expression in 
general case. Future work will be focused to  

• more detailed analysis of relationship between 
S-Patches and BS-Patches, 

• patches of higher degree.  
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