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ABSTRACT 
In this paper, we present a method that introduces graphical models into a multi-view scenario. We focus on a 

popular Random Fields concept that many researchers use to describe context in a single image and introduce a 

new model that can transfer context directly between matched images – Multi-View Random Fields. This 

method allows sharing not only visual information between images, but also contextual information for the 

purpose of object recognition and classification. We describe the mathematical model for this method as well as 

present the application for a domain of street-side image datasets. In this application, the detection of façade 

elements has improved by up to 20% using Multi-view Random Fields. 
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1. INTRODUCTION 
In a current computer vision research input data is 

often represented as large, redundant datasets with 

hundreds or even thousands of overlapping images. 

As the volume and complexity of data increases, it is 

no longer meaningful to employ manual inputs in 

any step of the process. This constraint on the work 

automation leads to a need to utilize as much 

information from images as possible. One potential 

approach is to employ “context”. Most popular 

methods of context application are graphical models, 

specifically Random Fields. However, general 

Random Fields models are defined such that they 

allow observations only from a single image. This 

approach is limiting context as a feature of a single 

image, but the context is derived from objects in a 

real scene, from which an image is only one 

projection. How is this limiting context application 

and how can we expand the Random Fields model to 

cope with the presence of multi-view dataset is the 

topic of this paper. 

The basic element in a Random Field model is a 

“site”. This is generally a patch of image area  

 

Figure 1: The application of Multi-View Random 

Fields for labeling of the façade elements. Top left 

– set of blocks that divide building façade into a 

set of sites for a graphical model. Bottom – final 

labeling is achieved as a combination of 

information from multiple overlapping images 

(for color-coding, see Figure 7). 

ranging from a single pixel to a larger segment. In 

our application in a street-side images domain, a site 

is a rectangular area (block) of a building façade (see 

Figure 1). Each site has to be labeled according to 

visual data and a context in which it is observed. 

Context is defined as relations (spatial relations, 

similarity…) between sites. In a multi-view scenario, 

we have multiple matched images, each with its own 

set of sites. Extension of Random Fields into a multi-

view is not straightforward, as the two sets of sites 

from matched images are typically overlapping. 
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otherwise, or republish, to post on servers or to 
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Simple merging of these two sets would cause 

double detections of same objects and unresolved 

relations between sites. To solve both problems, we 

introduce a new concept – Multi-View Random 

Fields. 

In this paper, the “Background” and “Graphical 

Models” sections are outlining a context of our work 

in a computer vision community and in a Random 

Fields models research. The “Context in Multi-View” 

section explains what type of context is relevant in 

multi-view and how it can be utilized. In the “Multi-

View Random Fields” section the new graphical 

model is introduced and the “Application of MVRF” 

section present the illustrational application of the 

model in a street-side images domain. 

2. BACKGROUND 
The last decade saw growing interest in multi-view 

methods. With the introduction of a new generation 

of high resolution digital cameras and with rapid 

improvements in storage and computing hardware, 

multi-view imagery advanced from a source for the 

computation of point clouds by two-image stereo 

methods to a broad range of vision problems 

employing thousands of overlapping images. Open 

online image hosting sites (Flickr, Picasa, 

Photobucket…) have added interesting vision 

opportunities. While the basic principles for 

matching images remain applicable to such datasets 

[Har04a] [Leo00a], new problems needed to get 

solved, such as the organization and alignment of 

images without any knowledge about camera poses 

[Sna06a]. The resulting resource need in computing 

gets addressed by means of graphical processing 

units GPUs, or with distributed approaches [Fra10a]. 

Therefore current computer vision can cope with this 

avalanche of imagery and multi-views are becoming 

a common reality.  

Extending the concept of Random Fields into such 

multi-view scenario comes from an idea that given 

more images of the same scene, more contextual 

relations can be examined. In this work, we present a 

mathematical model for Multi-View Random Fields 

that allows transferring contextual relations between 

matched images. We also present the application of 

Multi-View Random Fields in a domain of street-side 

images. This domain is useful for a demonstration, as 

there are large datasets of matched street-side images 

for the purpose of urban modeling (virtual cities, 

GIS, cultural heritage reconstruction) that establish a 

multi-view scenario. Urban scenes also exhibit strong 

contextual relations, as man-made objects adhere to 

an inherent organization. We show how façade 

elements can be classified, using both context and 

multi-view principles in one model. 

 

Figure 2. The typical application of MRF in 

computer vision. At each node (site) i, the 

observed data is denoted as yi and the 

corresponding label as xi. For each node, only 

local observations are possible. Generally each 

node represents a pixel in an image and observed 

data pixel’s features.  

3. GRAPHICAL MODELS 
The most common non-causal graphical models in 

computer vision are Markov Random Fields (MRF). 

MRF have been used extensively in labeling 

problems for classification tasks in computer vision 

[Vac11a] and for image synthesis problems. In a 

labeling task, MRF are considered to be probabilistic 

functions of observed data in measured sites of the 

image and labels assigned to each site. Given the 

observed data y = {yi}iϵS from the image, and 

corresponding labels x = {xi}iϵS, where S is the set of 

sites, the posterior distribution over labels for MRF 

can be written as: 

( ) ( ) ⎟⎟⎠
⎞

⎜⎜⎝
⎛ += ∑ ∑∑∈ ∈ ∈Si Si Nj

jimii

m i

xxxp
Z

P β|logexp
1

| yyx
  ,(1) 

where Zm is the normalizing constant, ȕm is the 

interaction parameter of the MRF and Ni is the set of 

neighbors of a site i. The pairwise term ȕmxixj in 

MRF can be seen as a smoothing factor. Notice that 

the pairwise term in MRF uses only labels as 

variables, but not the observed data from an image. 

In this arrangement, the context in a form of MRF is 

limited to be a function of labels, thus allowing for 

semantic context (context between classes) and 

limiting geometric context to a structure of MRF 

graph (see Figure 2). This makes the MRF applicable 

mainly for simpler forms of local context.  

To cope with such limitations, the concept of 

Conditional Random Fields (CRF) was proposed by 

J. Lafferty [Laf01a] for the segmentation and 

labeling of text sequences. The CRF are 

discriminative models that represent the conditional 

distribution over labels. Using the Hammersley-

Clifford theorem [Ham71a], assuming only pairwise 

cliques potentials to be nonzero, the conditional 

distribution in CRF over all labels x given the 

observation y can be written as 
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where Z is the normalizing constant, -Ai is the unary 

and -Iij pairwise potential. The two principal 

differences between conditional model (2) and MRF 

distribution (1) are that the unary potential Ai(xi, y) is 

a function of all observations instead of only one 

observation yi in a specific site i and the pairwise 

potential in (2) is also the function of observation, 

not only labels as in MRF. In CRF, the unary 

potential Ai(xi, y) is considered to be a measure of 

how likely a site i will take label xi given the 

observation in a image y. The pairwise term is 

considered to be a measure of how the labels at 

neighboring sites i and j should interact given the 

observed image y. This concept of CRF allows for 

use of more complex context derived from larger sets 

of observations in the image and employing 

geometric context (e.g. spatial relations between 

objects). It is extended even more in a concept of 

Discriminative Random Fields [Kum06a], where an 

arbitrary discriminative classifier can be applied in a 

form of unary/pairwise potential.  

However, in all concepts of Random Fields, the set 

of sites S (and thus the observations) is limited to a 

single image. How to extend these models into a 

multi-view is explained in subsequent sections. 

4. CONTEXT IN MULTI-VIEW 
Before the definition of a new Random Field model 

in multi-view, we must consider what type of context 

can be transferred between images. The most 

common type of context applied for classification is a 

local pixel context. In general, a small neighborhood 

around an examined pixel is taken as a context area 

and a graph structure of a model is placed in this 

neighborhood (one node per pixel). However, this 

approach is not suitable for multi-views, as 

neighborhoods around matched pixels in two images 

are in general uniform and will not present much 

useful additional information. Alternatively we can 

consider global context, which examines 

relationships between all objects in the images. In 

this type of context, we can observe different 

relations in different images, thus transferring such 

context would provide additional information for 

recognition and classification (see Figure 3). If 

spatial relations between objects are examined in this 

manner, graphical models are approximating spatial 

relations between objects in a real 3D scene.  

In a standard Random Fields (RF) model, each image 

is considered a unique unit of information. Thus, we 

can consider a global context to be a specific feature 

of each image - the global context is a set of relations 

between all sites detected in a single image.  

 

Figure 3. Building façade projected in slightly 

different views. Red lines (graph edges) represent 

spatial relationships between objects detected in 

the images, indicating different context in two 

projections for the same objects. For better 

overview, only some relations are visualized. 

Typically, sites are either pixels or segments. 

Construction of a global model with node in each 

pixel would significantly increase the complexity of 

computation; therefore we consider segments as the 

representation of sites in our model. 

Subsequently a site is represented by a specific area 

(segment) in a digital image. Such area represents an 

object (or part of object) and areas from two sites are 

not overlapping. In a general RF model, a set of all 

sites in one graph is denoted as S. In a local model, 

one set S include sites from a small patch of the 

image, however in a global model, S includes all 

sites from the entire image. Visual features of the 

area assigned to a specific site are denoted as image 

observation ys from site sϵS. In a graphical model, if 

there is an edge between nodes assigned to sites s1 

and s2, let’s denote this relation as Φ(s1, s2) = 1 and 

consequently if there is no edge between s1 and s2, 

denote this as Φ(s1, s2) = 0.  

Transferable Sites 
Consider one image from the dataset as “examined 

image” to which we would like to transfer context 

from other matched images. Let’s call any site sϵS 

from an examined image a “native site”. If the image 

matching is established in a dataset (we have a set of 

corresponding points that link images), we can look 

for any sites from other images that are 

corresponding to native sites. In most cases, sparse 

point cloud of matched points is enough to establish 

correspondence between site. Relative poses between 

images and camera parameters are not required. 

Definition of corresponding sites can vary in 

different applications. In general, corresponding sites 

are two sites from different images that share some 

subset of corresponding points;  
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Figure 4. Transfer of sites from the image lϵ I to 

the image kϵI, as presented in Definition 1. Only 

sites from l that are not corresponding to any sites 

from k are transferred. This figure demonstrates 

only transfer between two images. 

each site from matched images can have only one 

corresponding site in the examined image – the 

example of this relation is provided in the application 

section of this paper. 

Given that corresponding sites usually represent the 

same objects, transferring such information between 

images would be redundant. Therefore we transfer 

sites that have no correspondences in the examined 

images to provide new information. We denote such 

sites as “transferable sites”. For a single, examined 

image from the image stack, let’s define the set of 

transferable sites as: 

Definition 1: If Sk = {s1, s2, … , sn} is the set of sites 

for single image kϵ I, where I is the set of images and 

correspondences have been established between the 

images from I such that ϵS
'

is l is a site from image   

lϵ I-{k} corresponding to a site si. Than the Rk = {r1, 

r2, … , rm} is the set of transferable sites for the 

image k if  and ( ) 1SR =∈∃∈∀ '
,Φ| ijkikj srsr

kjkj rr SR ∈¬∃∈∀ ' . Rk is constructed such that 

kji rr R∈∀ , , ri and rj are not correspondent to each 

other in any two images from I 

Thus the Rk is the set of sites from other images than 

k, that are in the relationship in graphical model with 

some corresponding site to sites from Sk, but 

themselves have no correspondences in Sk (see 

Figure 4). The set of transferable sites can be seen as 

a context information, that is available in the image 

stack, but not in the examined image. If sites are the 

representations of objects, than in a transferable set, 

there are objects in context with the scene of the 

image that are currently not located in the projection, 

thus are occluded, out of the view or in different 

timeframe. This also means that the visual 

information from the sites in Rk are not present in the 

image k. If the sites from Rk are included in the 

vision process, they can provide additional context 

and visual information that is not originally present 

in the examined image. 

Note that a transferable site is not equivalent to a 

native site in an examined image. Even though 

transferable sites have the same set of visual features 

as sites native to the image and they can be assigned 

the same set of spatial and contextual relations in a 

graphical model, transferable sites lost all original 

contextual relationships except the relationships to 

the sites they are connected within the examined 

image. This makes them harder to label. But the 

labeling of transferable sites is not the aim in the case 

of examined image (the goal is to label only native 

sites), thus transferable sites can contribute 

information for image labeling, but the labeling of 

themselves is usually irrelevant. 

5. MULTI-VIEW RANDOM FIELDS 
Given a non-equality of transferable sites to native 

sites, standard RF models are not compatible with 

this extended set. For this reason, we introduce a new 

model denoted as Multi-View Random Fields 

(MVRF). This model is derived from a CRF, 

described in Section 2; however we extend the 

posterior probability distribution into MVRF model 

framework as follows: 

Given the observed data y = {yi}iϵS from the image, 

corresponding labels x = {xi}iϵS, where S is the set of 

native sites from the image and observations from 

transferable set z = {zi}iϵR  with corresponding labels { }
R∈=

iix~~x , where R is the set of transferable sites, 

the posterior distribution over labels is defined as: 

,(3) 

 

where Z is the normalizing constant, Ni is the set of 

native sites neighboring site i and Ki is the set of 

transferable sites neighboring site i. - Ai and - are 

unary potentials, - I

'

iA

ij and -  are pairwise potentials 

(for native sites and transferable sites respectively). 

The differences between potentials for transferable 

sites and for native sites are as follows: 

'

ijI

- In the unary potential for a transferable site, 

only observations from the site itself are 
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considered, instead of observation from the 

entire image for native sites. This is due to 

the fact, that a transferable site does not 

have any connections to the image except 

for the site it is neighboring. Even if other 

connections exist (with other sites in the 

image), it is a hard task to establish 

relationships. For native site, there are no 

changes to a standard conditional model. 

- In the pairwise potential, in addition to 

observation from the image, local 

observation from the transferable site is 

considered, when relations are examined 

between a native site and transferable site. 

The inclusion of all image observation grant 

at least the same level of information in 

pairwise computation as in a standard CRF 

model and the additional observation form 

transferable site represent extended context 

for native image observation. The pairwise 

potential for two native sites is the same as 

in a standard CRF model. 

This model has some additional unique 

characteristics. For example, no pairwise relations 

are considered between two transferable sites. This is 

based on the construction of transferable sites set. A 

site from such set can be neighboring several native 

sites, but not any other transferable site. This can be 

seen as a limitation for the model, however without 

additional high frequency information about the 

scene (as a prior knowledge), it is virtually 

impossible to establish relationships for transferable 

sites.  

The computational complexity of the model is not 

increased significantly. Pairwise potentials are 

computed only for native sites, as it is in the standard 

CRF model. The difference is in the number of 

neighbors for each site, however even this number 

should not increase significantly. When considering 

a global model, each new neighbor (transferable site 

in relation to the native site) represents a new object 

in the projection. This is dependent on the 

differences between projection parameters – camera 

positions, optical axes…, but even for very different 

parameters, the number of objects should not differ 

significantly for the same scene. From the general 

observation, the number of neighboring transferable 

sites is notably lower than the number of neighboring 

native sites.  

Potentials Modifications 
Unary potential for native image sites, similar to a 

standard CRF is a measure of how likely a site i will 

take label xi given the observations in image y. A 

standard approach described in a work of S. Kumar 

is to apply Generalized Linear Models (GLM) as 

local class conditional [Kum06]. In that case, given 

the model parameter w and a transformed feature 

vector at each site hi(y), the unary potential can be 

written as: 

( ) ( )( )( )ywy i

T

iii xxA hlog, σ=         ,(4) 

For the transferable sites, the feature vector is limited 

to the observations from single site. This limitation 

defines a new expression for unary potential, 

exclusive to transferable sites as 

( ) ( ( ))( )ii

T

iiii xxA zwz h~log,~' σ=        ,(5) 

The feature vector hi(zi) at the transferable site i is 

defined as a nonlinear mapping of site feature vectors 

into high dimensional space. The model parameter w 

= {w0, w1} is composed of bias parameter w0 and 

model vector w1. σ(.) is a local class conditional, that 

can be any probabilistic discriminative classifier. 

The pairwise potential for two native sites from the 

image remains the same as in CRF model, given the 

GLM are applied to compute the class conditional: ( ) ( ) ( )( )( )( )121 −−+= yvy ij

T

jijijiij xxKxKxxxI µ,, σβ  

,(6) 

where 0 ≤ K ≤ 1, v and ȕ are the model parameters 

and µij(y) is a feature vector. For transferable sites, 

we introduce the additional feature vector in a form 

of observations from specific site: ( ) ( ) ( )( )( )( )121 −−+= jij

T

jijijjiij xxKxKxxxI zyvzy ,µ~~,,~,
' σβ  

,(7) 

where µij(y,zi) is a feature vector defined in a domain 

such that observations are 

mapped from the image/sites related to site s into a 

feature vector with dimension Ȗ. Note that the 

smoothing term  is the same as in a standard 

CRF definition. Thus if K = 1, the pairwise potential 

still performs the same function as in a MRF model, 

however given new transferable sites, the smoothing 

function will depend also on their classification . 

In this case, visual information from transferable 

sites is not involved in the pairwise term and is only 

applied in the unary term. If K<1 the data-dependent 

term 

qµ ℜ→ℜ×ℜ γγ
:

ji xKx ~

jx~

( )( ) 12 −jij

T

ji xx zyv ,µ~σ  is included in a 

pairwise potential. Observations from the image 

related to the examined native site and observation 

from transferable site are transformed into feature 

vector and involved in computation. 

Parameter Learning and Inference 
In this work, we constructed an MVRF model to be 

as compatible with other RF models as possible. This 

approach is observed also in a parameter learning 

process, as any standard method used for learning of 
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CRF model can be also used for MRVF model. To 

further simplify the process, we observed that 

learning from single (un-matched) images is feasible 

without the loss of strength of the model. This is due 

to the construction of potentials - in a unary 

potential, visual features do not change for 

transferable sites, therefore they can be learned 

directly from single images in training dataset. The 

spatial relations defined for a pairwise potential also 

do not change significantly for the pair native-

transferable site. For such reasons, we can assume 

that the MVRF model can be learned even directly 

from single images without dataset matching. 

Therefore, methods such as pseudo-likelihood can be 

applied for learning. 

Similarly, parameter inference can be performed, 

using any standard method applied in CRF. In our 

application, we use Belief Propagation, but other 

possible methods are Tree-Based Reparameterization 

or Expectation Propagation for example. 

6. APPLICATION OF MVRF 
In this section we present the application of MVRF 

in the building façades dataset for the purpose of 

façade elements detection and classification. This 

application is based on the dataset provided by a 

vehicle-based urban mapping platform. Sparse image 

matching is applied (see Figure 5), using the 

Structure-from-Motion method [Irs07a].  We 

selected the left camera subset, since it provides a 

clear view of the building façades, not distorted by 

the perspective (which, however, is easy to rectify) 

and with good visual cues. This setting will 

demonstrate the advantages of MVRF in cases when 

a site was misdetected and presents lost contextual 

information in standard models. In most images, the 

building façade is not projected in its entirety and 

parts are located in other images. Therefore in such 

cases, the MVRF will also provide new contextual 

and visual information in a form of transferable sites 

based on the objects that are not located in the 

original image.  

In each image, separate facades are detected. This 

can be achieved when the wire-frame models of the 

scene are available, or using visual cues, such as 

repetitive patterns [Rec11a]. Subsequently, a 

modified gradient projection is applied to segment 

each façade into a set of blocks. This method is based 

on a standard gradient projection approach [Lee04a] 

designed for the detection of windows with 

following modifications:  

First, we vertically project gradients to establish a 

horizontal division of the façade into levels (level 

borders are located at the spikes of the projection). 

Subsequently, we compute horizontal gradient 

projections in each level separately.  

 

Figure 5. Top row: two examples of the same 

façade, matched with a sparse point cloud (red 

dots). Middle row: set of blocks located in each 

façade (left image show façade detail for better 

overview, right image entire facade). Bottom row: 

set of blocks from the first image projected into a 

second image and a set of transferable sites 

(highlighted blocks) that is derived from the 

projection (as sites that have no correspondence 

in second set). 

This process will yield a set of blocks bordered by 

level borders horizontally and spikes in projection 

vertically (see Figure 5). Second, we consider each 

block as a site for a graphical model, thus we 

compute visual features for each block and consider 

spatial relationships between blocks. Visual features, 

such as texture covariance, or clustering in a color 

space are used for classification [Rec10a]. For 

example, clusters in a CIE-Lab color space are 

computed for each block and are compared to class 

descriptors. 

When the segmentation of a façade into a set of 

block is established, we can define a global graphical 

model in this structure. Each block is considered a 

site, thus each node of the graph is placed in a 

separate block. We define neighborhood relation 

such that for each block, its neighbors are all blocks 

located in areas above, below, left and right from 

itself (see Figure 6). This definition allows 

considering all objects at the same level and column 

to be involved in contextual relations, accounting for 

relations, such as rows and columns of windows, or 

window-arch. An edge of a graphical model is placed 

between each two neighboring blocks. In this 

approach, a separate graph is created for each façade 

in the image.   
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Figure 6. Example of site neighborhood, as 

defined in this application. Green block is the 

examined site and highlighted blocks are defined 

as its neighborhood. 

Multi-View Scenario 
To establish a multi-view, we use a sparse point 

cloud. We match blocks between images such that 

we interpolate between detected corresponding 

points to achieve rough point-to-point matching. If 

two blocks in different images share at least 2/3 of 

matched points (detected and interpolated), we define 

these as corresponding blocks. Given one image as 

“examined”, we can label all blocks from the same 

façade in other images as either corresponding or 

non-corresponding. Subsequently, transferable sites 

are blocks that are from the same façade as in an 

examined image, but are non-corresponding to any 

block from the examined set (see Figure 5). 

Establishing the relations between native and 

transferable sites is straightforward, as we can still 

consider up, down, left, right directions. With these 

definitions, we can construct the MVRF model from 

our dataset. 

Experiments 
We use the described model for the purpose of 

façade elements detection and classification. The set 

of classes with corresponding color coding is 

displayed in Figure 7. Our testing dataset consists of 

44 matched images. This dataset covers three full 

building façades and one half façade. A sparse point 

cloud of 1429 3D points is used to match images. 

Approximately 800 points are projected into each 

image. In the testing process, we compare the 

number of façade elements to the number of detected 

elements with the applied method. We counted 

overall numbers of elements through the entire 

dataset, as displayed in Table 1. For example, total 

number of 536 “window centre” elements can be 

observed in all images, that is approximately 12 

“window centers” per image.  

 

Figure 7. Set of classes: a) clear façade; b) brick 

façade; c) window centre; d) window top; e) 

window bottom; f) window margins; g) arch top; 

h) arch bottom; i) basement window; j) door; k) 

ledge; l) ledge ornament; On the right side, color 

representation of each class is displayed. 

Each façade was processed separately, that is if there 

were two façades in one image, such image was 

processed two times (each time for different façade). 

After running the algorithm, a number of detected 

elements is counted visually. The façade element is 

defined as detected, if at least 2/3 of its area is 

labeled with the corresponding class. For the training 

purpose, we used the subset of 3 images from the 

dataset and other 5 unrelated images as labeled 

ground truth. This proved to be sufficient, as the 

spatial relations between classes are in general stable 

through different facades and a certain visual 

features variability  

Class # el single 
multi 

/native 

multi

/trans

clear façade 61 61 61 61 

brick façade 54 54 54 54 

win. centre 536 485 531 531 

window top 311 270 303 308 

win. bottom 300 227 273 288 

win. margin 683 572 618 654 

Arch top 199 176 189 192 

Arch bottom 199 184 194 194 

Basem. win 121 98 115 117 

Door 34 32 33 33 

Ledge 90 90 90 90 

Ledge orna. 34 32 34 34 

Table 1. The Results for the MVRF application. 

“# el” displays the overall number of each class 

for entire dataset (44 images). “single” displays 

detected elements in MVRF single image scenario 

(equivalent to CRF), “multi/native” displays 

results for multi-view scenario with only native 

sites in results and “multi/trans” display results 

for multi-view scenario with transferable sites 

labels in results. Numbers displayed are the 

detected façade elements in all images of dataset. 
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Figure 8. Two examples of classification results. 

Classes are labeled according to color scheme 

explained in Figure 7. Colors are superimposed 

over original images in the bottom row. 

was allowed by the use of descriptors (e.g. 

clustering). We trained on single images without the 

use of matching. For the parameter inference, we 

used a Belief Propagation method. Initial 

classification was performed based on only visual 

features and in each iterative step of the method, it 

was refined by pairwise relations and site features 

described in a model. In each step, we also refined 

visual descriptors for each class to better 

approximate features in each unique façade. Results 

can be observed in the Table 1. We included results 

for scenarios, where no transferable sites were used 

(single), and the MVRF model is equivalent to CRF 

in this case, results when only labels of native sites 

were considered and results were labels of 

transferable sites were included. Notice a significant 

improvement in detection for classes that are visually 

ambiguous, but have strong contextual relations (e.g. 

window margins, window tops). For a “win. bottom” 

class, the correct detection rate improved from 76% 

in a single-view to a 96% in a multi-view with 

transferable sites projected, thus achieving a 20% 

improvement. Results illustrated in Figure 8. 

7. CONCLUSION 
In this paper, we addressed a common problem in a 

current research – how to work with context 

information in matched datasets and to alleviate an 

artificial limitation of graphical models to single 

images. We introduced a new MVRF model directly 

applicable in a multi-view scenario. We extended the 

standard CRF model such that it can work with 

overall context of the scene present in the multi-view 

dataset, but it still retains the same properties for 

processing visual and contextual information in a 

single image. Validity of this model is subsequently 

demonstrated in the application in street-side image 

domain – detection of façade elements. However the 

new MVRF model is applicable in same situations as 

a standard CRF model, provided that appropriate 

image matching is available. For example, the 

MVRF model was also used for a super-pixel based 

semantic segmentation of outdoor images in our 

other work. 
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