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ABSTRACT
This article presents modifications to an existing technique for camera orientation estimation intending to make
it faster for use in real time applications and also for analysis of large image sets. The technique is based on
likelihood maximization of a probability function that has the image gradient as the observed data and the camera
orientation as parameter values. The camera orientation is inferred from the vanishing points of the image, and
the directions of the edges in the environment are assumed to be in three mutually orthogonal directions. The first
proposed modification is to substitute the expression that is calculated at each pixel by a computationally lighter
approximation. The second proposal is to take in consideration only a few of the pixel lines and columns of the
image during the calculations, performing a grid windowing of the image. This article presents the derivation and
reinterpretation of the likelihood function approximation and also a performance evaluation.
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1. INTRODUCTION
Camera localization is the Computer Vision problem
of inferring the position and orientation of a camera
in an environment from one or more pictures captured
by it. Camera localization problems are defined by
their different restrictions, specially the available data
and what parameters are to be estimated. As usual
in Computer Vision, it is an ill-posed problem of
parameter estimation, and solutions are often based
on procedures such as non-linear regression [SW89]
and robust estimation [CKY09, HZ03]. One specific
case of the localization problem is to estimate just
the camera orientation from a single image under
the restriction known as “Manhattan World”, or also
“LEGO Land”, that the edges in the environment are
in the directions of the coordinate axes. This article
presents modifications to existing techniques [CY03,
DIM02, SD04, DEE08] that solve this problem
using the Likelihood Maximization principle, with a
probabilistic observation model where the observed
data is the image gradient, and the parameters to be
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estimated define the camera orientation in the world
reference frame. Two modifications are proposed:
the substitution of the expression calculated at each
pixel by a simpler one, and the use of a grid mask to
select pixels. The alternative expression caused great
speed gains (60 fold in one test) while exhibiting good
convergence. The subsampling technique also caused
a 10 fold speed increase with just a 10% reduction of
convergence probability in another experiment.

The proposed simplified expression can be seen as
the result of a windowing operation by a mask that
is calculated from the image gradient norm using
a sigmoid function. While the original expression
is strictly probabilistic, the proposal is similar to
techniques such as Fuzzy Logic and Neural Networks.

In the remainder of this section the problem is
further described and previous techniques are briefly
reviewed. In Section 2 the existing techniques on
which this proposal is based are better explained, and
so is the developed technique. This section also brings
results of experiments conducted with a database of
images with solved orientation parameters to evaluate
the proposal. Section 3 brings a few conclusions.

1.1 Problem geometry
The aim of the proposed technique is to obtain an
estimate of the spatial orientation of a camera from
a single image captured by it. The camera follows the
simple pinhole model [TV98, chap. 2][HZ03, chap.
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6]. In this model there is a camera reference frame
whose origin is the focal point of the camera, and
the image plane is located at z = f , where z is the
direction that points outwards from the camera and
into the scene. Image coordinates can be converted to
this camera reference frame by a linear transformation
involving the pixel size and the location of the
image origin. The color of pixels are determined
by the color of objects that are projected onto the
image plane according to the classic perspective
transformation [TV98]. The environment is assumed
to be composed of rectangular parallelepipeds of faces
with different colors and with edges aligned to the
coordinate axes of the world reference frame.

The projections of the edges of these objects
create edges on the captured images. These image
edges typically produce gradient vectors with high
magnitude that point to the direction orthogonal to the
edge. Image gradients are approximately calculated
by linear filters such as the one used in the well
known Sobel detector [TV98, chap. 4]. In the present
research the Scharr filter was employed [WS02]. The
perspective projection causes the well known effect
of producing vanishing points in the image. Lines
that point to the same direction in the environment
create either parallel lines in the image, or lines that
converge to a vanishing point. The spatial orientation
of the camera determines the position of the vanishing
points, and the orientation can be therefore estimated
from the directions of the image edges [HZ03, sec.
8.6]. This principle is the basis of many different
techniques to estimate camera orientation.

1.2 Existing techniques
Many of the existing techniques for vanishing point
or camera orientation estimation are either based
on the Hough Transform [Shu99, CJRZ10] or on
robust estimators [Tar09, Fö10] for matching edges
extracted from the image and perform the desired
estimation. Extracting edges and defining parameter
space accumulators can be a nuisance for some
applications, and this is one of the main reasons to
look for alternative techniques. It is usually hard
to extract edges with good precision, and also to
match the edges that refer to the same direction.
The technique presented in this article is part of a
family of techniques that avoid these problems by
using probabilistic models to infer camera orientation
directly from pixel values, exploiting the vanishing
point restriction.

The probabilistic model is used to perform
maximum likelihood (ML) estimation to determine
the camera orientation ~Ψ from a given input image.
The differences between these similar techniques
lie in the expression used for the calculation of
the image likelihood given ~Ψ and the pixel values,

more specifically the image gradient, and in the
optimization procedure employed to find the optimal
~Ψ∗ that maximizes the likelihood expression.

The directions of the environment edges must
be known in order to infer camera orientation
from vanishing points. In the present research the
orientations are assumed to be in the directions of
the coordinate axes, so the edge directions in camera
coordinates are easily calculated from the rotation
matrix that gives the camera orientation in relation
to the world reference frame. Other than camera
orientation, most of these techniques can be modified
for other tasks such as discovering vanishing points
in unknown directions and also estimating intrinsic
camera parameters such as the focal distance f .

2. METHODOLOGY
This section brings more detailed explanations about
how the existing and the proposed techniques work.
They are all procedures that create an estimate of a
camera orientation ~Ψ from a given input image. This
orientation is a rotation matrix in three dimensions,
and as such can be parameterized in different ways.
The most popular alternatives are Euler angles, the
Rodrigues formula, and quaternions, which are used
in this work. But this representation is not relevant
for the following subsections, where the reader can
just assume ~Ψ is given as a 3D rotation matrix.

The next subsection describes the original
probabilistic technique for estimating camera
orientation from image gradient [CY03] and some
modifications. The following subsection brings the
new proposals. These techniques are all based on
the Maximum Likelihood principle. They are more
specifically maximum a posteriori (MAP) estimators,
that can be seen as regularized ML estimators. These
methods need a function called observation model,
which is a conditional probability density function
(PDF) of observing a measured data set given certain
condition parameters. This function is used as a
likelihood function, where the observed data is
taken from the image gradient, and the conditional
parameters are the camera orientation (related to the
vanishing points locations), image coordinates of
each pixel, and a pixel class that will be explained
below. Once the expression is defined and the data
collected, an optimization technique is used to find
the parameters that maximize this MAP estimator.
The ~Ψ∗ found by this optimization is the desired
camera orientation estimate.

2.1 Original observation model
In the first observation model proposed related to our
technique [CY03] the likelihood of the whole image
is factored as the product of the likelihoods of the
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gradients ~E~u at each pixel ~u. These individual PDF
are also further factored as products of the likelihoods
of the gradient norms E~u and edge angles φ~u yielding

P ( ~E~u|m~u, ~Ψ, ~u) = P (E~u|m~u)P (φ~u|m~u, ~Ψ, ~u).
(1)

The edge angle φ~u is orthogonal to the gradient
direction 6 ~E~u. The formula has two important
characteristics. The first is that the PDF of the
gradient norm E~u depends only on the pixel class
m~u. This class can be one of five possibilities: class 1
means the pixel is not an edge, classes 2–4 are edges
on each of the three coordinate axes of the world
reference frame and class 5 is a non-aligned edge.

The second characteristic is that the PDF of φ~u also
depends on m~u, but also on the camera orientation ~Ψ
and the coordinates of pixel ~u. When m~u = 1 or 5 we
assume all gradient directions are equally probable,
so P (φ~u|m~u, ~Ψ, ~u) becomes a uniform distribution
in these cases. For m~u = 2, 3 or 4 we calculate
the probability of the measured direction. For that
we first use ~Ψ to calculate ~rm = (rmx , r

m
y , r

m
z ), a

vector in the direction of the edges of the class m~u

in the camera reference frame. The location where a
line extended from ~rm crosses the image plane is the
vanishing point. The vector can also be parallel to the
plane, in which case there is no actual vanishing point
but it is still possible to calculate the directions of the
edges. The direction on each pixel is:

~θm~u =

(
rmx
rmz

f + ux,
rmy
rmz

f + uy

)
. (2)

One way to calculate P (φ~u|m~u, ~Ψ, ~u) used in
previous techniques is to determine the vanishing
point direction angle 6 ~θm~u , then subtract it from the
edge direction φ~u, and this difference is then used
as parameter to the PDF of the observation error in
the measured edge directions. This PDF has been
assumed in previous works to be uniform [CY03],
triangular [DIM02], Gaussian [SD04] and a
Generalized Laplace distribution [DEE08].

Two different PDF are used to implement
P (E~u|m~u). For m~u = 1, Poff (E~u) is used, and
Pon(E~u) is used otherwise. Different assumptions
have been made about these functions too. Both
measured values [CY03, DIM02] and Gaussian
models [SD04] have already been used.

As previously mentioned, the likelihood of the
complete image is a product of terms given by
Equation 1. This product can be used to define a ML
estimator, but what is usually done is to improve it
by using the information of a priori probabilities of
P (m~u), to define a MAP estimator. The logarithm
of the resulting expression is also taken to replace the
product by a summation, what does not change the
location of the maximal points. Considering all this,

and using Mk for P (m~u = k), Φk for P (φ~u|m~u =

k, ~Ψ, ~u) we arrive at the expression:

L
(
~Ψ
)

=
∑
~u

log

(
Poff (E~u)Φ1M1 + Pon(E~u)Φ5M5

+ Pon(E~u)
∑4
k=2 ΦkMk

)
(3)

The camera orientation estimate is therefore the
rotation ~Ψ∗ that maximizes the function L. In the
original proposal the summation is performed over
all the image pixels [CY03], but just like with the
PDF definitions, other researchers have proposed
different ways to select subsets of the image pixels
over which the summation should be performed,
hoping to make the calculation faster and also smooth
the estimator function. One proposal is to divide
the image in square tiles, and sample a single
pixel randomly from each one, a different pixel at
each calculation [DIM02]. Another possibility is
to select only a few of the pixels with the largest
values of E~u [SD04]. The probabilistic modeling
of the pixel being or not on an edge can be even
dropped and substituted by the use of an edge-finding
algorithm [DEE08]. In this case the argument of the
log in Equation 3 becomes simply

∑5
k=2 ΦkMk, but

this technique depends on an initial edge extraction,
that did not exist in the original proposal.

Other aspects where the techniques differ is
the application of the Expectation-Maximization
algorithm, where values for Mk are also
iteratively estimated [SD04, DEE08], and the
optimization algorithms used. Alternatives
range from coarse-to-fine search at regularly
sampled points [CY03], stochastic importance
sampling [DIM02], and continuous non-linear
optimization methods [SW89] such as
Levenberg-Marquardt [SD04] and BFGS [DEE08].

2.2 Function approximation
This subsection describes the first major modification
investigated in this research, which is substituting
the original arithmetical expression for the likelihood
function by a computationally simpler approximation.
The following subsection covers the use of a grid
mask to select the pixels to be considered in the
calculations.

Tests performed with an implementation of the
original likelihood expression (Equation 3) revealed
that much of the computation time was spent
on functions to compute the logarithm and the
arc-tangent used to calculate 6 ~θm~u . A removal
from the program of the procedure calls related to
these operations, while keeping all the rest of the
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calculations, resulted in an approximately ten fold
speed gain, showing experimentally that avoiding
these operations can be a good strategy to reduce the
calculation time. Arc-tangent was the most costly
operation of the three, considering both the time of
a single calculation and the number of calls at each
calculation iteration in the summation loop.

The modifications begin by replacing the logarithm
with the first-order approximation

log(b+ a) ≈ a

b
+ log(b), (4)

where a represents the terms that depend on ~Ψ,
and b the terms that remain constant during the
optimization. The log(b) term can therefore be
ignored as it does not influence the solution, and the
resulting approximation becomes

∑
~u

W ′(E~u)
4∑
k=2

Φk
Mk

Φ1
, (5)

where the mask generating function

W ′(E~u) =

(
Poff (E~u)

Pon(E~u)
M1 +M5

)−1
. (6)

The function W ′ produces, at least with the
appropriate parameters, a sigmoid curve, similar to
the logistic or to the hyperbolic tangent functions.
The second approximation used was to replace this
function by W , the logistic function applied to E~u
translated by p1 and scaled by p2

W (E~u) =
(

1 + e−p2(E~u−p1)
)−1

. (7)

Replacing W ′ for W at Equation 5 and ignoring the
constantMk/Φ1, that only scales the function, finally
produces the proposed estimator:

L̃
(
~Ψ
)

=
∑
~u

W (E~u)
4∑
k=2

Φk, (8)

Figure 1 displays, at the top, the probability
models of the gradient magnitudes with measured
values, provided by the authors of [CY03], and also
the Gaussian models from [SD04] (mean 8.28 and
standard deviation 6.21 for Pon , and respectively 1.13
and 0.77 for Poff ). On the bottom of the figure, the
continuous and dashed curves are W ′ obtained from
the two PDF models mentioned, and the red dotted
curves are W with two different sets of parameters
(p1 = 10 p2 = 0.4 and p1 = 3.1 p2 = 3.0).

Figure 2 shows an image from the YorkUrbanDB
image database [DEE08]. This image set has
102 indoor and outdoor images of man-made
environments, and the orientation of each image was

Figure 1: Original gradient magnitude likelihood
functions, resulting mask generating functions and
examples of the proposed function.

obtained from edges and with a manual labeling
process. Intrinsic parameters of the camera are also
provided, enabling interested researchers to test their
techniques and compare to others. Possible radial
distortions of the images were not taken in account
in this work, but the projection center coordinates and
focal distance that are provided were used.

The leftmost graphic of the figure displays the
input image. The next one displays the values of W
calculated over each pixel, with white representing
the zero level, (p1 = 20 and p2 = 0.2 were used).
The two graphics to the right display the horizontal
and vertical components of the normalized direction
vector. The red color denotes negative values, but
even in a monochromatic mode it is possible to see
how edges in the direction of the derivative vanish on
each graphic. The edge mask obtained with W has
been applied to these gradient images, clearing out the
noise that would be otherwise noticeable in the large
white areas of these images.

In the program created to implement this expression
the edge mask is calculated and stored in memory
before the optimization procedure starts, so only
memory accesses are needed to obtain the values
during the calculations. Something similar can be
done with other techniques, because P (E~u|m) does
not depend on Ψ, only Φm does.

The last modification done to the likelihood
expression was to substitute the calculations of
arc-tangents by dot products. Instead of calculating
the angles of the gradient and vanishing point
directions, these vectors are simply normalized and
multiplied by each other. Because the gradient is
orthogonal to the edge direction, this multiplication
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Figure 2: Gradient of an YorkUrbanDB image. The second image is the edge mask calculated from the gradient
vectors absolute values. The two rightmost graphics are the masked gradient x and y components.

yields γm = sin(φ~u − 6 ~θm~u ). This is a good
approximation of the identity function for small
values, so the product result can be directly used in
the angle error PDF. The function used was therefore:

Φm =

{
2
p3

(
1− |γ

m|
p3

)
if |γm| < p3

0 if |γm| ≥ p3
, (9)

where we note that the 2/p3 multiplication can be
dismissed without affecting the optimization results.

The normalization of ~E~u and 6 ~θm~u can be
performed quickly using a special rsqrt instruction
available in many modern processors that calculates
an approximation of the reciprocal of the square
root of numbers. This instruction was used in the
implementation tested, and so were SIMD (single
instruction, multiple data) instructions that allow
calculations to be performed simultaneously both for
the three vanishing points, and also for the three image
channels when possible. The three image channels
were independently considered in the calculations,
with just the pixel coordinates and ~θ~u in common. The
final likelihood value is therefore the summation of
likelihoods for each channel.

The program was implemented using
Cython [Sel09], with a few routines implemented
in C in order to make use of the special processor
instructions mentioned. Another implementation
was made based on [CY03], using arc-tangent
and logarithm calls inside the loop, but with some
similarities to the implementation of the proposal,
such as using SIMD instructions for some operations,
and caching constant values.

Tests were performed with the YorkUrbanDB
images at different values of Ψ to measure the
speed of the proposed function relative to this
implementation of the original. Speed gains
from 50 up to 64 times were found in one
computer (c1.xlarge instance from Amazon Web
Services [Ser]), where the mean time to calculate the
likelihood of one image using the classic function was
1.10 ± 0.06s versus 18.9 ± 2.4ms for the proposed
algorithm. Although these numbers naturally varied

according to the processor employed, accelerations of
more than 10 times were often detected in other tests.

The positive impact of these function modifications
on the calculation speed is not surprising. But the
impact of these modifications on the performance of
the optimization procedure must be now studied to
validate the proposed technique. This analysis will
be presented in Subsection 2.4. But it should be
noted that this proposed modification did not intend
to numerically approximate the original likelihood
function values. The original function serves more
as a theoretical foundation, and the modifications do
not seek to approximate it exactly, but only retain
characteristics such as the positions of the extremal
points and gradient directions.

When the logarithm of the likelihood is used
instead of the original function in an optimization, the
produced function does not approximate the original
numerically, but is still useful for the optimization.
So the performance of such modifications should
not be measured by looking at approximations
errors, but at the optimization results instead. In
the same way, because the modifications proposed
here include dropping some constant terms, the
resulting function cannot be compared to the original
function, so no error analysis was performed, only
performance analysis of the optimization procedure.
Despite of that, the modifications are in fact initially
based on first-order approximations of the original
function, justifying the use of the term approximation,
even though the final proposed function does not
approximate the original one numerically.

The proposed function also differs from the original
in that the parameters of the mask generating function
are only indirectly related to the gradient norm
probabilities. While it is possible to fit the parameters
to a mask function taken from histograms, it is better
to look for parameters that maximize the performance
of the final optimization procedure. The sensitivity of
the performance to these parameters, and also to the
gradient norm probabilities is a topic that the proposed
modifications bring up, but was not studied here.
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Figure 3: Two example grids with spacing equal to 16
and 128 over the norm of the gradient of an example
image.

2.3 Grid mask
A sampling strategy was introduced to reduce the
number of pixels used in the calculations, and also
try to make the estimator smoother. The strategy is
to select only a few of the pixel lines and columns of
the image. These were selected at regular intervals,
with the spacing controlled by the parameter g. The
result is the same of applying a mask to the image
with the shape of a square grid, with a continuous line
or column at every g pixels, starting from the image
origin. When g = 1 all pixels are used. When g = 2,
3/4 of the pixels are used, and 7/16 when g = 4.

The grid masking is proposed here as a theoretically
more suited way to subsample images when edges
are the target features. Other subsampling techniques
simply regard edges as a kind of pixel, and not
as a geometric entity without area. Some authors
quote statistics such as “10% of the image pixels
are edges”, but such statements miss some important
points about image edges. The number of pixels of
an image increases with the square of resolution, but
the number of pixels that lie over and edge should
increase linearly. New edges may be introduced
as resolution increases, affecting positively this
proportion of edge pixels to image size, but the
relative number of pixels of an existing edge still
decreases linearly with resolution, and subsampling
strategies should take this effect in consideration.

As image resolution increases the number of edge
pixels found over a grid line or column should remain
constant, while non-edge pixels increase linearly
with resolution — assuming that no new edges are
introduced, and that edge directions are not exactly
aligned to the grid. One interesting characteristic of
grid masking is that if the edges have a minimum
length, the grid spacing can be made small enough
as to guarantee that a minimum number of points over
any edge in the images is sampled. Grid masking also
avoids sampling groups of neighboring pixels, what
is generally thought to be good because pixels are
assumed to be independent in the probabilistic model.
Figure 3 shows the grid lines and columns overlaid to
the gradient of the three channels of an image from the
YorkUrbanDB database. The top graphic has the grid
spacing parameter g = 16, and the lower g = 128.

Figure 4: Successful and failed optimizations.

2.4 Optimization
With the likelihood function and sub-sampling
technique defined, an optimization technique can
now be used to produce orientation estimates from
input images. The algorithm used was the modified
Powell’s method from SciPy [JOP+ ]. Figure 4
displays a successful optimization, obtained with g =
200, and a failed one with g = 400. This is
an 800x600 pixels image captured with a consumer
digital camera. Line segments in the directions of
the three vanishing points obtained form the solution
were plotted in regularly spaced points over the
images, and it is possible to see how the edges are
aligned to the objects in the environment. In the
failed optimization the solution found was not much
far from the initial condition, which was no rotation.

The parameterization used for the rotations was
quaternions. The vector ~Ψ has three dimensions,
and are the three quaternion parameters that are
directly related to the direction of the rotation axis.
The fourth parameter, related to the rotation angle,

is calculated as
√

1− ||~Ψ||2. If ||~Ψ|| > 1 no
quaternion can be directly produced. In this case
the quaternion is obtained from −~Ψ/||~Ψ||. It should
be noted that no symmetries were taken in account
in this parameterization, so multiple ~Ψ values are
equally acceptable solutions, and can be obtained
from each other by 90 degrees rotations around the
axes. The problem of associating the axes properly,
when possible, was not considered in this research.

As in previous works, optimization is initiated from
different starting points [DEE08], although only two
were used in the present experiments. One point
considers no rotation, and the other a 45 degrees
rotation around the vertical axis. This explores
the tendency of the camera to be upright, and the
ambiguity resulting from 90 degree turns. After the
two optimizations are performed, the solution with the
highest likelihood is picked as the best estimate.

Figure 5 shows an evaluation of this optimization
for different grid spacings g. The parameters used for
L̃ in this experiment were p1 = 20, p2 = 0.2 and
p3 = 0.1. There is a compromise between calculation
speed and the quality of the solutions obtained.
The decreasing green curves show the probability p,
estimated from the N=102 images, of the obtained
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Figure 5: Speed of the calculations as a function of
the grid spacing, and two quality evaluations.

solution lying at 10◦ or 5◦ of the orientation provided
in the database [DEE08]. The 10◦ curve is naturally
above the 5◦ one. The uncertainty interval plotted is a
single standard deviation above and below the points,
calculated as

√
p(1− p)/N .

The speed estimate is the number of times L̃
can be calculated per second as a function of g.
To calculate this, the elapsed time and number of
function calculations performed were first stored for
both optimization runs of all test images. The speed
was then estimated for each optimization run by
dividing the number of calculations by the elapsed
time. The mean number of iterations was 276 for
all optimization trials with all g values, with a 89.3
standard deviation. The increasing blue continuous
line in the graphic is the mean and 6σ interval of
this speed for all optimizations performed for each g.
It should be noted this experiment was performed in
a slower machine compared to the one used for the
measurement reported in Subsection 2.2.

The increasing black dashed line in Figure 5 shows
how speed should increase if it depended only on the
reduction of the number of pixels, where speed gain
should be g2/(2g − 1) . The smaller speed values
that were measured are coherent with the addition of
a constant time to the calculation time, the reciprocal
of the speed value.

This analysis only considers the individual
performance of the proposed target function and
the effects of the grid sampling. Another test was
performed in order to validate the proposed function.
The objective was to find out if the modifications
were causing the extremal points to be located in
positions further from the true solutions than the
points produced by the original function.

To perform this test the solution found with
the proposed method was used as initial estimate
for a second optimization on the original function.
The error of the first and the second optimizations
compared to the estimate in the database were then
analyzed. The modifications would be considered
destructive if the errors in the first optimization were
higher than the errors from the second, i.e. the second
optimization would “fix” the first one. On the other
hand, if the modifications are acceptable the second
optimization should not improve the solutions much.

The result was that from the 102 YorkUrbanDB
images 53 had their errors reduced after the second
optimization. From these, 5 were improvements from
more to less than 10◦ away from the correct solution.
On the other hand, from the 49 cases where the second
optimization ended with a larger error, there were 6
cases where the initial solution was below 10◦ but
the second was beyond. So there is no indication
that using the original expression can be critical to
improve the performance obtained with the proposed
function, at least with the optimization algorithm that
was used and with no subsampling performed.

3. CONCLUSION
This article demonstrated modifications made to
existing techniques for camera orientation estimation
to attain higher calculation speed. The techniques
are based on the optimization of a MAP estimator
that has the image gradient values as observed data,
and the camera orientation as estimated parameter.
It works by finding the orientation that causes the
best alignment of the image gradient to the vanishing
points created by the directions of the three mutually
orthogonal axes of the world reference frame.

The original expression to calculate the likelihood
was modified by an approximation that avoids the
calculation of arc-tangents by using dot products,
and also replaces the logarithm of a summation
at the expression for each pixel by a summation
where all the terms are strictly dependent on the
gradient directions and camera orientation. These
pixel summations are weighed in the total image
summation by a coefficient calculated by applying a
sigmoid function to the gradient norms.

This coefficient takes the role performed originally
by the likelihoods Pon and Poff , and also the a priori
probabilities M1 and M5. The need to measure these
parameters is replaced by having to choose just p1
and p2. The third parameter p3 shapes the likelihood
of gradient directions. More tests still have to be
conducted to determine the best parameters, but the
technique seems to be robust to variations on them.
Outside of these parameters, the other parameters that
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must be set in order to use the technique are the ones
related to the optimization.

A grid masking technique was also proposed to
select a subset of the image pixels to take in
consideration in the calculations. It was inspired in
the usual curve tracking technique of searching for
edges over spaced lines normal to an initial estimate
of the curve location[BI98, chap.5 ], and also on
the Canny edge extractor [TV98]. It subsamples the
image in a deterministic and more reliable way, and
has been proven effective.

Some planned extensions to this research are to
better choose the function parameter values and turn
the grid masking into a search of maximal points of
the derivative in the direction of the line or column.
The gradient calculations can also be restricted to
the grid vicinity to speed up calculations. Other
subsampling techniques can also be applied together
with a grid mask. For example, random sampling
could be performed only within the mask pixels,
or a random sampling could be performed in the
whole image initially, but instead of picking just a
single pixel from each trial, picking a whole group of
pixels inside a cross or square mask centered at each
generated pixel.

This fast orientation estimation algorithm is
planned to be used in real time to track the orientation
of a camera with a Kalman filter or a similar
technique. An attempt will be made to reuse the
data remaining from the grid masking to also extract
edges. The resulting edge observations will be fed to
a monocular simultaneous localization and mapping
(SLAM) system [NDL08] that exploits the restrictions
on the edge directions.
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